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ABSTRACT 

 
Intra-operative quality assurance and dosimetry optimization in prostate brachytherapy critically depends on the ability 
of discerning the locations of implanted seeds. Various methods exist for seed matching and reconstruction from 
multiple segmented C-arm images. Unfortunately, using three or more images makes the problem NP-hard, i.e. no 
polynomial-time algorithm can provably compute the complete matching. Typically, a statistical analysis of performance 
is considered sufficient. Hence it is of utmost importance to exploit all the available information in order to minimize the 
matching and reconstruction errors. Current algorithms use only the information about seed centers, disregarding the 
information about the orientations and length of seeds. While the latter has little dosimetric impact, it can positively 
contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become critical 
information when hidden and spuriously segmented seeds need to be matched, where reliable and generic methods are 
not yet available. Expecting orientation information to be useful in reconstructing large and dense implants, we have 
developed a method which incorporates seed orientation information into our previously proposed reconstruction 
algorithm (MARSHAL). Simulation study shows that under normal segmentation errors, when considering seed 
orientations, implants of 80 to 140 seeds with the density of 2.0- 3.0 seeds/cc give an average matching rate >97% using 
three-image matching. It is higher than the matching rate of about 96% when considering only seed positions. This 
means that the information of seed orientations appears to be a valuable additive to fluoroscopy-based brachytherapy 
implant reconstruction. 
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1. INTRODUCTION 
 

With an approximate annual incidence of 220,000 new cases and 33,000 deaths, prostate cancer continues to be the most 
common cancer in men in the United States1. For several decades, the definitive treatment for low risk prostate cancer 
was radical prostatectomy or external beam radiation therapy2, but low dose rate permanent seed brachytherapy (shortly 
brachytherapy) today can achieve virtually equivalent outcomes3,4. The success of brachytherapy (i.e., maximizing its 
curative force while minimizing its co-morbidity) mainly depends on our ability to tailor the therapeutic dose to the 
patient’s individual anatomy. In contemporary practice, however, implant planning is based on idealistic preplanned seed 
patterns. 15 years of clinical practice has clearly demonstrated that it is not achievable in the actual human body. 
According to a comprehensive review by the American Brachytherapy Society5, the preplanned technique used for 
permanent prostate brachytherapy has limitations that may be overcome by intraoperative planning. At the same time, 
the major current limitation of intraoperative planning is the inability to localize the seeds relative to the prostate. There 
are excellent algorithmic and computational tools available today to optimize a brachytherapy treatment plan 
intraoperatively, thereby allowing for improved dose coverage. These methods, however, critically require that the exact 
3D locations of the implanted seeds are precisely known with respect to the patient’s anatomy. 
 
Prostate brachytherapy is almost exclusively performed under transrectal ultrasound imaging (TRUS) guidance. While 
TRUS provides adequate imaging of the soft tissue anatomy, it does not allow for robust localization of the implanted 
brachytherapy seeds. Many researchers have tried to segment the seeds from TRUS images by linking seeds with 
spacers6, using X-rays to initialize segmentation7, using vibro-accoustography8 or transurethral ultrasound9 as a new 
imaging modality, or segmenting them directly10. But even when meticulously hand-segmented, up to 25% of the seeds 
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may remain hidden in ultrasound11. This necessitates the use of some other imaging method in intraoperative seed 
localization. 
 
The application of C-arm fluoroscopy in brachytherapy originates when it was first used as a solo guidance modality12. 
Shortly after TRUS emerged as a primary image guidance modality, fluoroscopy became a secondary tool for gross 
visual observation. Mobile C-arms are ubiquitous in contemporary prostate brachytherapy, with approximately 60% of 
the practitioners using it for qualitative implant analysis in the operating room13. It is considered as the gold standard for 
intraoperative visualization of brachytherapy seeds. While several groups have published protocols and clinical 
outcomes favorably supporting C-arm fluoroscopy for intraoperative dosimetric analysis10,14–22, this technique is yet to 
become a standard of care across hospitals. 
 
The ability to reconstruct and register the implanted seeds, which are visible in fluoroscopy, to soft tissue anatomy, 
which is visible in TRUS, intraoperatively would allow us to make immediate provisions for dosimetric deviations from 
the optimal implant plan. At the same time, quantitative use of fluoroscopy for dosimetric analysis has been hampered 
by a series of unresolved technical problems. The five major obstacles toward intraoperative dosimetry are: (a) C-arm 
distortion correction and calibration, (b) C-arm pose tracking, (c) seed segmentation, (d) seed matching and 
reconstruction, and (e) registration of C-arm to TRUS images. 
 
Significant efforts have been made toward computational fluoroscopy guidance in general surgery, developing various 
tools for distortion correction and calibration23,24. However, C-arms available in most hospitals do not have encoded 
rotational joints, so one never knows where the fluoro shots are coming from relative to one another. We have addressed 
this issue by designing a fluoroscope tracking (hence-forth FTRAC) fiducial, which is a radiographic fiducial system 
creating a unique projection image from each direction25. Various methods partially dealing with C-arm calibration in 
brachytherapy have also been proposed26–28, while some others have suggested that it is redundant29. 
 
Attempts have also been made to relate fluoroscopic images to soft tissue anatomy10,17,30–34. Nevertheless, further 
research is merited since existing methods are susceptible to various kinds of errors. We addressed this issue by the use 
of the FTRAC fiducial25. It is capable of not only tracking the C-arm, but also registering the C-arm to TRUS by a 
predetermined placement. 
 
Methods are available for automatic seed segmentation15,35–38. 3D coordinates of the implanted seeds can now be 
calculated from multiple X-ray images upon resolving the correspondence of seeds. Formalization of the seed-matching 
problem results in a high complexity search space of the order 10150 and 10300, from two and three fluoroscopic images, 
respectively. Hence previously proposed seed-matching approaches have predominantly been heuristic explorations of 
the search space, with no theoretical assurance on the accuracy of the answer. The early attempts toward seed matching 
used three coplanar images (coplanar images are those where the implant and the three X-ray sources are approximately 
in the same plane)39-41. The images were divided into variable width bands, formed by comparing coordinates along the 
rotation axis. Furthermore, in order to make the bands, it was assumed that the seeds are near the iso-center of the C-arm 
or at least have similar magnifications in all the images. These methods are prone to calibration errors and become 
ineffective as the number of seeds increases. These ideas were further extended by accommodating for patients’ 
motion42, and yet all the seeds could not be reliably reconstructed. Further geometrical constraints were imposed by 
assuming that some of the seeds are in a straight line43 or on quadratic curves44, which is generally not true due to seed 
migration. 
 
The first step toward mathematical formalization came with the construction of a cost matrix45, where exhaustive 
matching gave the lowest cost solution. Though it eliminated extraneous assumptions, it required impractical 
computational resources. A greedy randomized algorithm, tested with various cost metrics, was suggested to reduce the 
runtime46. This method gives a different output for each run and is typically iterated a few hundred times, choosing the 
sequentially lowest cost. Though this method might provide an answer close to the correct match, its randomization does 
not make any claim on the number of iterations required for the final answer. Fast-CARS is another variant47, which 
significantly improved the computational complexity, where for each cost matrix an exhaustive match can be performed 
to obtain the best possible matches. It reduced the run-time from O((N!)2) to O((A!)2), where A is the average number of 
seeds in the band. Though it made the search faster, it still ran in exponential time. For example, if A=10 then the 
number of computations would still be as high as O(1014). 
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Independently, a set of heuristic rules16, which attempted to reduce misclassifications, were suggested for seed matching. 
Simulated annealing36 was proposed as an alternate technique to reach the global minimum. Another technique28 was 
proposed, which optimizes seed positions and camera parameters by generating simulated images and iterating them 
until they match the observed images. These optimization methods are prone to local minima, and may not be able to 
recover from them. A statistical simulation of seed reconstruction uncertainty was conducted48, but did not address the 
problem of seed matching. CT and MRI based techniques49,50 were also proposed, but cannot be used intraoperatively, 
and have poor resolution in the axial direction.  
 
The matching problem is also prevalent in the computer vision community, where 2D points are tracked and 
reconstructed to compute motion. Researchers have tried to use noniterative greedy algorithms51, also incorporate 
spurious and hidden points52,53. Occlusion itself has also been a known problem54. These algorithms were optimized for a 
dense set of moving points, while specialized algorithms were used for sparse matchings55,56, which can also be used in 
pattern recognition across images57. These algorithms are usually catered to achieve real-time performance, as compared 
to a complete matching, and hence do not appear to be appropriate in a medical application.  
 
In our recent work59, a new theoretical framework for seed matching has been introduced. The framework tackles issues 
of optimality, and presents a practical algorithm. Moreover, the framework guarantees a polynomial runtime of O(N3) on 
the algorithm, an improvement over previous methods. Seed matching and reconstruction is done by using the 
Hungarian algorithm (MARSHAL). Simulations and phantom experiments show that MARSHAL is not sensitive to 
image separation, seed density, the number of seeds, and C-arm calibration, and also robust enough to segmentation, C-
arm pose, and distortion. It can reconstruct an implant when three or more images are used, with enough robustness, 
precision, and speed to support intraoperative dosimetry in prostate brachytherapy. It can also be used as a general 
purpose correspondence algorithm in many synergistic problems. 
 
In seed matching and reconstruction, it is of utmost importance to exploit all the available information in order to 
minimize the matching and reconstruction errors. However, current algorithms, including MARSHAL, use only the 
information about seed centers, disregarding the information about the orientations and length of seeds. While the latter 
has little dosimetric impact, it can positively contribute to improving seed matching rate and 3D implant reconstruction 
accuracy. It can also become critical information when hidden and spuriously segmented seeds need to be matched, 
where reliable and generic methods are not yet available. Expecting orientation information to be useful in 
reconstructing large and dense implants, in this paper we propose a method which incorporates seed orientation 
information into MARSHAL.  
 
This paper is organized in the following way. In Sec. 2, we will describe the proposed method which combines the 
information of seed orientations with that of seed positions. In Sec. 3, we will discuss the simulation study and the 
results. In Sec. 4, we will conclude our current work and discuss the future work. 

 
2. METHODOLOGY 

 
In this paper we further improve the matching rate of MARSHAL by including the information of seed orientations into 
the cost matrix. We convert the seed-matching problem to network-flow-based combinatorial optimization. In this 
formulation, any correspondence of the seeds is represented by an appropriate flow through the network. This formal 
approach allows better control of the behavior of the algorithm, considering the set of seeds in global optimization 
instead of local optimization as heuristic rules do. 
 
2.1 A generic network-flow-based formulation 
A network flow formulation is created for seed matching problem, where any flow in the network would represent a 
matching, and the desired solution is the flow with minimum cost. Let N seeds be implanted, and C-arm images I1, I2 be 
acquired. Let sij be the position of the ith seed in jth image. We construct a directed network as shown in Fig. 1. Sets A 
and B, each with N nodes, represent the two images I1 and I2. While there are no edges within each set, directed edges 
run from all vertices in set A to all vertices in set B. There are N edges at source S, each edge connecting to a node in A. 
Similarly each node in B is connected to sink T. The flow originates at S and ends at T, with each edge allowing a flow 
of value 1 or 0, where 1 means that the edge is selected and 0 means that it is not. The problem is to find a flow in the 
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network that can achieve a total flow of value N. To have a net flow of N, each edge connecting to either the source or 
the sink has to support a flow 1. Now by the conservation of flow at each node, every node in set A will have to dispatch 
a unit flow to some node in set B. Moreover, each node in set B can accept only a unit flow, because any extra flow 
cannot be passed on to T, and any deficiency would mean that T does not have a total flow of N units. The set of all 
edges with nonzero flow provide a feasible matching. 

 
Figure 1: Network flow formulation for the seed matching problem  Figure 2: Two-image seed matching as the assignment problem 
 
Under no constraint, the network flow problem has N! solutions, corresponding to N! feasible flows. To obtain the 
optimal solution, the edge connecting seed si1 to seed sj2 is assigned a cost Cij. The cost Cij represents the likelihood of 
seed si1 matching seed sj2, with the cost being 0 if they match perfectly and ∞ (infinity) if they do not match at all. Any 
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The network flow in Fig. 1 can easily be extended to multi-image cases by adding more sets of nodes and directed edges 
between S and T. 
 
2.2 Seed matching for two and three images 
When all the seed locations in the two images are known, the minimum-cost maximum-flow formulation reduces further 
to the specific problem of minimum-weight matching in bipartite graphs, also known as the assignment problem (Fig. 2). 
The problem is to find a minimum weight subset of edges such that all the vertices are covered exactly once. The 
assignment problem is solved in O(N3) runtime by using the Hungarian algorithm60–62. Since the algorithm is well-
known, we just give an outline here. The N×N cost matrix C is constructed. The objective is to choose exactly one 
element from each row and column such that the sum of the elements has the lowest value. Thus, an equivalent matrix 
having at least one zero in each row and column is obtained by subsequent subtractions using the smallest element in 
each row and column. This matrix is used to find a selection of zeros such that each row and column has exactly one 
zero. If it exists, then it provides the minimum-cost matching. If it does not exist, a line covering procedure is used to 
adjust the matrix and generate zeros in useful locations. The locations of all zeros provide the minimum-weight 
matching. Thus the Hungarian algorithm provides the matching with the lowest possible cost. 
 
Our previous work has proved that a robust seed matching and reconstruction requires at least three images59. In the 
three-image case, the network flow problem becomes a tripartite matching problem. We proposed a practical solution for 
matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL)59. MARSHAL 
projects the original tripartite problem into three distinct bipartite problems by the appropriate projection of the costs. 
Each bipartite problem can be solved in O(N3) runtime. The solutions of the bipartite matchings are then combined to 
obtain a solution to the original tripartite problem. A detailed description of MARSHAL algorithm and its theoretical 
foundation can be found in Ref. 59. A discussion of applying MARSHAL to seed matching from four or more images 
can also be found there. To avoid redundancy, here we only list the flowchart for MARSHAL (Fig. 3).  
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2.3 Seed reconstruction 
In principle, given three images, the 3D location of a seed can 
be computed by first defining the equation of the three straight 
lines that join each projection with its respective X-ray source, 
and then calculating the intersection point of the three straight 
lines. However, due to various errors, these straight lines never 
intersect, forcing us to compute a symbolic 3D intersection 
point. The symbolic intersection is typically defined as the 
global minimum of an error function. We have proposed a 
simple and quick method that minimizes the L2 norm of 
Euclidian distance from the intersection point to the lines59. 
Here we assume that for a point P in space, there are m 
corresponding straight lines (Fig. 4). Line i (li) joins the 
projection of P in image i, pi, with its X-ray source. The unit 
directional vector of line i is (ai ,bi ,ci). Then the 3D location of 
the symbolic intersection point can be calculated as 
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In Fig. 4, di denote the distance from the reconstructed point P 
to line i. 
 
In principle, 3D seed orientations can also be reconstructed. 
Given three images, the 3D orientation of a seed can be 
computed by first defining the three planes that join each 
projection with its respective X-ray source, and then calculating 
the intersection line of the three planes. However, due to 
various errors, these planes never intersect into one straight line 
in space. So a symbolic intersection becomes necessary. Here 
we use a simple and quick method to do it (Fig. 5). Here we 
assume that for a seed S in space, plane i (PLi) is defined by the 
projection of S in image i, si, with its X-ray source. Since from 
each pair of planes we can obtain an intersection line, from 
three planes we can obtain three independent intersection lines. 
Then we consider the average of the three unit directional 
vector as the reconstructed 3D orientation of the seed. 
 
2.4 Cost metrics 
The above discussion shows that a robust seed matching algorithm heavily depends on the performance of the cost 
metric which constructs the cost matrix in MARSHAL. The seed matching from three images has been reduced to a 
sequence of bipartite matching. For each bipartite matching problem, we construct a cost matrix in the following way. 
Given three images, we choose two principal images for this bipartite matching problem. For each pair of seeds in these 
two images, we reconstruct a 3D seed. Then we project this reconstructed 3D seed to the third image, and find the 
closest seed projection on the image to this projection based on the cost metric. We reconstruct a 3D seed from those 
three seed projections. Then we project it back to the three images and calculate the average metric value between each 
projected seed and the observed seed in each image. 

 
Figure 3: The flowchart of MARSHAL 
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Figure 4: Seed position reconstruction from three images Figure 5: Seed orientation reconstruction from three images 

 
In our previous work, only the positions of seed centers were used to define the cost metric. However, we believe it is of 
utmost importance to exploit all the available information in order to minimize the matching and reconstruction errors. 
Although the information about the orientations and length of seeds may have less significant dosimetric impact, it can 
positively contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become 
critical information when hidden and spuriously segmented seeds need to be matched, where reliable and generic 
methods are not yet available. In the following, besides the original cost metric used by MARSHAL (M1), we will 
introduce several new cost metrics (M2- M7) which integrate seed orientation information. Extensive simulation study 
has been performed to compare the performance among different cost metrics. The results will be reported in Sec.4. Fig. 
6 illustrates the seven metrics tested in this study. 
 
2.4.1 M1 – cost metric without considering seed orientation 
The original MARSHAL uses projection error (PE) to define its cost matrix. PE is obtained by projecting the 3D 
reconstructed point back onto each image and calculating the mean distance between the projected location and the 
observed location of the seed. In the original MARSHAL, as seen in Fig. 6, the cost metric M1 is defined as: 

cdM =1
, (3) 

where, sp and so denote the projected seed and the observed seed respectively, ap and bp are the end points of sp, cp the 
center of sp, ao and bo the end points of so, co the center of so, and dc is the center to center distance between the projected 
seed and the observed seed. 
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Figure 6: Cost metrics M1-M7 
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Another cost metric (probably the most popular choice) is reconstruction accuracy (RA). RA is obtained by calculating 
the average distance from the symbolic intersection to each straight line (Fig. 4). It has been proved that PE performs 
better than RA59.  
 
2.4.2 M2 – M7 Cost metrics considering 2D seed orientation 
Combining the information of seed orientations with that of seed positions, we have created a series of cost metrics 
shown in Fig. 6.  
 
M2 is defined as  

sobpsoapc dddM −− ++=2
, (4) 

where dap-so denotes the distance from ap to so, and dbp-so denotes the distance from bp to so. 
 
M3 is defined as  

bcacc dddM ++=3
, (5) 

where dac denotes the distance from ap to co, and dbc denotes the distance from bp to co. 
 
M4 is defined as  

sobpsoapbcacc dddddM −− ++++=4
. (6) 

 
M5 is defined as  

35
sobpsoapcy

cx

ddd
dM −− ++

+= , (7) 

where dcx is the component of dc along so, and dcy is the component of dc perpendicular to so. 
 
M6 is defined as  

bac dddM ++=6
, (8) 

where da denotes the distance from ap to ao, and db denotes the distance from bp to bo. 
 
M7 is defined as  

ba ddM +=7
. (9) 

 
From Fig. 6 and Eq. 4-9, we can see that M2-M6 contain not only the center-to-center distance but also the distances 
related to end points of the seeds. Since the end points define the orientations of the seeds, by including end points into 
the cost metrics, we have actually incorporated the seed orientation information into the metrics. 
 
2.4.3 M8- cost metric using threshold for 3D seed orientation 
In this case, we define a quantity similar to the RA, the reconstruction accuracy for 3D orientation (RAO). RAO is 
obtained by calculating the average angular difference from the reconstructed 3D seed orientation to each intersection 
line obtained from each pair of planes (Fig. 5). In general, for actually matched seeds, the orientations of the three 
intersection lines are considered not very different from each other. This means that the RAO for actually matched seeds 
should be small. By setting a threshold for RAO, we define the cost metric M8 as 

⎩
⎨
⎧

>∞
≤

=
thresholdRAO

thresholdRAOd
M c

8
. (10) 

In this way, we eliminate some potential mismatches early at the stage of constructing cost matrices. 
 
Moreover, we notice that for actually matched seeds, the RA and RAO should be small at the same time. Based on this 
observation, we propose a simple way to find the optimal threshold for RAO. In order to find the optimal threshold, we 
choose a range of threshold angles. For each threshold angle in the range, we run MARSHAL with M8 as the cost metric, 
and calculate the total RA for the resulting matching. Then we pick the threshold angle with the smallest total RA as the 
optimal threshold. 
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3. SIMULATION RESULTS AND DISCUSSION 
 

Extensive simulation study has been done on synthetic images to analyze the performance of MARSHAL under various 
cost metrics. Matlab program was created to model X-ray imaging. Given C-arm parameters and implant details, it 
generated synthetic images and exact locations and orientations of seeds in the images. In this paper we use three images 
to evaluate the correspondences with all the above-mentioned cost metrics. To evaluate the performance on simulated 
data, we compute the percentage of correct matching. We also study the sensitivity of different cost metrics to 
segmentation errors, because seed segmentation from the X-ray images is one of the most important sources of error. 
Here we consider the impact of the segmentation errors in both position and orientation. Random error was modeled 
following uniform distribution. Therefore, a 1 mm position error means that a maximum error of magnitude 1 mm was 
added to the positions of the seeds following the uniform distribution. Similarly, a 1° orientation error means that a 
maximum error of magnitude 1° was added to the orientations of the seeds.  
 
Simulation data sets were generated to simulate different seed densities, prostate volumes and image separation angles. 
Here we focus on large and dense implants. In our simulation study, the seed density varies from 2.0 seeds/cc to 3.0 
seeds/cc, the prostate volume from 40cc to 45cc, and image separation angle from 15° to 20°. So the total number of 
seeds is from 80 to 140. To test the impact of segmentation errors on the cost metrics, we vary the segmentation error in 
position from 0 mm to 1.5 mm, and the segmentation error in orientation from 0° to 30°. The averaged results are 
displayed in Tables 1 and 2. The general trend can be seen in Fig. 7 and 8. When we test the metrics with orientation 
segmentation error, we fix the position segmentation error as 0.75 mm; when we test the metrics with position 
segmentation error, we fix the orientation error as 9°. This is because they are close to the segmentation errors in 
practice.  
 

Orientation segmentation errors Matching rate 
(%) 0° 3° 6° 9° 12° 15° 18° 21° 24° 27° 30° 

Avg. 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 
M1 STD 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 

Avg. 98.4% 98.1% 97.6% 96.2% 93.8% 93.2% 91.8% 91.5% 91.0% 90.3% 90.8% 
M2 STD 1.8% 1.8% 2.2% 2.7% 3.7% 3.0% 3.8% 3.3% 4.0% 4.3% 4.1% 

Avg. 88.2% 91.5% 93.5% 93.1% 92.4% 92.9% 91.8% 91.8% 92.6% 91.7% 92.0% 
M3 STD 5.7% 3.7% 4.0% 4.0% 3.1% 3.4% 3.6% 4.1% 3.4% 3.9% 3.7% 

Avg. 96.3% 96.9% 96.4% 95.1% 92.9% 92.8% 90.7% 90.7% 90.6% 89.3% 90.7% 
M4 STD 2.6% 2.2% 2.5% 3.2% 3.8% 2.8% 3.8% 3.9% 3.1% 4.3% 3.6% 

Avg. 98.1% 98.0% 97.9% 97.1% 95.5% 95.7% 95.1% 94.0% 94.8% 94.0% 94.6% 
M5 STD 1.8% 1.8% 2.1% 2.1% 3.0% 2.9% 3.0% 3.0% 2.8% 3.6% 3.4% 

Avg. 98.4% 98.2% 98.1% 97.2% 95.4% 94.6% 93.5% 92.2% 93.3% 91.6% 92.8% 
M6 STD 1.6% 1.8% 1.9% 2.2% 3.0% 2.9% 3.5% 3.7% 3.5% 3.8% 3.5% 

Avg. 98.6% 98.4% 98.0% 96.7% 93.8% 92.5% 90.8% 89.5% 89.7% 87.9% 88.0% 
M7 STD 1.6% 1.7% 2.0% 2.4% 3.8% 3.2% 4.2% 3.6% 3.9% 4.9% 4.7% 

Avg. 96.5% 96.4% 96.5% 96.6% 96.5% 96.6% 96.6% 96.6% 96.3% 96.4% 96.3% 

C
os

t M
et

ri
cs

 

M8 STD 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 
Table 1: Matching rate from various cost metrics under different orientation segmentation errors (with a fixed position segmentation 
error of 0.75 mm) 
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Orientation segmentation errors Reconstruction 
error (mm) 0° 3° 6° 9° 12° 15° 18° 21° 24° 27° 30° 

All 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 M1 

Mis. 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 
All 0.50 0.50 0.50 0.52 0.55 0.55 0.55 0.59 0.66 0.62 0.65 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.51 0.50 0.51 M2 

Mis. 0.50 0.57 0.74 0.98 1.10 1.15 1.17 1.40 1.61 1.43 1.56 
All 0.76 0.59 0.57 0.60 0.54 0.53 0.58 0.55 0.54 0.56 0.56 

Mat. 0.52 0.50 0.50 0.51 0.49 0.49 0.51 0.49 0.49 0.49 0.49 M3 

Mis. 1.71 1.24 1.08 1.15 1.06 0.96 1.21 1.12 1.05 1.13 1.10 
All 0.52 0.50 0.51 0.54 0.54 0.54 0.58 0.57 0.62 0.61 0.59 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.49 0.50 M4 

Mis. 0.92 0.66 0.87 1.13 1.15 1.12 1.31 1.20 1.58 1.45 1.24 
All 0.50 0.50 0.50 0.50 0.51 0.51 0.52 0.52 0.51 0.53 0.51 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 M5 

Mis. 0.63 0.52 0.56 0.66 0.76 0.80 0.88 0.86 0.79 1.00 0.69 
All 0.50 0.50 0.50 0.50 0.51 0.52 0.52 0.55 0.57 0.59 0.55 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.49 M6 

Mis. 0.53 0.49 0.50 0.64 0.78 0.92 0.93 1.11 1.11 1.40 1.09 
All 0.50 0.50 0.50 0.51 0.53 0.56 0.56 0.60 0.65 0.70 0.72 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.51 M7 

Mis. 0.52 0.48 0.58 0.74 0.91 1.27 1.28 1.30 1.58 1.76 1.94 
All 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

C
os

t M
et

ri
cs

 

M8 
Mis. 0.65 0.65 0.64 0.64 0.65 0.64 0.64 0.65 0.72 0.65 0.65 

Table 2: Average reconstruction error from various cost metrics under different orientation segmentation errors (with a fixed position 
segmentation error of 0.75 mm). “Mat.” stands for matched seeds, “Mis.” stands for mismatched seeds. 
 

Position segmentation errors (mm) Matching rate 
(%) 0 0.25 0.5 0.75 1.0 1.25 1.5 

Avg. 100.0% 99.5% 98.5% 96.0% 92.5% 86.7% 76.2% 
M1 STD 0.0% 0.9% 1.7% 2.2% 4.0% 4.9% 6.1% 

Avg. 99.3% 98.8% 98.1% 96.6% 93.6% 87.5% 78.4% 
M2 STD 0.9% 1.2% 1.9% 2.4% 3.8% 4.9% 7.7% 

Avg. 98.5% 97.4% 95.7% 93.5% 90.2% 83.3% 73.6% 
M3 STD 1.4% 2.0% 2.4% 3.5% 4.0% 6.6% 7.9% 

Avg. 99.0% 98.5% 97.5% 95.8% 92.5% 87.1% 77.6% 
M4 STD 1.3% 1.6% 1.7% 3.1% 3.7% 6.0% 7.4% 

Avg. 99.8% 99.4% 98.6% 97.1% 94.2% 89.6% 80.7% 
M5 STD 0.3% 1.0% 1.6% 2.2% 3.6% 4.7% 6.3% 

Avg. 99.6% 99.0% 98.5% 97.2% 95.1% 90.1% 82.1% 
M6 STD 0.7% 1.1% 1.6% 2.4% 3.1% 5.2% 6.4% 

Avg. 98.8% 98.6% 97.9% 96.8% 94.8% 90.7% 83.1% 
M7 STD 1.3% 1.3% 1.9% 2.4% 3.3% 5.2% 6.2% 

Avg. 100.0% 99.5% 98.6% 96.2% 92.9% 88.2% 78.3% 

C
os

t M
et

ri
cs

 

M8 STD 0.0% 0.9% 1.5% 2.3% 3.9% 4.9% 5.6% 
Table 3: Matching rate of various cost metrics under different position segmentation errors (with a fixed orientation segmentation 
error of 9°) 
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Position segmentation errors (mm) Reconstruction 
error (mm) 0 0.25 0.5 0.75 1.0 1.25 1.5 

All 0.00 0.16 0.32 0.50 0.71 1.21 2.01 
Mat. 0.00 0.16 0.32 0.48 0.63 0.84 1.06 M1 

Mis. 0.00 0.08 0.38 0.82 1.44 2.94 4.06 
All 0.01 0.17 0.32 0.50 0.72 1.20 2.07 

Mat. 0.00 0.16 0.32 0.48 0.63 0.83 1.07 M2 

Mis. 0.14 0.25 0.39 0.80 1.61 3.26 4.33 
All 0.01 0.17 0.34 0.53 0.82 1.48 2.32 

Mat. 0.00 0.16 0.32 0.48 0.66 0.85 1.13 M3 

Mis. 0.29 0.45 0.62 1.06 1.85 3.65 4.34 
All 0.01 0.17 0.34 0.51 0.74 1.32 2.09 

Mat. 0.00 0.16 0.32 0.48 0.64 0.84 1.09 M4 

Mis. 0.26 0.33 0.73 0.91 1.58 3.45 4.23 
All 0.00 0.16 0.32 0.50 0.69 1.10 1.78 

Mat. 0.00 0.16 0.32 0.48 0.63 0.81 1.04 M5 

Mis. 0.04 0.10 0.36 0.77 1.30 2.77 3.63 
All 0.00 0.16 0.32 0.49 0.67 1.07 1.69 

Mat. 0.00 0.16 0.31 0.48 0.63 0.81 1.01 M6 

Mis. 0.09 0.20 0.38 0.69 1.22 2.49 3.50 
All 0.01 0.17 0.33 0.50 0.67 1.00 1.58 

Mat. 0.00 0.16 0.32 0.48 0.63 0.80 1.02 M7 

Mis. 0.33 0.36 0.56 0.87 1.28 2.19 3.13 
All 0.00 0.16 0.32 0.50 0.70 1.08 1.79 

Mat. 0.00 0.16 0.32 0.48 0.63 0.82 1.05 

C
os

t M
et

ri
cs

 

M8 
Mis. 0.00 0.07 0.38 0.82 1.43 2.42 3.53 

Table 4: Average reconstruction error from various cost metrics under different position segmentation errors (with a fixed orientation 
segmentation error of 9°). “Mat.” stands for matched seeds, “Mis.” stands for mismatched seeds. 
 
From the tables and figures, we can see two clear trends: 

1. When the position segmentation error increases, the matching rate based on each cost metric decreases 
monotonically. This is because all the cost metrics we discussed depend on the distance between the projected 
seeds and the observed seeds. The increase in position segmentation error will cause the difference between the 
metric values of actually matched seeds and those of actually unmatched seeds decrease. 

2. When the orientation segmentation error increase, the matching rate of the cost metrics considering orientation 
decreases. This is because these cost metrics depend on reasonably accurate 2D orientation information. The 
increase in orientation segmentation error will cause the difference between the metric values of actually 
matched seed and those of actually unmatched seeds decrease. 

 
Moreover, if we use M1 (the cost metric without considering seed orientation) as a criterion, M8 (the cost metric using 
threshold for 3D seed orientation) always give us a matching rate equal to or slightly greater than that of M1. This is 
because M8 is built upon M1 with a threshold. It guarantees that M8 performs at least as well as M1. However, it also 
means that no substantial improvement over M1 can be obtained from M8. The data show that the matching rate of M3 is 
always below that of M1. The matching rate of M4 drops below that of M1 right after the orientation segmentation error 
hits 6°, while its sensitivity to the position segmentation error is about same as M1. Therefore, M3, M4 and M8 are not 
recommended. 
 
The data also show that the matching rates of M2, M5, M6 and M7 are higher than that of M1 when the orientation 
segmentation error is lower than 9°. Among them M5 and M6 are better than M2 and M7. When the orientation 
segmentation error is equal to 9°, M5 and M6 give the matching rates greater than 97% while M2 and M7 are close to M1, 
about 96%. Meanwhile, the standard deviation of the matching rates of M5 and M6 are also slightly smaller than that of 
M1. M5 and M6 also give the best matching rates when the position segmentation error is close to the practice (0.75mm). 
At the same time, the average reconstruction errors of mismatched seeds from M5 and M6 are about same as or slightly 
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lower than that of M1 at the segmentation errors of 9° and 0.75mm. Therefore M5 and M6 are the best cost metrics we 
have. They can be used to robustly match and reconstruct seeds under normal segmentation errors. It also means that 
combining seed orientation information into the cost metric does result in certain improvement in the performance of the 
algorithm. 
 

 
Figure 7: Sensitivity of cost metrics to orientation segmentation error 
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Figure 8: Sensitivity of cost metrics to position segmentation error 
 

4. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have extended our previously proposed quasi-polynomial time algorithm (MARSHAL) to combine the 
information of seed orientations into matching procedure. Simulation results show that the cost metrics considering seed 
orientation can further improve the matching rate of MARSHAL, and robust to certain amount of seed segmentation 
errors in both position and orientation.  
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An underlying assumption of MARSHAL is that all the seeds are segmented and their 2D positions and orientations are 
known. In reality, however, some seeds always remain hidden, and some are segmented spuriously35,63,64. In a parallel 
work63, we extended MARSHAL to deal with hidden seeds. In phantom study, we managed to recover >96% seeds from 
three images and >99% from four images, and the algorithm was robust to segmentation error up to 1 mm and hidden 
seed rate up to 8%. While the matching rate was excellent, the reconstruction error for mismatched seeds remained 3-
8mm. In this paper, Sec. 3 shows that under average segmentation errors, cost metrics that utilize seed orientation 
significantly lower the reconstruction error for mismatched seeds, generally to less than 1mm.  
 
We conjecture that combining these new cost metrics in our hidden seed recovery method63 will result in superior seed 
matching rate and low reconstruction error for both matched and unmatched seeds, and thereby yield a clinically 
applicable solution. 
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