Ultrasound Volume Reconstruction: Open-Source Implementation with Hole Filling Functionality

Thomas Vaughan, Andras Lasso, and Gabor Fichtinger

Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON

Introduction

Motivation

Volume Reconstruction is the combination of many tracked 2D Ultrasound (US) images to create a 3D US volume. It has clinical applications, such as cross-modality registration. However, reconstruction quality can be affected by holes that result from inadequate sampling.

Figure 1: The distribution of a pixel into a volume is shown by a green box. Holes are shown in white.

Objective

We aim to create freely-available, open-source volume reconstruction software that features hole-filling capability.

Results

Qualitative Analysis

- Hole filling makes images easier to interpret
- Large holes are filled only when the kernel size is variable

Methods

Hole Filling Algorithm

- Distribute pixels into the volume using reverse tri-linear interpolation [1]
- Fill holes with a Gaussian weighted average over a cubic kernel region [2]

- **D** = Gaussian Distance Weight
- V = Voxel Intensity

Figure 2: The hole is filled with an interpolated value

• Determine kernel size based on available input

Figure 3: *Left* – There is not enough information in the kernel region for interpolation, *Right* – The hole can be filled using a larger kernel region

 Implemented as free, open-source software in the <u>Public</u> software <u>Library for Ultrasound</u> (PLUS)

Evaluation

- Generate a Ground Truth by inserting a dense set of tracked US images directly into the volume
- Introduce holes by using only every 4th slice this simulates uniformly faster probe movement

Figure 5: Images are shown for volume reconstruction without hole-filling, with hole filling using a static kernel size (3 voxel diameter), and with hole filling using a variable kernel size (7 voxel diameter maximum). All images are compared to the Ground Truth on the far left. The red arrow shows a larger hole that was not filled continuously.

Quantitative Analysis

- Intensity range: 0 255
- Hole filling reduces the Mean Absolute Error of hole voxel intensities
- Hole filling is best with a variable kernel size

	Dataset	No Hole Filling	Static Size	Variable Size
	Spine	16.98	2.52	2.30
	Prostate	64.47	17.09	7.70

Table 1: MAE of hole voxel intensities are presented for reconstructed volumes

Figure 6: The Absolute Error distribution in hole voxel intensities is shown for the Prostate volume reconstructions. The MAE are marked.

Conclusions

- A volume reconstructor was implemented as free, opensource software available at: https://www.assembla.com/spaces/plus/
- Compare the results of using a static kernel size (diameter 3 voxels) against those of using a variable kernel size (diameter of 3, 5, or 7 voxels)
- Qualitative Analysis:
 - Visual comparison, but there is potential bias
- Quantitative Analysis:
 - Calculate the Mean Absolute Error (MAE) of hole voxel
 - intensities [3]

$$MAE = \frac{\sum |V_G - V_H|}{N}$$

V_G = Ground Truth Voxel

- V_{H} = Hole Voxel
- *N* = Number of Hole Voxels

Figure 4: US data being collected on a spine phantom

- The software continues to be tested on data from the University of British Columbia and Queen's University
- Using a variable kernel size enhances the accuracy of reconstructed volumes.

References

- 1. D. Gobbi, and T. Peters. (2002) "Interactive intra-operative 3D ultrasound reconstruction and visualization." Paper presented at MICCAI 2002. Proceedings of the 5th International Conference on Medical Image Computing and Computer Assisted Intervention Sep 25-28; Tokyo, Japan.
- 2. P. Caballero-Martinez, C. Alberola-Lopez, and J. Ruiz-Alzola (2003), A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data. Ultrasound in Medicine & Biology. 29(2) pp. 255-269.
- 3. R. Rohling, A. Gee, and L. Berman (1999), "A comparison of freehand threedimensional ultrasound reconstruction techniques." in Medical Image Analysis, 3(4), pp. 339-359.

This work was supported through the Applied Cancer Research Unit program of Cancer Care Ontario with funds provided by the Ontario Ministry of Health and Long-Term Care. Gabor Fichtinger was funded as a Cancer Ontario Research Chair.

Cancer Care Ontario Action Cancer Ontario

