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ABSTRACT 

PURPOSE: Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on 

evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology 

treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, 

causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that 

can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation 

therapy research using the open source SlicerRT extension for the 3D Slicer platform. METHODS: The implemented 

algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. 

The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour 

layers and branching patterns are determined. The final step is triangulating the contours and sealing the external 

contours. RESULTS: The algorithm was tested on contours segmented on computed tomography (CT) images. Some 

cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when 

encountered individually. There were some special cases in which the simultaneous occurrence of several of these 

problems in the same location could cause the algorithm to produce suboptimal mesh. CONCLUSION: An open source 

contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The 

implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested 

structures. 
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1. INTRODUCTION 

Medical image data, such as computed tomography (CT) scans, typically provide 2D cross sectional images that are 

spaced evenly on individual slices. In procedures such as radiation therapy, it is often required that target structures and 

organs at risk be identified through the use of planar contours which circumnavigate the structure on the image slices. 

These structures must be converted into 3D meshes in order to be visualized or to be used for treatment planning and 

further analyses. 

In radiation oncology treatment planning software, an algorithm is often implemented which creates a binary volume 

(labelmap) from a set of contours, for which an intermediate step is often reconstructing a surface model. This presents a 

problem however, since every software package uses a different algorithm with different results, and their methods for 

producing the surface are not disclosed. This results in differences for dosimetry and dose volume histograms (DVH) for 

the same structures, the effects of which are small in large structures, but are pronounced in small structures1. 

The 3D Slicer2 software package is a tool that is widely used by clinicians for treatment planning and visualization. 

SlicerRT3 is an open source extension that has been developed for the 3D Slicer platform which facilitates dosimetric 

evaluations, comparisons, dose accumulation modelling, and external beam planning among other research workflows, 

many of which require correct and consistent surface reconstruction from a set of contours. 

The topic of converting contour layers into 3D meshes is a subject that has been studied frequently. One of the major 

contributions was made by Fuchs et al.4, when they described the problem of producing an optimal triangulation as a 

graph problem that can be minimized. They also specified that two of the edges for each triangles in the mesh should 

span the gap between contours, with the third edge lying directly on the surface of one of the contours. 

One issue that needs to be solved by all triangulation algorithms is determining which contours should be connected by 

triangles between each of the slices. This is referred to as the correspondence problem. Another obstacle to overcome is 



the occurrence of branching contours. A branching contour occurs when a single contour on one of the slices must be 

connected to two or more contours on an adjacent slice5. 

Another issue that can occur is the existence of keyholes within the set of contours. The DICOM standard (RT structure 

set module) defines the storage of hollow structures as keyholes that are represented as an inner and outer contour 

connected by an arbitrarily small channel in order to be considered one contour. These keyhole contours can cause 

problems with contour triangulation algorithms and need to be handled before triangulation can take place. 

Our goal is to create an accurate and consistent algorithm for interpolating contours, implemented in the open source 

SlicerRT extension for the 3D Slicer platform. The algorithm should be able to handle the three main issues that the old 

implementation of our algorithm had difficulty handling: keyhole contours, rapid changes, and branching. The mesh 

produced by the algorithm should be a qualitatively acceptable representation of the original structure that is defined by 

the original set of planar contours. 

2. METHODOLOGY 

 

 Figure 1: Data flow diagram representing the process of converting a set of 2D contours into a corresponding surface mesh. 

 

We implemented our algorithm for creating 3D closed surface models from planar contours as a Python scripted module 

for the 3D Slicer platform, as part of the SlicerRT extension. Our algorithm was designed with the intent to preserve the 

original points and to avoid introducing new points. There is one instance in which this rule is deviated from during the 

keyhole handling process, since the points need to be removed from within the channel. The 3D mesh construction 

procedure can be seen in the data flow diagram in Figure 1. The algorithm for contour to surface conversion is to be 

implemented as a single step in a contour conversion pathway for SlicerRT (see Figure 2). 

 

 

Figure 2: Data flow diagram representing a typical contour analysis workflow. Our algorithm is the contour to surface conversion 

step. 

 

2.1 Keyholes 

The existence of keyholes within contours can cause problems with the process of triangulation, as they can cause the 

triangulation algorithm to incorrectly connect to points contained within the channel. In order to remove the keyholes 



from the contours, each contour is addressed individually in a pre-processing step comparing each point in the contour to 

all other points in the same contour. If two points in the contour are within a specified threshold distance from each other 

and not considered to be adjacent to each other, then the two points are noted to be in conflict with each other. 

Once all of the points in the current contour have been assessed, the algorithm walks through the list of points for the 

current contour in order to rebuild the contour and add additional contours as is necessary to remove the keyholes. If a 

point has not been found to have violated the threshold distance constraint, then it is not part of a keyhole and can be 

added to the current contour. If a point is encountered which is in conflict with a point whose index location is greater 

than the current one, this represents the start of a keyhole channel. At the start of a new keyhole, a new contour is added 

to the current list of contours, which represents the inner keyhole volume. In the keyhole, points that are not in conflict 

are added to the new contour until a point is encountered that is in conflict with a previously visited point. This 

represents the closure of a keyhole and the end of the newly added contour. The current contour is then added to a list of 

completed contours and points are now added to the previous contour. In this way, keyhole contours can be separated 

into their internal and external contours, which can include multiple and layered keyholes on each slice. After the new 

contours have been composed, we make sure that they all form closed contours. 

2.2 Correspondence 

Before the process of triangulation can begin, the correspondence between contours must first be identified so that we 

can triangulate between the correct contours, while ignoring contours that should not be triangulated together. The 

process of finding contour correspondence is also required before branching patterns can be calculated. In order to 

determine whether there is correspondence between contours on different layers, simple bounding-box overlapping was 

used to define correspondence, as mentioned by Meyers et al5. If the bounding boxes of two contours overlap, then the 

algorithm will consider them to be connected structures when constructing the surface triangulation. One issue that is 

often present in interpolation algorithms is the presence of internal contours on the same slice. For our algorithm, no 

distinction is made between the external (counter-clockwise) contours and the internal (clockwise) contours. This means 

that the internal contours on one layer can connect to the external contours on another.  

2.3 Branching 

When a contour on one slice corresponds to multiple contours on an adjacent slice, we need to be able to create a 

triangulation which branches between all three contours. In order to do this, the next step in our algorithm is to compute 

a branching pattern for contours that possess a correspondence to multiple contours on an adjacent slice. In order to 

reduce the computation time, only contours that have correspondence identified from the previous step are used when 

calculating the branching patterns. The points in each of the contours are checked against all of the points contained in 

their corresponding contours in order to determine which of the corresponding contours is closest to the current point. 

The points on each of the contours are then divided into separate sections depending on which of the corresponding 

contours they are closest to. The branching regions are then resolved by performing the triangulation on each of the 

sections with the closest section located on a corresponding contour, treating these sections as isolated triangulations. 

2.4 Triangulation 

Our method for triangulation works by creating triangles that span between two corresponding contours on adjacent 

layers and is based on the PointWalk algorithm which is included in the vtkRuledSurfaceFilter class from the VTK 

library6. While the original PointWalk uses a greedy algorithm to attempt to minimize the length of the edges between 

contours, the greedy nature of the algorithm means that it will sometimes construct a non-optimal triangulation. Our 

algorithm variation interpolates between the pairs of contours by finding the triangulation with the shortest spanning 

edge length through the use of a dynamic programming algorithm. The two line segments which are connected can be 

considered the nodes in a directed graph, with the node weights represented by the length of the edges spanning the 

contours (see Figure 3). Each edge in the directed graph represents a possible triangle in the mesh, consisting of two 

edges denoted by the connected nodes, as well as a third edge from the previous triangle. This ensures that the final 

surface will not contain any gaps and will be a closed surface. The two axis in the graph are represented by the points 

that are contained within each of the two connected contours. We then use the graph as a basis for a dynamic 

programming algorithm with which the edge length between the contours can be minimized. The implementation of this 

method enforces that any triangle created from the triangulation must have two points on one of the two contour sections 

and one point on the other. 



 

Figure 3: Example diagram of a directed graph representing the triangulation of a contour with ‘n’ points and a contour with ‘m’ 

points. The dynamic programming method finds the path through the graph that minimizes the sum of the weights at each node. 

 

2.5 Seal Mesh 

After the triangulation is complete, there are still some gaps that are left in the surface model which need to be sealed. 

The gaps in the surface are caused by the contours that reside on the top and bottom of the 3D model. The method for 

determining which contours need to be sealed looks at the triangles that have been produced by the triangulation for each 

contour. If a contour is connected to triangles both above and below it, then it resides in the middle of the model and 

does not need to be sealed. The contours that do need to be sealed will only be connected to triangles on only one side of 

the contour, or on neither side, in the case of a contour that was not triangulated. The final closed surface then is 

constructed by performing a Delaunay triangulation on the external contours using the vtkDelaunay2D class in the VTK 

library6 (see Figure 4). 

 

Figure 4: Example mesh containing gaps introduced by contours on the external surface. The image on the left shows the original 

mesh, while the image on the right shows the same mesh with the external contours sealed. 

 

3. RESULTS 

The contour interpolation algorithm was successfully implemented as a Python scripted module in SlicerRT. In order to 

test the performance of our contour interpolation algorithm we tested the algorithm on contours which have been isolated 

from structures contained within several different sets of real CT images (see Figure 5). 



                 

Figure 5. Example CT slices used to produce the meshes in Figure 6, with brain (left), head (center), and vessel (right) contours. 

 

The algorithm was found to produce qualitatively good 3D meshes for most contours such as the examples in Figure 6. 

We chose to use qualitative analysis on the mesh since quantitative analysis was prohibitively complex to implement in 

our timeframe. Deliberately complex examples were used to test the capabilities of our algorithm. Once the algorithm is 

fully implemented in SlicerRT, a fallback mechanism will be implemented in our conversion algorithm in case the mesh 

fails according to user feedback. If this occurs, the process of contour conversion will temporarily utilize the algorithm 

which was previously implemented. There were three main issues with the previous implementation that we sought to 

handle with our algorithm: keyhole contours, rapid changes and branching. 

                   

Figure 6. Example mesh generated using the algorithm from the CT scan images shown in Figure 5, from brain (left), head and 

neck (center), and vessel (right) contours. 

 

In order to test the keyhole removal mechanism of the algorithm, we created a set of fabricated set of contours which 

contained several layers of keyholes. The keyhole algorithm was executed on the contours using a threshold distance of 

0.1mm and an adjacency threshold of 2 points. The method for removing keyholes from contours was found to be 

effective at dealing with the fabricated examples that were used for testing (see Figure 7). 



 

Figure 7. Example of handling keyhole contours. The left image shows the fabricated contours prior to removing the keyholes and 

right image shows the fabricated contours after removing the keyholes. 

 

One of the problems that was present in the original PointWalk implementation was that because it was a greedy 

algorithm, it would sometimes fail to create an optimal surface in situations where contours rapidly changed from slice 

to slice. The dynamic programming approach of our algorithm ensured that the contours were connected in a true length 

minimization. Problems still occurred however when there were rapid changes from one contour to the next and the 

contours were not similar in shape or size (Figure 8/left). These cases often caused triangles on the mesh to all converge 

to a single point at the edge of the smaller contour. This is likely a cosmetic issue, since the meshes are still qualitatively 

acceptable when rasterized. 

        

Figure 8. Example of issues with rapid change, causing the surface triangles to all converge on a single point (left), and branching 

on internal an internal contours, which causes some intersecting mesh triangles (right). 

 

The implemented method for calculating branching patterns was found to work for simple cases (see Figure 9). One 

example for which the branching algorithm fails is where the algorithm produced unwanted triangles when it was used 

on top of an inner contour (see Figure 8/right). When calculating the branching patterns, the inner contour can 

incorrectly alter the division of the contours into branching sections, causing defects such as overlapping triangles. In a 

similar manner, since the inner contours behave the same way as external contours, the algorithm can sometimes 

encounter problems in the triangulation when there is a rapid change in contours between layers. This can cause the 

algorithm to preferentially choose to connect to the closer inner contour, rather than the farther, external one (see Figure 

10). Tseng et al.7 handled the case of internal contours by constructing triangulations for the internal and external 

contours separately. We opted not use this approach, since there were situations in which the internal and external 

contours should be triangulated together.  



 

Figure 9: Example of multiple correspondence requiring branching contours. The image on the left shows the larger contour with 

correspondence to two smaller contours on an adjacent layer. The image on the right shows the contours after being separated into 

sections and triangulated. 

 

The behavior of the bounding box correspondence can sometimes cause contours that are irregular in shape or that are 

oriented in a manner that expands the bounding box size to form correspondences with contours that should not be 

connected. This was found to not be an issue, as the branching algorithm would refrain from connecting these distant 

contours during the branch calculation step, and would instead prefer to connect the contours that were closer together. 

 

Figure 10. Example of a problem with rapid changes and internal contours, in which the outer contour is connecting to the inner 

volume, rather than the outer surface. The regions in which the problems occur have been highlighted. The mesh was constructed 

from the fabricated example contours shown in Figure 7. 

 

4. DISCUSSION 

We discovered that our algorithm was able to appropriately handle individual occurrences of the issues of rapid changes, 

branching and keyhole contours, however the presence of several of these issues in the same location simultaneously was 

found to cause problems for the final surface mesh. In the case of the issue involving rapid changes and dissimilar 

contours, a possible method for preventing this was discussed by Sederberg et al.8 in which the restriction that two points 

in a triangle must lie on one contour and one point must lie on another could be removed, allowing for triangles to be 

created in which all three points occurred on the same contour.  

Future work will need to be done in order to deal with this problem, as well as handling combined cases of rapid change, 

branching and keyhole contours. In addition, further work will need to be done on the algorithm before it can be fully 

integrated into SlicerRT. The algorithm will need to be ported from Python to C++ and must undergo thorough 

quantitative testing to ensure that the algorithms performance is up to the proper standard. 

5. CONCLUSIONS 

We implemented an algorithm in SlicerRT as a Python scripted module that converted sets of 2D planar contours into 

3D surface mesh and was able to handle the issues of keyhole contours, rapid changes, and branching. The algorithm 

was found to be able to produce 3D surface mesh that were considered qualitatively good for most of the sets of contours 

that were tested. 
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