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ABSTRACT 

PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored 

as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary 

labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the 

volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences 

for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. 

Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects 

metrics, such as DVH. 

METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled 

at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate 

voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage 

between the DVH. 

RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We 

found that there were large DVH variation from the baseline for small structures or for structures located in regions with 

a high dose gradient, potentially leading to the creation of suboptimal treatment plans. 

CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH 

accuracy, which must be accounted for in order to ensure the development of accurate treatment plans. 
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1. PURPOSE 

When creating radiation therapy (RT) treatment plans, medical images such as computed tomography (CT) scans are used 

to delineate structures such as targets and organs at risk as a series of 2D planar contours. In order to be used in various 

treatment planning steps, the contours for each structure must be converted into a binary labelmap, which is comprised of 

a volume containing a large number of voxels that indicate whether a particular region is considered to be inside the 

segmented structure. 

The process of converting the contours into a binary volume is a required step that is implemented in all treatment planning 

systems (TPS). The implementations are not identical between the packages however, which can lead to differences in the 

labelmap volumes. Although these differences are small in large structures, they can become quite large in small structures 

that are comprised of only a small number of voxels, for example small organs at risk (OAR) such as optic chiasm or even 

rectum, which is emphasized in high dose gradient regions, where dose gradient is a measure of the rate of change in dose 

intensity. This can lead to significant differences in the resulting dosimetry and DVH, and may negatively impact the 

treatment planning procedure. 

It is important that the DVH derived from the structures are as accurate as possible [1], since, they are used to evaluate the 

effectiveness and impact of a treatment plan. In automated TPSs which use inverse planning, such as the one by Li et al., 

DVHs are used as a metric in the automated process of plan optimization [2]. This means that an inaccurate DVH could 

potentially result in a suboptimal treatment plan being presented. 

Our goal is to evaluate how the errors introduced by the process of voxelization impact the quality of the labelmaps that 

are used to represent structures of interest, such as targets and OAR in TPSs. In addition, we want to determine how factors 

like voxel size impact metrics, such as DVH, that are used in the decision making process during treatment planning. 



 

 
 

 

 

 

2. METHODS 

Implicit Function 

We create a series of implicit functions in order to approximate a set of anatomical structures. Each of the structures are 

implicitly defined by a mathematical equation, which allows us to determine whether any given point is inside or outside 

of the structure. These functions are treated as the ground truth analytical representation for our structures that have 

infinitely high resolution. This allows us to construct labelmaps of a higher resolution than those typically used in clinical 

procedures. Analytical phantoms have been used previously as a phantom for TPS [3], and for comparing the effects of 

voxelization on dose calculation accuracy [4]. Each of the simulated targets and OAR that we use is created from the simple 

mathematical representations for spheres, cones and cylinders. We also use simple Boolean operations to add and subtract 

the functions, which allows us to create more complex representations (Fig. 1). One downside to using the composite 

implicit functions is the appearance of infinitely sharp edges. These edges occur at the intersection between implicit 

functions and can never be correctly voxelized at any resolution. This means that the resulting voxelized structures will 

have a volume that is slightly higher than the original implicit function. 

 

Fig. 1. Models representing the implicit functions that are used as the ground truth structures for the head and neck phantom 

in our experiments, and CT images showing the phantom that is being approximated. 

 

Binary Labelmap 

We convert these implicit functions into binary labelmaps by sampling the implicit functions at the center of each voxel 

in a volume of a given resolution. Voxels from the volume in which the implicit function evaluated to less than or equal 

to zero at the center are considered to be part of the structure, otherwise outside the structure. We iterate through each 

voxel in the volume for all of the implicit functions representing individual structures, resulting in a set of binary labelmaps 

(Fig. 2). 

 

Fig. 2: Axial, Sagittal and Coronal views for the labelmap representing an implicit function at a 2.5mm voxel size. 

 

We construct two binary labelmaps from our implicit functions. One labelmap at a traditional clinical resolution using 

cubical voxels with an edge length of 2.5mm, and another labelmap with smaller voxel size of 0.05mm, 0.15mm, or 

0.3mm, with higher volume structures utilizing the larger voxel size. This difference in voxel size for the higher resolution 

structures is required in order to allow the images for large structures to be contained within memory. In order to 

quantitatively evaluate the differences between the labelmaps at two resolutions, we utilize two metrics: Dice coefficient 

and Hausdorff distance. 



 

 
 

 

 

 

Dice similarity coefficient 

The Dice similarity coefficient is a metric which is often used to compare the similarity between two sets of items with 

binary classification. In the case of binary labelmaps, it is a measure of the overlapping voxels between the two labelmaps 
[5]. In order to calculate the Dice coefficient, we resample the labelmap with the lower resolution into the voxel size of the 

high resolution labelmap. In order to correctly resample the low resolution as a binary volume, we need to use nearest 

neighbor interpolation, which offers a binary value for each pixel. We then traverse the labelmap in order to determine the 

number of true positive, false positive and false negative voxels, which we use to calculate the Dice coefficient. 

 

Hausdorff distance 

The Hausdorff distance is a quantifiable measure of difference between two sets of points, such as vertices or pixels in an 

image [6]. We calculate the Hausdorff distance by comparing the labelmaps as two sets of points in 3D space, with each 

point representing a border voxel in the labelmap. We find the shortest distance from each point in the first labelmap to a 

point in the second, as well as the reverse. The Hausdorff distance is considered to be the maximum of these distances. 

 

Dose Volume 

In order to evaluate the effect of labelmap voxel size on the DVH, we need to construct a simulated dose volume at an 

arbitrarily high resolution, which we can use in our calculations. We create a dose volume by simulating a plan containing 

multiple beams with a source-axis distance of 100cm and a focal region of 10cm2 (Fig. 3). We use a clinically observed 

tissue phantom ratio, as well as clinical cross-plane and in-plane dose profiles for our dose calculation. The voxels in the 

dose volumes are sampled at the same resolution as their corresponding labelmaps (Fig. 4). These volumes are not 

generated to be clinically perfect, however, we consider them to be qualitatively sufficient for our evaluation. Using the 

generated labelmaps, we construct dose volumes at the same resolution, which we can then use to calculate DVH for the 

structures. The DVHs are compared for each structure using a comparison algorithm from [10], which returns an agreement 

acceptance percentage, which indicates the number of bins in the DVH that are within a specified threshold. We used the 

algorithm two different thresholds of 3% volume-difference and dose-to-agreement (DTA) criterion, and a volume-

difference and DTA of 1%. 

 

Fig. 3: Beam layout which was used to generate dose volumes at any specified resolution. 

 



 

 
 

 

 

 

Fig. 4: Axial view of a dose volume generated from a dose plan of five simulated beams at a 0.3mm voxel size. 

 

3. RESULTS AND DISCUSSION 

In order to evaluate the effect that voxel size has on the DVH calculation process, we developed several modules in the 

SlicerRT [7] RT research toolkit which is based on the widely used medical image analysis and visualization platform 3D 

Slicer [8]. The modules are implemented as a combination of Python scripted modules and C++ loadable modules. These 

modules serve as a platform for implementing the steps required to perform the voxelization analysis. We created a series 

of implicit functions within 3D Slicer by using the VTK implicit function libraries [9] 

We observed that the Hausdorff distance remained relatively constant across structures of varying size. The Dice Similarity 

Coefficient was found to be reduced in small structures such as the optic lenses and nerves. These differences could be 

potentially used to identify structures that are represented with low accuracy. 

When the DVH for the high and low resolution labelmaps was plotted on the same graph, we observed differences between 

the two (Fig. 5).We found that there were only small differences in the DVH for large structures which contained many 

voxels. Even when they were sampled using a large voxel size, in large structures such as the body, brain, CTV, GTV, left 

femoral head, and right femoral head, there were no differences found between the DVH. In some structures that were a 

medium size, there was a large difference found when comparing the DVH using a 1% dose and volume to agreement 

criteria, however they were found to be much more accurate when using a relaxed comparison of a 3% dose and volume 

to agreement criteria. In small structures, such as the optic lenses and nerves, there were much larger differences found at 

both 1% and 3% dose and volume to agreement criteria. The differences in the DVH for the structures was amplified if 

the structures were located in regions with a high dose gradient (Table 1). This caused several types of artifacts to appear 

in the DVH for small structures, such as a staircase-like effect, as well as consistent differences between the low resolution 

and high resolution DVH (Fig. 6). 

These effects can potentially cause high errors in the DVH V and D metrics, which are calculated from the dose and 

volume levels, and are used in treatment planning to assess the quality of a plan. If there are differences in the labelmap 

and volume for small targets or OARs, they could potentially create large errors that cause a suboptimal plan to be accepted. 

If the TPS uses inverse planning, then the process of determining if a plan meets the specified criteria could be 

compromised, since the DVH metrics are used as criteria for evaluating a plan effectiveness. This problem might not be 

noticed by the physician, since the DVH values would support the results that were provided by the TPS, except the 

problem would be caused by errors within the DVH itself.  

 

Fig. 5: DVH showing the differences between the high resolution (solid) and low resolution (dashed) labelmaps. 



 

 
 

 

 

 

 

Fig. 6: DVH for the high resolution (solid) and low resolution (dashed) labelmaps showing the staircase effect of voxelization (left) 

and consistent differences between DVH (right). 

 

Table 1: Hausdorff distances, Dice Similarity Coefficients and agreement acceptance percentage comparing labelmaps and 

DVH from a small reference voxel size against labelmaps with a clinical voxel size of 2.5mm. 

 Reference 

Voxel Size 

(mm) 

Hausdorff 

Distance (mm) 

Dice Similarity 

Coefficient 

Agreement 

Acceptance % (1% 

DTA) 

Agreement 

Acceptance % (3% 

DTA) 

GTV (Head Phantom) 0.150 2.970 0.946 97.77 100.0 

CTV (Head Phantom) 0.150 2.783 0.970 100.0 100.0 

PTV (Head Phantom) 0.150 2.920 0.956 100.0 100.0 

Left Lens 0.050 2.861 0.794 99.19 99.19 

Right Lens 0.050 2.901 0.808 51.22 53.66 

Left Orbit 0.050 3.021 0.929 75.00 79.84 

Right Orbit 0.050 3.021 0.929 50.42 76.47 

Left Optical Nerve 0.050 3.085 0.866 90.24 94.51 

Right Optical Nerve 0.050 3.229 0.884 28.48 59.39 

Optical Chiasm 0.050 2.941 0.897 92.56 93.02 

Brain Stem 0.150 3.015 0.958 59.23 100.0 

Brain 0.300 2.858 0.987 100.0 100.0 

Body 0.300 5.555 0.990 100.0 100.0 

GTV (Prostate Phantom) 0.150 2.960 0.952 99.50 100.0 

CTV (Prostate Phantom) 0.150 2.739 0.955 99.50 100.0 

PTV (Prostate Phantom) 0.150 2.729 0.958 99.50 100.0 

Left Femoral Head 0.150 3.021 0.946 100.0 100.0 

Right Femoral Head 0.150 3.021 0.953 100.0 100.0 

Rectum 0.150 3.402 0.925 80.20 100.0 

 

4. CONCLUSION 

We evaluated the errors introduced by the voxel size variation in order to quantify the resulting errors in the DVH that are 

produced from these structures. We found that the effect of varying voxel size had a small effect on DVH for large 

structures or in regions with a low dose gradient, however we observed an agreement acceptance percent as low as 28.48% 

(1% DTA) and 53.66% (3% DTA) for small structures and in regions with a high dose intensity variation. This indicates 

that size of voxels is an important factor to consider relative to the total volume of a structure. 

 



 

 
 

 

 

5. FUTURE WORK 

Future work will include investigating the impact of voxelization errors on treatment planning systems, as well as potential 

methods to mitigate the effects of voxel resolution on DVH. One potential approach is the use of fractional labelmaps as 

a functional alternative to the current use of binary labelmaps and supersampling. 

 

Fractional Labelmap 

Since pixels in binary labelmap images are often represented using a full byte of data, there is an opportunity to greatly 

increase the amount of information contained in a labelmap without increasing the storage requirements. Using a fractional 

labelmap, we can use each pixel in the image to represent the fraction of a voxel that is contained within a segmented 

structure. 

In order to create fractional labelmaps, one method is to first construct regular binary labelmaps at a high resolution. This 

labelmap is then resampled into a lower resolution volume, with each voxel value representing the fraction of the voxel 

that is filled by the binary labelmap resulting in a fractional labelmap containing integer values between 0 and 255, rather 

than a binary value (see Fig. 7). 

 

Fig. 7: Axial, Sagittal and Coronal views of a fractional labelmap with a 1mm voxel size, sampled from a binary labelmap 

with a 0.1666mm voxel size. 
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