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 

Abstract—Purpose: MRI-guided prostate needle biopsy requires 

compensation for organ motion between target planning and 

needle placement. Two questions are studied and answered in 

this work: (1) is rigid registration sufficient in tracking the 

targets with an error smaller than the clinically significant size of 

prostate cancer and (2) what is the effect of the number of intra-

operative slices on registration accuracy and speed? Methods: 

We propose multislice-to-volume registration algorithms for 

tracking the biopsy targets within the prostate. Three orthogonal 

plus additional transverse intra-operative slices are acquired in 

the approximate center of the prostate and registered with a 

high-resolution target planning volume. Both rigid and 

deformable scenarios were implemented. Both simulated and 

clinical MRI-guided robotic prostate biopsy data were used to 

assess tracking accuracy. Results: Average registration errors in 

clinical patient data were 2.6 mm for the rigid algorithm and 2.1 

mm for the deformable algorithm. Conclusion: Rigid tracking 

appears to be promising. Three tracking slices yields significantly 

high registration speed with an affordable error.  

 
Index Terms –registration, motion tracking and compensation, 

MRI, prostate cancer, biopsy 

1. INTRODUCTION 

HIS paper reports the development of rigid and 

deformable image registration algorithms for providing 

intra-operative motion compensation in MRI-guided prostatic 

needle placement procedures. We propose to position the 

patient such that his prostate lies in the scanner's isocenter and 

acquire multiple statically set slices in this position. It is 

posited that full six degree-of-freedom (DOF) motion of the 

prostate can be recovered through the registration of a target 

planning MR volume and multiple MR slices acquired 

immediately before and after needle insertion. Orthogonal 

tracking slices are acquired with ordinary anatomical imaging 

sequences through the scanner's console. 

 

Prostate cancer continues to be a worldwide health 

problem and the most common type of cancer among men. An 

estimated 217,730 new cases of prostate cancer are expected 
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in the United States in the year 2010 [1]. A definitive 

diagnosis for prostate cancer requires histopathological 

examination of tissue samples from the patient's prostate 

gland. The samples are acquired through prostate biopsy, 

which is a minimally invasive procedure in which tissue 

samples are typically obtained by needle placement through 

the rectum (transrectal procedure) or perineum (transperineal 

procedure) under image guidance. 

 

In the pursuit of more accurate biopsy, Krieger et al. 

developed transrectal robotic assistance under MR image 

guidance [2]. To date, their system has been used at the U.S. 

National Cancer Institute in a clinical trial. A diagnostic 

quality MR volume of the patient's pelvis was acquired before 

the biopsy session, which the physician studied to determine 

the biopsy target locations. In the biopsy session, a set of 

lower resolution MR slices were acquired immediately before 

each needle insertion to confirm biopsy locations. After proper 

needle adjustments were made, the needle was inserted and 

the core was extracted. Physicians have encountered a major 

dilemma in this procedure: the needle puncture marks in the 

prostate in the post-needle insertion image often do not match 

with the originally planned biopsy positions defined in the 

target planning volume. This is due to prostate motion and 

deformation between pre-needle and post-needle insertion. 

Patient motion occurs mostly at point of needle placement due 

to discomfort, which causes the prostate to press against the 

probe, causing it to be displaced and deformed. This clinical 

observation has been quantified by Xu et al. [3] in a recent 

longitudinal study of MRI-guided transrectal prostate biopsy 

cases accrued over several years. An average biopsy target 

displacement of 5.4 mm was found. Inaccurate biopsies, which 

are realized post-intervention, may lead to repeat biopsies. 

Repeat biopsies incur extra costs to the health care provider 

and increased health complications to the patient. This 

underscores the need for a system to track the prostate position 

throughout the biopsy procedure. 

 

1.1 Previous Works in Prostate Image Registration 

Image-based anatomical tracking is a vast topic which has 

attracted a large body of research. The brief review herein 

covers a few selected works in 3D-3D and 2D-3D (slice-to-

volume) registration using non-MRI modalities and compares 

them to the methods that use MRI. MRI-based anatomical 

registration methods are also reviewed. 
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In the framework of ultrasound (US), volume-to-volume 

registration methods [4] and slice-to-volume registration 

methods [5] have been proposed for transrectal ultrasound 

(TRUS)-guided prostate biopsy target tracking. However, with 

US only systematic sampling is possible (with predefined 

target locations), because typically, sub-structures or lesions 

within the prostate are not visible in US images [6]. For 

improved prostate margin and lesion visualization, fusion of 

interventional US with pre-operative MRI has been suggested 

for prostate biopsy [7. 8]. This method was reported to 

increase the yield of prostate biopsies as opposed to 

conventional TRUS for patients with previously negative 

biopsies [7]. Methods of multi-protocol MRI to histology 

registration of the prostate have also been developed in an 

effort to obtain an accurate estimate of the spatial extent of 

prostate cancer and define quantitative disease signatures of 

the prostate in an MR image [9]. 

The feasibility of using MRI as an alternative tool for 

surgical navigation in prostate biopsy was studied by Hata et 

al. [10]. Through patient trials they proved that T2-weighted 

interventional MR imaging with 3D visualization software can 

be used to guide needle placement in prostate biopsies. For 

MRI-guided target tracking, radio-frequency (RF) signal based 

and image based methods have been proposed. In RF signal 

based tracking, the subject is scanned using a custom designed 

imaging sequence before and after motion. Translational 

motion information is then computationally derived from the 

resulting echo of the RF coil. Hata et al. [11] developed an 

intra-operative MRI registration algorithm using projection 

profile matching of the RF echo. The algorithm was reported 

to be fast and semi-real time. The drawbacks of this technique 

are twofold: lack of 3D positional information and the 

requirement to access the MRI machine's control sequence, 

which is not widely available for average care facilities and 

cannot be considered as clinically practical. For interventional 

applications that require 3D visual information of a moving 

subject, 3D registration algorithms have been introduced. Of 

particular interest in the past decade has been the evaluation of 

3D non-rigid registration techniques for MRI-guided 

brachytherapy procedures, including finite element [12] and 

B-spline methods [13]. However, limited effort has been made 

in the improvement of temporal performance of MRI-based 

registration algorithms in general. 

 

A clinically practical solution to the prohibitively long 

volume acquisition and registration times and unavailability of 

custom scanning sequences is multislice-to-volume 

registration. This technique wraps around the idea of aligning  

intra-operative slice images to the pre-operative volume image 

to recover subject motion. Intra-operative volume acquisition 

time is saved by using a pre-operative reference volume 

acquired prior to the intervention and pre-calibrating the 

surgical tool(s) to this volume. In the case of transrectal 

prostate biopsies, the surgical tool is the needle placement 

system (Fig. 1). Multiple statically set slices are acquired at the 

scanner's isocenter, which eliminate the need for a custom MR 

scanning sequence. For consistency with the context of 

tracking, intra-operative slices/volume will be referred to as 

tracking slices/volume and the preoperative volume will be 

referred to as the reference volume. 

 

 
Fig. 1: Side view of the MRI-compatible intra-prostatic needle placement 

device developed by Krieger et al. [2] 

 

In the context of multislice-to-volume registration, two 

works in particular inspired our project: Fei et al. [14] and Gill 

et al. [15]. Fei et al. developed a multislice-to-volume 

registration algorithm with application to radio-frequency 

thermal ablation of prostate cancer, in which 15 actual intra-

operative prostate MRI slices from transverse, sagittal, and 

coronal orientations were registered to a pre-operative MR 

volume, respectively. The slices from each orientation were 

independently registered to the pre-operative volume, meaning 

that three independent registrations were performed and the 

results were compared. Their algorithm featured a multi-

resolution approach with an automatic restart. The automatic 

restart applied a random perturbation to the last transformation 

parameters found by the registration in order to escape from 

potential local minimum of the cost function and re-execute 

the registration process. 

 

Gill et al. addressed the problem of local extreme traps 

and the inefficiency of Fei's optimization. They eliminated the 

need for restarting the registration by performing a multi-

resolution registration alone on a volume of interest (VOI), 

and incorporated transverse and sagittal simulated slices 

centered at the prostate. Previously [16], we developed rigid 

and deformable tracking algorithms which were tested on 

clinical data. This paper is built upon [16] with the addition of 

registration parameter analysis, in which simulated rigid and 

deformable registration tests were performed on varying 

number of slices, mutual information sample size, B-spline 

grid resolution, and slice thickness. 

 

1.2 Objectives 

The objective of this paper is defined in two parts: (1) to 

develop rigid and deformable multislice-to-volume 

registration techniques to account for and accurately quantify 

prostate motion in MRI-guided transrectal biopsy procedure. 

(2) to determine the effect of the number of tracking slices on 

the registration accuracy and time. 

 

Six degree-of-freedom motion (translations along and 

rotations about x, y and z axes) as well as deformable 

displacement field must be recovered. In the scope of prostatic 

needle placement, a registration error less than 3 mm is 

considered to be sufficiently accurate as it is comparable to the 

diameter of a standard biopsy needle and smaller than the 
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radius of the clinically significant tumor which is about 4 mm 

[17]. The objective of tracking is to ascertain current prostate 

position prior to insertion of the biopsy needle. Tracking is 

requested by the physician and executed by the operator 

through the console, so the requirement for speed is timely 

response to the physician's requests. Based on our experience 

in multiple clinical trials with the device of Krieger et al. the 

preferred processing time is 1 minute. 

 

1.3 Contributions 

Our present contributions are threefold: (1) Development 

of deformable prostate tracking scheme using pre-operative 

volume MRI and intra-operative slice MRI. To our 

knowledge, this approach with aforementioned specifications 

has not been attempted by other groups, though volume-to-

volume approaches have been proposed [18]. (2) Elimination 

of the need for random restarts and multi-resolution 

registration in the rigid scheme that hampered earlier works 

[14, 15]. As previously mentioned, random restarts and multi-

resolution registration reduce temporal performance. We 

found that decoupled optimization improved temporal 

performance as opposed to random restarts and multi-

resolution approaches. Decoupled optimization is a technique 

whereby translations are first optimized and then the results 

are used as initial center of rotation to optimize rotations. 

 (3) Analysis of the performance on simulated intra-operative 

and clinical MRI-guided prostate biopsy data. 

 

2. MEHOTDS 

Our tracking algorithm was validated on two types of 

data, simulated patient and real patient data. Detailed 

explanation of these data groups will be covered in sections 

2.6 and 2.7. Motion-simulated slices were generated from a 

reference volume by rigid translation and rotation, and a 

deformation defined by an FEM model of the prostate. The 

motion-simulated volume was registered back to the reference 

volume to recover the ground truth motion. Real patient data 

involved registration of pre-needle insertion slices to the target 

planning volume. Rigid and deformable registration tests were 

performed on both data groups and analyzed separately. 

 

2.1 Metric 

In motion tracking applications where a low-resolution 

MRI is registered to high-resolution MRI, cross-correlation 

(CC) and mutual information (MI) are commonly used as the 

similarity metrics in a multi-resolution approach [14, 15] 

Intensity scaling caused by MR coil response inhomogeneity 

does not affect MI, which makes it a suitable metric for MRI 

registration problems [14], hence, our choice of metric. 

2.2 Preprocessing 

The input image formatting pipelines for the 

aforementioned data types are illustrated in Fig. 2 and Fig. 3. 

The pre-processing stage of our algorithm must place the 

slices in the correct position and orientation in a sparse 

volume. The slice origin and direction cosines read from the 

DICOM tags are used to resample the slices into a sparse 

volume. The bounding box of the prostate is defined as the 

volume of interest in the sparse volume. To form the simulated 

data, initial random deformation field followed by rigid 

perturbation were computationally applied to the reference 

volume, as shown in Fig. 2. Detailed explanation of how the 

deformation field and rigid perturbations were created is 

provided in section 2.6. 

 
Fig. 2: The image preprocessing pipeline for simulation data 

 

 
Fig. 3: The image preprocessing pipeline for clinical pair data 

 

2.3 Filtering and Volume of Interest 

To constrain the registration to the prostate region, A VOI 

was defined as a bounding box enclosing the reference volume 

prostate, which was defined by an origin and x, y, z extents. 

Since the precise location of the tracking volume prostate is 

unknown, the same VOI was defined for the tracking volume, 

which provided a reasonable initial estimate of the location. 

The rigid registration scheme assumes that the VOI undergoes 

rigid motion from one frame to another, meaning that the 

prostate is assumed to be rigid. The deformable registration 

scheme used the same VOI, but does not assume rigidity. 

 

Once the VOI was defined, two spatial filters were 

applied to the VOI to enhance the prostate image. A histogram 

matching filter was first applied to the moving image to match 

the intensities of the fixed image. The moving and fixed 

images were then passed through a Gaussian smoothing filter 

in order to obtain smooth intensity estimates for the  mutual 

information similarity metric. Random intensity samples were 

drawn from the fixed image to calculate the joint probability 

distribution function. The optimal sample size was determined 

through a series of tests (section 3.1) 

 

2.4 Initialization and Registration 

The tracking volume was initially positioned such that its 

geometric center coincided with the geometric center of the 

reference volume. This was an appropriate initialization 

because for every scan the patient was positioned such that his 

prostate lied in the scanner’s isocenter. 
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The algorithmic concept behind registration is to find the 

optimum transformation matrix which best aligns the target 

image to the source image so as to obtain maximum overlap of 

a certain structure of interest. In our case, the structure of 

interest is the prostate. This method is referred to as intensity-

based because the cost function to be optimized is a similarity 

metric, which attempts to find the highest match of intensities 

of the input images. The metric used in our case is MI. Fig. 4 

shows the flow of the registration algorithm. The registration 

is performed in two stages: A rigid registration is first 

performed to obtain an initial pose of the pre-needle volume, 

which is then non-rigidly registered to the fixed, rigid 

reference volume. In the diagram, I(i,j,k) represents an image, 

defined by a 3D matrix of intensities whose voxel locations 

are specified by image coordinates i, j and k. 

 
Fig. 4: Workflow of the registration algorithm 

 

Two metrics were defined which measures the 

accuracy of our registration: surface distance error (SDE) and 

target registration error (TRE). SDE was defined as the mean 

surface distance error between the segmented prostate surfaces 

of the reference volume and the motion-simulated volume 

after registration. 

 

The SDE for the simulated registrations was computed by 

selecting the vector elements of the error field that lie on the 

surface of the prostate and averaging them over the prostate 

surface, mathematically expressed as,  

 

       
                    

  
   

  
                      

where                  represents an array consisting of all 

the points on the segmented prostate surface (Ns = 4716 

points), E is the error field matrix, and || represents vector 

length. Hence, SDE is the average of the error field evaluated 

over the prostate surface. To validate the clinical data 

registrations, we manually segmented the prostates in the 

reference and tracking volumes and computed the mean SDE 

before and after registration. The points making up the 

prostate surfaces, denoted as        and        , were 

formatted in a Ns × D array, where Ns is the number of points 

in the surface (4716) and D is the image dimension (3). The 

moving surface points were then re-sorted according to a 

nearest neighbor search [19] algorithm such that the distance 

between corresponding fixed and moving points was 

minimized. Equation 2 mathematically expresses the 

formulation of SDE for actual patient data. 

 

       
                       

  
   

  
                 

TRE was defined as the mean distance between the ground 

truth and registered positions of biopsy points,  

 

    
                    

  
   

  
                           

where                  is the biopsy target position vector 

consisting of six targets and    is the number of biopsy 

targets. TRE is a subset of SDE since the error vectors at the 

six biopsy positions are sampled from the error field and 

averaged to obtain this metric. The six biopsy positions were 

defined according to the sextant biopsy method, in which three 

cores were extracted from the peripheral zone of the base, 

mid, and apex of the right part, and three mirrored cores on the 

left part of the prostate. 

 

2.5 Transformations and Optimizations 

Rigid transformation optimization proceeds in a cascade 

model, in which the translation parameters are optimized using 

the CMA Evolutionary Strategy (CMA-ES) [20]. Following 

translation, rotation is optimized by gradient descent 

optimization. For our application, the CMA-ES was not able 

to optimize a 6-DOF search space as it diverged on rotations 

regardless of scaling. Thus, we decoupled the translation and 

rotation optimizations and used the CMA-ES for the 

parameters that varied the most, i.e. the translation. The 

gradient descent optimizer converges quickly and accurately 

for parameters that have a smaller variation range, i.e. the 

rotations in our case. The order of optimization is key here; 

translation must be optimized first in order to align the center 

of rotation of the moving image with the geometric center of 

the fixed image. In cases where the prostate's center of mass is 

not aligned in the images, optimizing for rotation first results 

in further divergence from the solution. 

 

We feed the rigidly registered pre-needle volume to a 

deformable registration algorithm, which runs through a two-

level registration pyramid using coarse B-spline grid (40 x 40 

x 20 mm resolution) followed by a finer grid (13 x 13 x 6.7 

mm resolution), where the nodes of the grid act as control 

points. The reason for the choice of these grid sizes are 

explained in section 3.1. Using a gradient descent optimizer, 

we search the parameter space of the B-spline grid for the 

parameters that maximize the MI value. 

 

2.6 Simulation Data 

In order to explore the robustness, capture range and 

temporal performance of our tracking algorithm on pre-

recorded clinical data, we created simulated tracking volumes 

using finite element (FE) modeling and rigid 6-degree-of-

freedom perturbation to generate deformations and rigid body 
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motions, respectively. Using a finite element analysis software 

application developed by Lasso et al. [21], we generated 20 

simulated patient MR images containing the deformed prostate 

due to patient motion. The FE model of the prostate/probe 

system is shown in Fig. 5. Material properties of the body 

(spherical mesh) and the prostate were adapted from [22]; both 

objects were modeled as linear elastic materials, the prostate 

with Poisson ratio υ = 0.4 and Young's modulus E = 21 kPa, 

body with υ = 0.4 and E = 15 kPa. Patient motion causes 

considerable local pressure on the prostate by the transrectal 

probe. This pressure was modeled by prescribing force loads 

(of random perturbations in direction and magnitude) on the 

mid-posterior surface of the prostate. The FE solver was run 

on 20 cases involving different force loads and probe positions 

(1D translation normal to the rectal axis) and a ground truth 

deformation field was computed. Probe translation was 

randomized in the range of (-2 mm < Tx < 2 mm). The 

coordinate system was defined such that the rectal axis was 

aligned with the z axis and the x axis was oriented normal to 

contact surface between the probe and prostate. The y axis was 

obtained by the right-hand rule. 

 
Fig. 5: Sample geometry of the prostate (solid surface in the middle) and the 
body object (wireframe sphere around the prostate). Force is applied on body 

mesh nodes that lie within the cylindrical shape of the endorectal probe. 

Position of the anterior side of the body object (at the top, intersection with 
the solid sphere part) is fixed. Image source: Lasso et al. [16] 

 

2.7 Patient Data 

Under ethics board approval, we have obtained five 

patient data sets from one of the clinical trials conducted with 

the device of Krieger et al. at the National Institutes of Health, 

USA. Each data set contained a target planning (reference) 

volume and a pre-needle insertion (tracking) volume used for 

biopsy position confirmation. The pre-needle insertion volume 

is motion-compromised since the prostate has moved relative 

to the previous target needle placement. A series of T2-

weighted transverse slices (later reconstructed into a volume) 

were acquired by a spin echo sequence with a 1.5T GE Signa 

Excite MRI system. The reference volumes had resolutions of 

0.78 x 0.78 x 4 mm/pixel for patient 1, 0.625 x 0.625 x 3 

mm/pixel for patient 2, and 0.55 x 0.55 x 3 mm/pixel for 

patients 3, 4, and 5. The tracking volumes had resolutions of 

0.78 x 0.78 x 4 mm/pixel for patient 1, 0.625 x 0.625 x 3 

mm/pixel for patient 2, 0.85 x 0.85 x 3 mm/pixel for patients 3 

and 4, and 0.94 x 0.94 x 3 mm/pixel for patient 5. The slice 

dimensions were 256 x 256 pixels for all patients. The 

acquired volumes varied from 16 to 25 transverse slices. We 

extracted three orthogonal slices from each pre-needle 

volume, centered in the prostate. As true sagittal and coronal 

slices were not available, they were obtained by interpolation 

between the transverse image slices. 

 

3 RESULTS 

3.1 Simulation Tests 

The ground truth displacements were created using the 

software-generated deformation field applied to the full pre-

needle volume by the method described in section 2.6. We 

applied ± 5 degrees random rotation and ± 10 mm translation 

to the deformed volume along all axes and attempted to 

recover the introduced biopsy target displacement. Prior to 

performing the registration tests, we performed parameter tests 

(i.e. analyzed the effect of the three most influential 

parameters on the registration - MI sample size, B-spline grid 

resolution, and slice thickness, the results of which are shown 

in Fig. 6,Fig. 7 and Fig. 8, respectively. In each parameter test, the 

same reference/tracking volume pair was used (one of the 20 

simulated volumes described in section 2.6) and all parameters 

were held constant except for the one being analyzed.  

Voxel intensities were uniformly sampled from the 

prostate VOIs of the fixed and moving images. Sample 

populations were formed which were needed to calculate the 

joint probability density function for MI.  The sample size was 

measured in percentage voxels of total VOI containing the 

prostate. Registration was tested for sample sizes ranging from 

5% to 100%. Fig. 6 shows that TRE stays within a tight range 

of 1.50 to 2.50 mm and 0.50 to 1.00 mm for the rigid and 

deformable cases, respectively. Deformable TRE is lowest at 

100% sampling (about 0.13 mm below that at 5%) but the 

change is negligible and the increase in registration time is 

significant. Thus, we set the sample size to 10% for the 

remainder of our registrations because increasing sample size 

further will increase registration time and render the algorithm 

unpractical.  

Grid resolution is defined as the spacing between 

neighboring grid nodes in the x, y, and z directions, 

respectively. Grid resolution does not apply to rigid 

registration as the parameter is used only for defining the 

deformation grid in the image.  Fig. 7 shows that improving 

grid resolution (i.e. reducing the spacing between grid nodes) 

beyond 40 × 40 × 20 mm did not improve deformable TRE. 

This is owed to the fact that the degrees of freedom of motion 

(i.e. number of unknown parameters of the cost function) 

increases which results in an increase in the odds of 

divergence from the solution. For the sake of curtailing both 

computational time and diverging risk, we chose 40 × 40 × 20 
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mm as the grid resolution for the remainder of our 

registrations. 

The original slice thickness of the reference volume was 4 

mm. For each slice thickness, the tracking volume was 

extracted from reference volume after being resampled in the 

through plane direction by slice averaging. We varied the 

tracking slice thickness over the typical range seen in 

interventional MRI scans reported in [14], which was 4-6 mm. 

The step size used was 0.5 mm. The result (Fig. 8) shows that 

TRE (rigid and deformable) decreases with increasing slice 

thickness up to 5 mm. This can be explained by the theory of 

direct proportionality between slice thickness and signal-to-

noise ratio [23]. Increasing the thickness beyond 5 mm did not 

improve the TRE because there were too few slices in the 

reference volume to provide an accurate representation of the 

prostate. Since the original thickness of the dataset is already 

proximal to the average size of the tumor (4 mm), we chose to 

keep the slice thickness at the original value. 

In order to assess whether three tracking slices are 

sufficient for estimating the out-of-plane deformation, 

registration tests were run on Nslices = 3, 4, and 5 slices. Due to 

superior resolution, transverse slices were added and 

positioned such that they bisected the prostate's superior and 

inferior halves. 20 registration tests were performed for each 

value of N, totaling the number of registrations to 60. The 

results are summed up in Table I. In Table I, TRErigid 

represents error of rigid registration alone while TREdef 

represents the total error (rigid registration followed by 

deformable refinement) as defined by equation 1. The 

minimum, mean, and maximum values of the initial 

misalignment were 4.61, 10.10, and 14.58 mm, respectively.  

 

 

TABLE I 

SIMULATED RIGID AND DEFORMABLE 

REGISTRATION ERRORS FOR 3, 4, AND 5 TRACKING 

SLICES 

Nslices TRErigid 

(mm) 

TREdef 

(mm) 

Trigid (s) Tdef (s) 

3 1.70 0.81 44 419 

4 2.21 0.85 108 997 

5 1.99 0.86 139 1731 

 

 

 
Fig. 6: Effect of MI sample size on registration error 

 
Fig. 7: Effect of B-spline grid resolution on registration error 

 

 
Fig. 8: Effect of Slice thickness on registration error 

 

 

 

3.2 Patient Data Study 

Our clinical study involved registration tests on five 

biopsy patients. These patients were chosen for registration 

tests for two reasons. First, their images had good contrast 

between the prostate and the surrounding tissues and had the 

least amount of distortions. Second, we selected patients with 

normal motion (less than 5.4 mm) and large motion (greater 

than 5.4 mm but less than 10mm) to analyze a broad but 

realistic spectrum of patient motions. Patient motion was 

measured in terms of target displacement (Fig. 9) and was 

classified based on the average target displacement found by 

Xu et al. [3] (5.4 mm). Target displacement was defined as the 

distance between the pre-operatively planned position and 

motion-compromised intra-operative position of the biopsy 

target. As shown in Table II, DT represents target displacement 

(mm), whose values were obtained from the findings of Xu et 

al. [3], as the patient data used were identical. As registration 

time was not of concern for needle placement validation, a full 

3D-to-3D registration was performed (using all 20-25 slices) 

between pre-needle insertion and post-needle insertion 

volumes. However, for our purposes of real-time tracking, 

only three orthogonal slices (extracted) were used for 

registration.  
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Fig. 9 Definition of target displacement by Xu et al. [3] 

 

 

TABLE II 

REGISTRATION RESULTS FOR PATIENT DATA (mm) 

Patient No. DT Rigid SDE 
Deformable 
SDE 

1 9.90 1.82 1.32 

2 7.00 2.38 1.92 
3 4.12 1.65 1.62 

4 4.36 1.88 1.83 

5 11.45 5.01 3.56 

Mean ± SD  8.69 ±2.64 2.55 ± 1.40 2.05 ±0.87 

 

 
Fig. 10: Transverse, sagittal, and coronal views of biopsy target position 

before needle insertion (top) and after needle insertion (bottom) 

 
Fig. 11: Prostate surfaces before registration (top), after rigid registration 
(bottom left), and after deformable registration (bottom right). Just as in Table 

II, deformable registration shows no substantial benefits. 

 

The average rigid registration time was 70s for the rigid 

algorithm and 1000s for the deformable algorithm (includes 

initial rigid alignment time). The originally planned 

(reference) position and the pre-needle insertion position of 

the first biopsy target for patient 1 are shown in Fig. 10. The 

reference position was obtained from biopsy data and the pre-

needle position was obtained by our tracking algorithm. The 

significance of Fig. 10 is that it shows where the target has 

moved since the time of reference volume acquisition. 

 

The prostate surfaces before and after rigid and 

deformable registrations for patient 1 are shown in Fig. 11. 

Note that the prostate was segmented for the purpose of 

validation. No segmentation was involved in the algorithm 

before or during registration. 

 

4 DISCUSSION 

One major challenge for the evaluation of any registration 

method is the fact that in clinical patient data there is no 

ground truth. As such, registration accuracy cannot be 

evaluated in terms of the targets (TRE). Despite many 

computer-assisted interventions that use pre-operatively 

placed markers to perform registration or to evaluate TRE, no 

such landmarks are present in our data. Implanting markers for 

our study would involve discomfort and risk to the patient. 

Thus, the measure of registration error for actual patient 

registrations for this study was based on SDE as defined 

earlier in equation 2. 

 

The relatively large variation of registration errors among 

the five patients is mainly due to the large time span over 

which the data were acquired and archived (5 years). During 

this time, devices (such as the endorectal coil integrated in the 

biopsy device) changed, which affected the imaging 

parameters such as SNR and resolution. As a result, 

experiments were performed on data that was already 

available and thus our results must be considered as 

preliminary. 

 

Results of the simulated registration tests show that 

increasing the number of transverse tracking slices from 3 to 4 

or 5 does not improve registration accuracy, implying that 

perhaps a significantly larger number of slices are required to 

improve registration accuracy. However, using more than 5 

slices is time prohibitive. Nevertheless, registration results on 

the simulated data provided an insight into how the algorithm 

may behave in response to a typical patient motion in a 

clinical scenario. 

 

The simulation study determined the accuracy and 

temporal performance trade-offs among three acquisition 

choices: 3, 4, or 5 transverse slices. Not only increasing the 

number of slices does not improve tracking accuracy, but the 

associated registration times increase. Rigid tracking using 

three slices offers fast results (44 s simulations, 70 s patient 

tests) and affordable error (1.70 mm simulations, 2.55 mm 

patient tests). 

 

As observed from clinical registration results, the 

objective of 3 mm accuracy was achieved. It is important to 

note that this only accounts for the systematic error (i.e. 

registration error), not for external factors such as needle 

Fixed 

prostate 

Moving 

prostate 

Fixed 

prostate 

Rigidly 

registered 

prostate 

Non-rigidly 

registered 

prostate 

Prostate before needle 

placement 

Prostate after needle 
placement 
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deflection and segmentation. As long as the needle is placed 

within an accuracy of 4 mm (clinically significant size of a 

prostate tumor), the cancer is not likely to be missed. This 

gives the physician 1 mm room for needle deflection error. 

Since segmentation of the prostate surfaces was performed 

manually, segmentation error exists due to inter-user 

variability. The magnitude of this error is assumed to be 

negligible relative to the clinically significant size of tumor. 

 

The acquisition time for one tracking slice is in the order 

of seconds and the positions of the tracking slices relative to 

the scanner’s isocenter are set by the operator before the 

procedure. Acquisition time for tracking is negligible 

compared with computation time. The rigid registration times 

for both the simulation and patient tests seem proximal to 

clinical feasibility. Deformable registration times could raise 

feasibility concerns, but in all we are not particularly 

concerned about time, because for clinical trials the 

registration should be ported to the GPU which will obsolete 

concerns of temporal performance. The most computationally 

intensive parts of the algorithm (resampling and metric 

computation) can be parallelized and so we expect that a 

multi-threaded implementation on a multi-core CPU or GPU 

could reduce the execution time by a factor of 10. 

 

In summary, our contribution was the development of 

rigid and non-rigid intensity based registration algorithms for 

tracking the biopsy targets in a robotic assisted MRI-guided 

prostate biopsy procedure. This algorithm should be adaptable 

in non-robotic procedures in other anatomical locations. 

Validation was performed on simulated patient MRI and 

clinical MRI. The rigid approach proved to be sufficient in the 

absence of GPU acceleration discussed earlier. Our algorithms 

have demonstrated convergent results for initial prostate 

displacements up to 14.6 mm (from simulations). Work 

continues with performing target registration error studies in 

typical sextant and octant biopsy locations and, most 

importantly, moving toward a prospective clinical trial with 

the use of true sagittal and coronal slices. 
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