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ABSTRACT 

PURPOSE: Scoliosis screening is currently only implemented in a few countries due to the lack of a safe and accurate 

measurement method. Spinal ultrasound is a viable alternative to X-ray, but manual annotation of images is difficult and 

time consuming. We propose using deep learning through a U-net neural network that takes consecutive images per 

individual input, as an enhancement over using single images as input for the neural network.  

METHODS: Ultrasound data was collected from nine healthy volunteers. Images were manually segmented. To 

accommodate for consecutive input images, the ultrasound images were exported along with previous images stacked to 

serve as input for a modified U-net. Resulting output segmentations were evaluated based on the percentage of true 

negative and true positive pixel predictions.  

RESULTS: After comparing the single to five-image input arrays, the three-image input had the best performance in terms 

of true positive value. The single input and three-input images were then further tested. The single image input neural 

network had a true negative rate of 99.79%, and a true positive rate of 63.56%. The three-image input neural network had 

a true negative rate of 99.75%, and a true positive rate of 66.64%.  

CONCLUSION: The three-image input network outperformed the single input network in terms of the true positive rate 

by 3.08%. These findings suggest that using two additional input images consecutively preceding the original image assist 

the neural network in making more accurate predictions.  

 

1. PURPOSE 

Scoliosis, an excessive curvature of the spine, is a disease that affects approximately 2-3% of the population. It is most 

commonly found in children and adolescents, where curvature progresses until the spine is fully developed. Severe curves 

often require surgical fusion of the vertebrae, a long surgical process that can risk further complications and future surgery. 

One common method to reduce the need for surgery is bracing of the spine to prevent the curve from worsening. However, 

effective bracing requires early referral, which is often prevented due to the lack of a safe and affordable instrument for 

spinal curvature measurement. Current methodologies most commonly involve X-rays of the spine, exposing children and 

adolescents to ionizing radiation, and limiting the accessibility of scoliosis measurement.  

One proposed alternative to X-rays for spinal curvature measurement is ultrasound. Ultrasound is a safe and affordable 

measurement modality, with increasing accessibility to recent release of pocket-sized ultrasound machines. Spinal 

curvatures can be accurately computed from ultrasounds, by measuring the vertebral angle from a reference line1.  

However, ultrasound images are not as clear as x-ray images; it is often difficult and time consuming to distinguish bone 

from the rest of the ultrasound image. In order to be able to effectively use the ultrasound images, they need to be manually 

contoured by a physician, radiologist, or trained expert. This process is often slow and tedious. A viable tool to aid with 

the segmentation of bone in ultrasound images is convolutional neural networks. Specifically, the U-net is a convolutional 

neural network architecture that contains a contracting path to capture feature contexts, then an expansive path for more 

precise localization. The U-net is especially effective for the segmentation of biomedical images as it can generate accurate 



 

segmentation based on fewer training images than networks typically used for classification or localization2. U-nets have 

successfully segmented spinal ultrasound images for vertebral level localization3. 

When a person is performing manual segmentation of spinal ultrasounds, we observed that the user performing the 

segmentation often looks back on previous ultrasound images to acquire general information about the anatomy, and to 

assess consistency between consecutive images. Recurrent neural networks are a class of neural networks that are suitable 

for temporal and sequential data; however, they are not as effective as convolutional neural networks for processing and 

segmenting spatial data. Current convolutional neural network architectures do not take advantage of previous image 

frames, as these networks typically process each image individually. We propose a network architecture and method of 

curating the data that allows the U-net convolutional neural network to examine multiple consecutive images as a single 

input. 

 

2. METHODS 

2.1 Experimental setup 

The sonographer collected ultrasound data from 

volunteer subjects, lying in the prone position. Scans 

were obtained using the curvilinear US probe 

(Telemed MicrUs EXT-1H, Vilnius, Lithuania). The 

operator scanned the ultrasound probe down the spine 

in the sagittal plane. Nine healthy volunteer subjects 

between the ages of 16 and 30 were scanned. 

Additionally, females are ten times more likely to 

suffer from scoliosis than males. This ratio was 

reflected in the volunteers scanned; in total, 8 females 

and 1 male were scanned. All image data was 

acquired using an optically tracked ultrasound. The 

ultrasound was tracked with an OptiTrack Trio, with 

tracking markers fixed to the ultrasound probe and 

also to the bench on which the subjects lay, to act as a reference marker (Figure 1). The OptiTrack Trio and ultrasound 

machine were connected to a computer using PLUS toolkit 4. Images were 

then streamed from PLUS into the open source software 3D Sliceri, using the 

SlicerIGT extension 5. In total, seven of the scans were used for training data, 

totaling 3,856 images. The additional two scans were used for testing data, 

giving 717 images. Consequently, the two scans used for testing data had 

never previously been seen by the network, ensuring a non-bias result.  

2.2 Data curation 

Image data from all 9 participants were manually segmented using 3D Slicer. 

We created an extension called Single Slice Segmentation for 3D Slicerii, 

which allowed users to contour individual images from ultrasound scans with 

greater ease. The scans were exported as a series of png images (Figure 3). In 

addition, the four images preceding each segmented image were exported as 

well. All the images were converted into numpy arrays for network input. 

Five separate series of numpy arrays were created based on the exported 

images. The first series contained the segmentations and the single 

 
i https://www.slicer.org/ 
ii https://github.com/SlicerIGT/aigt 

Figure 1: Left. The experimental setup of the optically tracked 

ultrasound system.  

 

Figure 2: Scanning of volunteer subject 



 

corresponding images in one channel. The subsequent arrays contained the segmentations and the corresponding image, 

along with a number of images preceding it. Arrays were created containing one to four preceding images, giving arrays 

that contained two to five channels in total. All image processing and data curation was done in Python, using the OpenCV 

Libraryiii. 

.  

 

 

 

 

2.3 Convolutional neural network architecture 

The convolutional neural networks used were based on the U-net architecture 2. The U-net was trained and tested with the 

single input images, then altered to be able to take in inputs with two to five channels of previous images. A batch generator 

was used in each neural network to generate additional input images for network based on slight variations and rotations 

on existing input images. In addition, all input images were shuffled to further regularize training. The neural networks 

were then trained for 100 epochs with 20% of the training images used for validation of each epoch. The network was then 

tested with the testing data. This training and testing process were run for the single image input, followed by each of the 

two to five-image inputs. 

 

 

 

 
iii https://opencv.org/ 

Figure 4: Left. Ultrasound image. Middle. Input segmentation. Right. Generated prediction 

 

Figure 3: Left. Ultrasound image. Middle. Segmented ultrasound image. Right. Input ground truth 

segmentation  

 



 

2.4 Segmentation evaluation metrics 

The segmentations generated by the convolutional neural network were thresholded at a level of 0.25, creating a clear cut 

segmentation with no uncertainty around the borders. This threshold value was chosen after testing a series of values, as it 

provided the best results in terms of both accuracy metrics, and visual appearance. An acceptable segmentation region was 

created by adding 2mm around the borders of the ground truth segmentation; this accounts for the varying brush sizes that 

a user may use when segmenting. The true positive rate of the segmentation was determined by comparing the predicted 

segmentation with the ground truth segmentation. False positives were any segmentation predicted that was not in the 

acceptable ground truth segmentation. The true negative rate was calculated as difference between the ground truth 

segmentation and the false positives predicted (Figure 5).  

 

 

Figure 5: Comparison between the ground truth and predicted segmentation 

 

3. RESULTS  

After testing all five input arrays, the three-image input had the greatest true positive accuracy (Figure 6). Based on this 

information, further tests were conducted comparing single image input and three-image input. The training and testing 

process were run an additional 4 times for the single and three-image input, totaling 5 tests each. The average true positive 

and true negative rates from these 5 experiments was then computed.  
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 Single Image Two-Image Three-Image Four-Image Five-Image 

True Positive 62.89% 61.94% 68.19% 64.42% 60.42% 

True Negative  99.78% 99.83% 99.75% 99.86% 99.79% 
 

Figure 6: True positive and true negative rates of single to five-image inputs 

When the experiment was run five times using the single image segmentation, the average true positive rate was 63.56% 

and the average true negative rate was 99.79%. When the experiment was run five times using the three-image input, the 

average true positive rate was 66.64% and the average true negative rate was 99.75% (Figure 7). Overall, the three-image 

input network outperformed the single image input network on average by 3.08%. 

 

 

 

 

 

 

 

 

 

 

 

Experiment 

Number 

Single Image Three-Image 

True Positive True Negative True Positive True Negative 

1 63.28% 99.82% 71.27% 99.69% 

2 64.04% 99.80% 65.07% 99.77% 

3 61.11% 99.82% 64.64% 99.79% 

4 66.17% 99.73% 66.84% 99.75% 

5 63.20% 99.80% 65.36% 99.77% 

Average 63.56% 99.79% 66.64% 99.75% 

 

 

4. DISCUSSION 

Spinal ultrasound images are mainly background noise, with the spine only being a small part of each image. As a result, 

even though some segmentations may be inaccurate, the true negative value will always be high and over 99%; an 

ultrasound image with no predicted segmentation would still receive a high true negative value. Therefore, quality of the 

generated segmentations is better seen through the true positive evaluation metric. Furthermore, although all scans were 

performed on healthy volunteers, this work can be extrapolated to scoliosis patients as well, as the actual difference in the 

ultrasound scans is not very distinct. 

Figure 7: Comparison of average true positive (blue) and true negative (orange) rates between 

single image (left) and three-image input (right) 
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The visual appearance of the resulting segmentations is very similar to that of the ground truth manual segmentation. While 

the true positive metric was only around 65%, the network was still able to accurately segment transverse processes. This 

suggests that the missing true positive pixels come from inaccuracies in the shapes of the segmented processes, rather than 

spinal processes that had been entirely missing from the generated segmentation.  

Additionally, the adjustment from the U-net to a multi-image U-net is straightforward. Only the number of input channels 

into the network  is altered; the rest of the neural network is exactly the same. This change is robust and easy to implement. 

As a result, the multi-image U-net is viable and easy to apply to other domains where U-net is being used for segmentation.  

 

5. NEW OR BREAKTHROUGH WORK TO BE PRESENTED 

We presented a new approach to segmentation of spinal ultrasound images. By providing one to four previous images as 

additional channels in the input array, we achieved better results. This reflects the human ability to scroll through 

ultrasound scans and use information about the general anatomy of the ultrasound from previous images for segmentation.  

 

6. CONCLUSIONS 

This experiment presents the workflow and convolution neural network architecture for the segmentation of spinal 

ultrasound images. Based on the study, using three consecutive images per input into a U-net architecture convolutional 

neural network enhances segmentation results by 3.08% when compared to using single image inputs. This is a marginal 

improvement, suggesting that the capabilities of this methodology of examining consecutive images is limited. However, 

despite the modest improvement, segmentations generated from the single input and three-input networks are both quite 

accurate, suggesting that U-net is a viable architecture for spine ultrasound segmentation.  
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