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Abstract. Four-dimensional (4D) computed tomography (CT) image 
acquisition is a useful technique in radiation treatment planning and 
interventional radiology in that it can account for respiratory motion of lungs. 
Current 4D lung reconstruction techniques have limitations in either spatial or 
temporal resolution. In addition, most of these techniques rely on auxiliary 
surrogates to relate the time of CT scan to the patient’s respiratory phase. In this 
paper, we propose a novel 4D CT lung reconstruction and deformation 
estimation algorithm. Our algorithm is purely image based. The algorithm can 
reconstruct high quality 4D images even if the original images are acquired 
under irregular respiratory motion. The algorithm is validated using synthetic 
4D lung data. Experimental results from a swine study data are also presented. 

1   Introduction 

In radiation oncology, 4D CT is one technique that can account for respiratory motion 
during treatment planning. 4D CT may allow for the reduction of target volume 
margin to achieve increased tumor dose and decreased normal tissue dose [1]. While 
the radiation dose to the patient may be an issue, particularly if multiple 4D datasets 
are considered, in general the CT dose will be much less than the treatment dose 
delivered during radiation therapy. 4D CT may also be used to investigate the motion 
correlation between the internal tumor and external fiducials such as skin markers. 
The tumor position could then be estimated during the treatment by tracking the 
external fiducials. With sufficient 4D CT datasets, a respiratory model might also be 
constructed to parameterize the respiratory motion. 

Most 4D lung reconstruction algorithms reported in the literature can be grouped 
into the following two approaches. The first approach requires controlling the 
patient’s breath during image acquisition [2]. The respiratory cycle is divided into 
several phases (usually 7-11). The respiration is halted in each phase while a 3D CT 
volume is taken. A related technique is to use breathing tracking strategies such as 
active breathing control [3], [4], [5] to monitor the patient’s breath at each phase. The 
4D data acquired by this method has high spatial resolution, but very poor temporal 
resolution. This low temporal resolution limits its usefulness in analyzing the 
anatomical motion.  
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The second approach does not try to monitor or control the patient’s breath. The 
patient is allowed to breath freely on the CT table [2], [7]. The table is moved in small 
increments and a continuous free CT scan is taken at each table position to cover at 
least one complete respiratory cycle. Some external devices may be used during the 
scan to synchronize the CT scanning time with the respiratory phase [6], [7]. After 
image acquisition, all the free scan images are sorted into a sequence of 3D volumes 
according to their respiratory phase and table positions. This method has high 
temporal resolution at each table position. The major problem with this method is that 
respiratory motion is not completely repeatable, so the time stamp of the free scan 
image may not correlate well with the regular respiratory motion. In such a case, the 
image quality of the 3D data reconstructed at each respiratory phase will be very poor. 
It is usually very difficult to stitch these 3D volumes together into a 4D dataset. 

Unlike prior methods, we propose a new 4D lung reconstruction method that has 
good temporal resolution and high reconstruction quality. In addition, our method 
does not rely on any external gating / tracking devices to synchronize the time of CT 
scan and the respiratory phase. Therefore problems caused by the discrepancy 
between the respiratory motion and the auxiliary surrogates are avoided. 

2   Method 

The outline of our 4D CT lung reconstruction method is as follows. First, a reference 
3D CT volume is obtained under a long breath hold. Next, a continuous scan is taken 
at every table position to obtain a series of 2D images, while the patient is breathing 
freely. The 2D image series at every table position covers at least one complete 
respiratory cycle. Using deformable registration, each 2D image is registered to the 
reference volume to estimate the displacement field of the 2D image with respect to 
the reference volume. The respiration signal is extracted from the displacement field 
of each 2D image. This respiration signal is used to synchronize the 2D image series 
to the respiratory cycle at every table position. After the synchronization, the 
displacement field for the entire lung volume at every selected respiratory phase is 
reconstructed, interpolated and smoothed. The 4D lung images are reconstructed by a 
deformable transformation of the reference volume for the entire respiratory cycle. 

2.1   Registration of 2D Image to Reference CT Volume 

To calculate the deformation of the 2D image with respect to the reference volume, 
we divide the 2D image into small overlapping disk regions, and register each of the 
small regions piece by piece to the reference volume. The local registration algorithm 
is based on minimizing the Zero Mean Sum of Squared Differences (ZSSD) between 
a small region in the 2D image and a corresponding one in the reference volume. 
Quadratic transformation is used to model the deformation between the two regions. 
As a result, thirty parameters are estimated while the objective function is optimized. 
The details of the local registration are described in [8]. 
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Since the registrations are performed at 
each local region, there is no guarantee 
that all the local registrations converge 
correctly. A global regularization of the 
registrations is necessary to remove 
outliers. In an example shown in Fig. 1, 
the regions are partially overlapped on 
each other. Since pixel p is included in all 
the disk regions A0, A1 and A2, the 
deformation of pixel p can be calculated 
from every one of these regions. As 
shown in equation (1), the final 
deformation of pixel p is the weighted 
average of all deformations obtained from 
the overlapped regions. 
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where dk is the pixel displacement obtained from the kth
 region;  $d  is the weighted 

average of the displacement; rk is a function of the registration error of kth region. rk 
will be assigned a large value for small registration error, and vice versa. rk will be 
zero if the registration error of a region is above a threshold. ck is a function of the 
registration consistency in the overlapping area between the current region k and the 
previously registered region. ck will be large if the consistency is high, otherwise ck  
will be small. ck will be zero if the difference between current registration results and 
the previous registration results is too large. The assumption is that the results from 
previous registrations are more likely to be correct, because they are the weighted 
averages of many local registrations. wk is a Gaussian window function that is 
centered on the center of region k,  allowing the registration results of central pixels 
to have larger weight. As a result, Equation (1) filters out failed and bad 
registrations, and assigns large weight to good registrations. Unlike other registration 
techniques going from coarse to fine resolution, this registration goes from local to 
global. The algorithm iteratively propagates its local registrations, allowing the 
regions without enough local texture to be correctly estimated. This is an advantage 
over the spline-based registration [9] methods that rely on the local information of 
the control points. This procedure also makes the displacement field of the whole 
lung very smooth. 

The region-based algorithm assumes the pixels of the region to have approximately 
the same type of motion. It is necessary that all the pixels in the region are lung 
pixels. If the region includes other pixels such as heart pixels (Fig.2 (b)), the 
registration is prone to fail, because the selected deformation models cannot explain 
the pixel motion of the analysis window. For the same reason, the region cannot have 
chest wall pixels (Fig.2 (a)), nor can the region have pixels from both the left and 
right lungs (Fig.2 (c)). Therefore, accurate lung segmentation is necessary before the 
registration, and the left and right lungs should be separated in the 2D images. 

 

Fig. 1. Propagation of local registration 
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Fig. 2. Undesired regions: (a) both lung pixels 
and chest-wall pixels are included; (b) both 
lung pixels and heart pixels are included; (c) 
both left and right lungs are included (d) non-
lung pixels are included 

Fig. 3. The result of lung segmentation. Note 
that (a) the blood vessels are preserved; (b) 
the heart and chest-wall are removed; (c) the 
left and right lungs are separated; and (d)  the 
marginal pixels are removed from the heart-
lung boundary. 

We adopted the techniques of Hu [10] to automatically segment the lungs in the 2D 
image. Base on their work, morphological closing is executed on the lung area to keep 
the small to middle blood vessels in the lungs. Extra margin is also introduced in the 
heart-lung boundary to exclude the artifact caused by the cardiac motion. The result 
of lung segmentation is shown in Figure 3. 

2.2   Four-Dimensional Lung Reconstruction 

After all the 2D images are registered to the preoperative lung volume, the average 
deformation of each image with respect to the reference volume is calculated, yielding 
a 3D motion vector. For the images taken at the same table position, a sequence of 
motion vectors is obtained. This vector sequence can be used as the respiration signal 
to synchronize the 2D image series at different table positions. It is assumed that there 
is no phase difference of respiratory motion in the craniocaudal direction. Since the 
tumor’s respiratory motion is limited in a few centimeters, this assumption is valid. 
As a result, the two sequences of motion vectors at two adjacent table positions can be 
correlated to synchronize the scanning time at the two table positions with respect to 
the respiratory phase. The correlation is calculated using the following formula: 
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where N is the total number of frames to be correlated; ( ∆ ∆ ∆x y zk k k, , ) is the average 

deformation of the kth 2D image at the a table position;  ( ∆ ∆ ∆′ ′ ′x y zk k k, , ) is the average 

deformation for the kth image at another table position; S is the number of frame shift 
between the two image sequences. By repeating this procedure at all table positions, 
all the 2D images can be synchronized.  

Using principal component analysis, the principal axis of the motion trajectory can 
be obtained. By projecting the average motion on the principal axis, the one-
dimensional respiration signal can be extracted. Fig. 4 shows the extracted respiration 
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Fig. 4. Respiration signal at two adjacent table positions extracted from swine study. The 
vertical axis is normalized respiratory phase and the horizontal axis is time in frame number. 

signals of two CT fluoroscopy image series obtained in a swine study at two adjacent 
table positions with an interval of 4mm. It can be observed that the CTF scan time of 
the two sequences was different with respect to the respiratory cycle. The two dots on 
the peaks of the respiration signals show the result of synchronization. 

After all the 2D image series are synchronized, the 4D lung can be reconstructed by 
sorting the 2D images. As mentioned in Section 2, the 2D images come from different 
respiratory cycles. Since the respiratory motion is not completely reproducible, the 
direct 4D reconstruction by sorting the 2D images can result in very poor image 
quality. Especially in the coronal and sagittal views, fuzzy edges are usually observed.  
In response to this problem, we reconstruct the displacement field of the lung volume. 
In section 2.1, the displacement field of each 2D image has already been calculated 
from the deformable registration.  Each 2D image has also been assigned to a 
respiratory phase. We generate a displacement field for the entire lung volume by 
combining the displacement fields of 2D images according to the table position and 
respiratory phase. The resulting displacement field of the reference volume may not be 
smooth because it is obtained from different respiratory cycles. However, the 
displacement field can be smoothed. We use the cubic B-spline [9] to smooth and 
interpolate the displacement in the cranial-caudal direction to obtain a very smooth 
displacement for the reference volume. As a result, the 3D volume at any respiratory 
phase can be computed from a deformable transformation of the reference volume. 

3   Experimental Results 

We used synthetic 4D data to validate the algorithm. The synthetic 4D data was 
generated from two lung volumes obtained at the end of inspiration and the end of 
expiration respectively. The two lung volumes were registered at Siemens Corporate 
Research using 3D/3D deformable registration. The displacement field between the 
two volumes was interpolated along the time axis such that the trajectory of each 
pixel is a 3D curve in space instead of a straight line [11]. The resulting 4D data was 
used as the ground truth to validate the reconstruction algorithm. The synthetic 2D 
free scan image series was obtained by sampling the 4D data at the selected table 
position. With the 2D image series and the lung volume at the end-of-expiration as the 
reference volume, we ran the algorithm to recover the lung deformation. The pixel 
size of both the preoperative CT volume and the 2D images was 0.7422mm. The slice 
thickness of the preoperative CT volume was 1.25mm, and 3.75mm for the synthetic 
2D free scan images. The results were first compared to the ground truth to validate 
the deformable 2D/3D registration. 
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Fig. 5. Displacement magnitude of a CT 
fluoroscopy image with respect to the 
reference CT volume in mm 

Fig. 6. Magnitude of reconstruction error in 
mm 

 
Fig. 5 shows the deformation magnitude of a 2D image taken at the end-of-

inspiration, when the 2D image has the largest deformation with respect to the 
reference CT volume. As shown in Fig. 6, most of the poor registrations happen on 
the boundary pixels of the lung. This problem has three causes. First, for the region-
based algorithm, the registration accuracy is usually higher for the pixels near the 
center of the analysis window. The boundary pixels of lung are usually far from the 
center of the analysis window. Second, the boundary pixels (especially the boundary 
pixels near the top of image) have larger deformation than the average. Third, and 
perhaps most importantly, the areas near the lung boundary often have very little 
texture information, which may not be enough for the local image registration. 

 

Fig. 7 shows the average 
reconstruction error of the lung pixels 
compared to the average lung 
deformation. The maximum average 
error is 0.6mm. For the respiratory 
phase with large respiratory motion, 
the average registration error is below 
5% of the average lung deformation. 

The algorithm was also tested on 
the data collected from a swine study 

as part of an approved animal protocol. This study was done at Georgetown 
University Medical Center on a Siemens Volume Zoom four-slice CT scanner. The 
reference volume was obtained at the end-of-expiration using a 1 mm slice thickness. 
While the animal was mechanically ventilated, for the image acquisition the ventilator 
was stopped and the animal was temporarily paralyzed to minimize any breathing 
artifacts. The 2D image series were acquired using CT fluoroscopy with a sample rate 
of 6Hz and a slice thickness of 4mm.  Ten 2D image series were acquired. Fig. 8 and 
Fig. 9 show the reconstruction results at the end-of inspiration which is the respiratory 
phase of the maximum deformation with respect to the reference volume. As shown 
in the figures, the reconstruction result of our algorithm is much smoother compared 
to the standard image sorting method. 

 

Fig. 7.  Average reconstruction error vs. average 
displacement in mm 
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Fig. 8. Sagittal view of 4D reconstruction 
Left image: image sorting method Right 
image: our method 

Fig. 9. Coronal view of 4D reconstruction Top 
image: image sorting method Bottom image: 
our method 

4   Discussion and Conclusions 

This paper presents a new methodology to reconstruct the 4D lung image. The 
temporal resolution of the method is high and the reconstruction provides good 
quality images. Based on a synthetic CT data set, the average reconstruction 
/registration error is under 5% of the average lung deformation, which is less than or 
equal to 0.6mm of respiratory motion. Results from a swine study also showed good 
correlation. 

The algorithm is automated and software based. The algorithm does not need any 
auxiliary surrogates to synchronize the CT scan with the respiratory phase. The 
image reconstruction quality of the algorithm is very high even under irregular 
respiratory motion. The drawback of the algorithm is that it is time consuming. It 
takes about 5 minutes to register each 2D image to the reference volume. If 
improved processing speed is needed, the algorithm can be implemented on a 
parallel processing machine. 

Although the algorithm was only tested on the synthetic data of the single slice CT 
and in one swine study, it can be easily extended for use with multi-slice CT. Since 
multi-slice CT allows the local region registration to have more texture information,  
it is expected to see higher accuracy and better robustness of the algorithm. 
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