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Abstract

A methodology is presented for constructing a statistical atlas of spatial distribution of prostate cancer from a large patient

cohort, and it is used for optimizing needle biopsy. An adaptive-focus deformable model is used for the spatial normalization and

registration of 100 prostate histological samples, which were provided by the Center for Prostate Disease Research of the US

Department of Defense, resulting in a statistical atlas of spatial distribution of prostate cancer. Based on this atlas, a statistical

predictive model was developed to optimize the needle biopsy sites, by maximizing the probability of detecting cancer. Experimental

results using cross-validation show that the proposed method can detect cancer with a 99% success rate using seven needles, in these

samples.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Prostate cancer is the second leading cause of cancer

death for American men. When prostate cancer is di-
agnosed early, it is usually curable. Therefore, it is ex-

tremely important to detect prostate cancer at early

stages. Currently, common prostate cancer screening

methods are digital rectal exam (DRE) and prostate

specific antigen (PSA). The combination of these two

tests has been shown to be the most cost efficient

screening method for prostate cancer (Littrup et al.,
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1993). When the PSA level is higher than normal or the

DRE shows abnormal results, a needle biopsy, guided

by transrectal ultrasound images, is typically recom-

mended to help determine whether a tumor really exists
and whether the tumor is benign or malignant. Notably,

cancer is mostly undetectable in routinely used ultra-

sound images, because of low tissue contrast and low

SNR of the images. Therefore, the transrectal ultra-

sound images are most often used only to determine the

locations of the needles within the prostate. The biopsy

sites are typically determined by the physician based on

empirical rules. This inevitably leads to a significant
number of prostate cancer cases remaining undetected in

their initial biopsy. For example, the systematic sextant

biopsy protocol (Hodge et al., 1989) is the most com-

mon biopsy protocol. However, studies have shown that

this protocol results in a positive predictive value of only

around 30% (Flanigan et al., 1994). Other clinical
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studies have also suggested that the sextant technique

may not be optimal and have investigated new biopsy

protocols that might yield significantly better results

(Eskew et al., 1997; Chen et al., 1997, 1999; Daneshgari

et al., 1995). Different biopsy strategies have signifi-
cantly different success rates (Chen et al., 1997), which is

likely due to the fact that the spatial distribution of

prostate cancer is inhomogeneous (Hodge et al., 1989;

Flanigan et al., 1994; Eskew et al., 1997; Chen et al.,

1997, 1999; Daneshgari et al., 1995). If the biopsy pro-

tocol can be optimized to increase the likelihood of de-

tecting prostate cancer, according to certain objective

and quantitative criteria, then significant improvement
in diagnostic accuracy should be expected.

Researchers have begun to investigate the possibility

of using a large number of patient histopathological

images to determine prostate regions that are most likely

to develop cancer, and therefore should be sampled

during biopsy (Zeng et al., 2000; Chen et al., 1997).

However, previously proposed strategies are limited in

two respects. First, most of these strategies used very
simple spatial normalization methods, such as matching

of the prostate bounding boxes, to place the image data

into a standardized coordinate system, a step called

spatial normalization. Spatial normalization is a very

important step in this procedure, because it accounts for

inter-individual morphological variability and allows

the direct superposition and comparison of images from

a large group of patients, thereby enabling image sta-
tistics to be collected. Inaccuracies in spatial normali-

zation result in significant overlap of different prostatic

zones across individuals, and therefore introduce error

to the calculation of cancer distribution within each

zone. This leads to loss of statistical power. Second,

most of the current strategies employ relatively simple

statistical models of analysis, which are only suitable to

solving a small-scale optimization problem. If applied to
a large-scale optimization problem, such as optimization

that requires fine resolution, those statistical models

usually result in suboptimal solutions.
Fig. 1. A schematic representation of the proposed
In this paper, we propose a methodology that ad-

dresses and partly overcomes both of these limitations.

We build upon earlier work published in (Shen et al.,

2001b). In order to overcome the problem of inter-in-

dividual variability and to render images from different
patients directly comparable on a voxel-by-voxel basis,

we use elastically deformable anatomical models (Shen

and Davatzikos, 2000; Shen et al., 2001a), which spa-

tially normalize the prostate images to a canonical co-

ordinate system, thus allowing a voxel-by-voxel analysis.

This eliminates the need for reduction of the data res-

olution via subdivision into relatively large anatomical

partitions and improves accuracy of the estimated un-
derlying spatial distribution of cancer. This distribution

does not only reflect the probability of developing

cancer at individual locations, but also at the spatial

correlation of cancer incidence between different pros-

tate regions. This is necessary, because regions between

which cancer incidence is highly correlated need not be

sampled simultaneously, as opposed to regions between

which cancer occurrence is relatively independent. All of
these models are used in an optimization framework for

estimation of optimal needle biopsy strategy. After all of

these processes are completed, we will obtain a statistical

atlas, which includes the statistical shape model of the

prostate, along with other information such as the lo-

cations of optimized biopsy needles and the map of the

probability of prostate cancer distribution.

This paper is organized as follows. In Section 2, we
provide a brief description on reconstructing prostate

samples, using surface modeling. In Section 3, we build a

methodology for deformable registration and normali-

zation of the prostate samples, with the goal of remov-

ing most of inter-individual morphological variability.

In Section 4, we develop a probabilistic method for

designing optimal biopsy strategy that best predicts the

presence of prostate cancer in patients. In Section 5, we
demonstrate the performance of our deformable model

in registering prostate samples and creating a statistical

atlas. Also, we validate the predictive power of our at-
method used for prostate cancer detection.



D. Shen et al. / Medical Image Analysis 8 (2004) 139–150 141
las-based optimal biopsy strategy in cancer detection by

using an existing prostate database, developed by the

DoD Center for Prostate Disease Research. Fig. 1 shows

the schematic representation of the methodology to be

proposed in this paper.
2. Data description

We used a diverse group of male patients with pros-

tate cancer. Each patient was recommended for biopsy

based on his PSA level or abnormal digital rectal ex-

amination or both. The clinical stages of the detected
cancer ranged from T1 to T2 and the PSA levels were

below 15 ng/ml.

Three-dimensional (3-D) surfaces of prostate struc-

tures were reconstructed from digitized step-sectioned

whole-mounted radical prostatectomy specimens with

clinically localized cancers using deformable modeling

techniques (Zeng et al., 2000). The prostatectomy spec-

imens were first fixed in 10% formalin for 48 h before
being step-sectioned into slices at 2.5-mm intervals in

transverse planes, resulting in 10–15 slices for each

specimen. Each slice was further embedded, sectioned

into a 4-lm thickness, whole-mounted on a glass slide,

and stained with hematoxylin and eosin before being

examined by pathologists under a microscope. The pa-

thologists identified key structures from each section

and outlined their boundaries. Structures outlined in-
clude surgical margin, capsule, seminal vesicles, urethra,

ejaculatory ducts as well as all cancerous tissue. For the

purpose of orientation alignment, five external marks

were placed, i.e., four at the four corners of each slide

and one at the center of the top edge of the slide. In

theory, three marks that do not lie on a straight line are

enough to register any two slides. Extra marks were

taken in this study to average out any potential minor
errors. The outlined slides were then digitized at a res-

olution of 1500 dpi, and slides of a specimen were reg-

istered to each other with the help of five manual marks

on each slide. Finally, prostate surface models were re-

constructed based on the registered outline information.

Open surfaces were used for the modeling of the pros-

tate capsules, since the shapes in the prostate ends are

not easy to reconstruct due to the use of large slice in-
tervals (2.5 mm), compared to the actual size of the

prostate. There exists a slight distortion or mis-regis-

tration between the slices used to reconstruct the pros-

tate surface model, reflected as unsmooth prostate

surfaces (cf. Fig. 4). This is probably due to the geo-

metrical distortion during slicing, or due to the incon-

sistent placement of the five manual marks. These

inaccuracies should be random, and will not signifi-
cantly influence the quality of the statistical map of

cancer distribution, since they are smoothed out by our

elastic warping procedure.
3. Spatial normalization of the prostate samples

Spatial normalization is a very important step, be-

cause it accounts for inter-individual morphological

variability and allows the direct superposition and
comparison of images from a large group of patients,

thereby enabling image statistics calculation. A major

problem in developing a spatial normalization method is

determining correspondences, i.e., developing a mecha-

nism that establishes a map between anatomically cor-

responding points or regions. This correspondence

problem can be solved via elastically deformable ana-

tomical models (Kass et al., 1988), which have been
explored extensively in several fields, including medical

imaging (Pizer et al., 2001; Joshi et al., 2002; McInerney

and Terzopoulos, 1996; Staib and Duncan, 1992; Dav-

atzikos, 1997; Brejl and Sonka, 2000). In particular,

deformable models have been widely used to register

brain images across individuals and to construct statis-

tical atlases. We have developed a deformable shape

modeling framework, for segmentation and reconstruc-
tion of anatomical shapes, and for determining mor-

phology-based correspondence across individuals, from

tomographic images (Shen and Davatzikos, 2000; Shen

et al., 2001a). This framework is based on an adaptive

focus deformable model (AFDM). In AFDM, for a given

set of structures, a shape model is first constructed to

represent a typical shape of these structures. This shape

model includes two kinds of information: information
about the geometry of the structures and information

about the statistical variation of these structures within

a given population. Then in the application stage, the

deformable shape model is placed in an image with the

structures of interest and is subsequently let free to de-

form according to features extracted from the subject

images, seeking objects that have similar geometry, but

also objects that fall within the expected range of shape
variation (2 SD from the shape mean in the direction of

each eigenvector). AFDM is a fully automated proce-

dure for establishing the correspondences between the

points in the model and the points in an individual�s
anatomy. With these established correspondences, we

can use an elastic warping technique (Davatzikos, 1997)

to transform the subject�s images into a stereotaxic

space, i.e., the canonical coordinate system within which
the model resides. This procedure is called spatial nor-

malization, and it is the cornerstone of analysis of im-

ages across a population. It accounts for inter-individual

anatomical variability and allows one to compare im-

ages from different patients point by point, in the ste-

reotaxic space, thus enabling the full utilization of the

image data resolution within the accuracy of the regis-

tration procedure.
In this section, we will use AFDM as a registration

method to spatially normalize the external shape and

internal structures of the prostate samples, such as the



Fig. 2. A 3-D prostate model with two surfaces that represent the

capsule and the urethral boundaries, respectively. (a) A 3-D display of

the prostate surface model and (b) a cross-section display of the

prostate surface model. The grey arrows denote that these two separate

surfaces are connected and thus deformed together.
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capsule and the urethra. In spatial normalization, it is

important to select an appropriate model that will not

bias any of the training samples. By removing the linear

differences among the subjects, a good model should be

the average of the linearly aligned samples. In this way,
the selected model will be at the statistical center of all

samples, thereby making the deformation of model to

samples much easier. In this paper, we selected one

typical prostate as a model.

Many deformation algorithms have been proposed to

propagate the deformations from voxel to voxel, such as

viscoelastic models (Christensen et al., 1996). However,

those models have two limitations relative to surface-
based models. First, they are computationally very

demanding, which often limits their use in surgical en-

vironments. Second, they do not include shape infor-

mation (i.e., curvatures of boundaries at different

scales). In this paper we use the surface-based model to

warp the prostate samples to the space of the selected

model. The warping procedure is performed in three

stages. First, AFDM is used to reconstruct the shape of
each structure and to determine point correspondences

between the subjects and the model. Second, these point

correspondences are interpolated elsewhere in the space

of the prostate by using an elastic warping technique

(Davatzikos, 1997). The tumor regions are warped ac-

cording to the correspondences that are established be-

tween the subjects and the model in the whole volume.

Although surface-based registration can potentially be
less accurate than voxel-based registration, its accuracy

depends on the number of surfaces used to drive the

warping.

We now describe AFDM and its adaptation to this

particular application.

3.1. Spatial connections for the surfaces in the prostate

model

Adaptive focus deformable model comprises several

inter-connected surfaces, each representing the anatomy

of a structure of interest. For example, in the prostate

model, there are two surfaces that represent the

boundaries of the capsule and the urethra, i.e., SC (for

capsule) and SU (for urethra). From the model given in

Fig. 2(a), we can observe that these two surfaces, SC and
SU, are not connected with each other, since they were

reconstructed separately as two different surfaces. That

is, no mesh connections exist between the points in SC
and the points in SU. Therefore, any deformation on the

capsule will not propagate to the urethra during seg-

mentation, since the urethra is not connected with the

capsule. A more robust segmentation method can be

obtained if the capsule and the urethra interact with
each other during deformation. In order to achieve this,

we spatially connect those separated surface patches (as

gray arrows in Fig. 2(b)), to obtain a single surface
model. In particular, for every point in the urethra

surface of the model, we search for its closest point in

the capsule surface of the model and connect these two

points as immediate neighbors to each other. Therefore,
any deformation in one part of the model will propagate

to all other parts of the surface model, and all prostate

structures will deform jointly.

3.2. Affine-invariant attribute vector for each model point

In order to capture the geometry of anatomical

structures in a hierarchical fashion, we introduced the
concept of an attribute vector that is attached to each

point of the prostate surface model and reflects the

geometric structure of the model from a global and

coarse scale to a local and fine scale.

Each attribute is defined as the volume of a tetrahe-

dron (see Fig. 3(a)), formed by a model point Vi and any

three points in its certain neighborhood layer. For each

point Vi in the model, the first neighborhood layer in-
cludes its immediate neighbors. The second neighbor-

hood layer includes the immediate neighbors of the

immediate neighbors, and so forth. The neighborhood

layers are constructed so that no point is repeated twice

in the neighborhood of another point. The volume of

the tetrahedron, formed by the immediate neighbors,

reflects the local structure of the surface around the

point Vi. The volumes of larger tetrahedra represent the
more global properties of the surface around the point

Vi. Accordingly, the attribute vector corresponding to,

say, a high-curvature region is completely different from

attribute vectors of flat segments of the surface. More

importantly, even points of similar curvatures might

have very different attribute vectors, depending on the

number of neighborhood layers used, or equivalently,

the number of components of the attribute vector. The
attribute vectors are an important aspect of AFDM,

since they provide a means for finding correspondences

across individuals by examining the similarity of the

underlying attribute vectors. Fig. 3(b) gives an example

of the selected correspondences that were established

between the model and a subject during the spatial
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Fig. 3. Definition of the attribute vector and the use of attribute vectors for the correspondence detection during spatial normalization. (a) The

attributes of the point Vi are defined as the volumes of the tetrahedra in the different neighborhood layers around Vi , reflecting the geometric structure

of the prostate from a global and coarse scale to a local and fine scale. (b) A set of selected correspondences, which were automatically determined

between the model and one subject during the spatial normalization procedure. The numbers in (b) are used to represent the corresponding points.
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normalization procedure. The corresponding points are

assigned the same numbers in the three images.

Attribute vector F ðViÞ of a model point Vi contains
the volumes of tetrahedra that are calculated in the
different neighborhood layers. Thereby, it captures dif-

ferent levels of shape information for the segment of

surface around the point Vi. The number of the attri-

butes and, equally, the number of neighborhood layers,

can be adaptively changed with the progress of the de-

formation. We use a large number of attributes, i.e. 30,

for the initial deformation stages and then decrease this

number gradually. In our case, the initial 30 neighbor-
hood layers cover about 1/3 of the model surface. No-

tably, the attribute vector F ðViÞ can be further made

affine-invariant by normalizing it over the entire surface

of the model, i.e.

F̂ ðViÞ ¼
F ðViÞP

i kF ðViÞk=
P

i 1:0
;

where kF ðViÞk is the magnitude of the vector F ðViÞ and
F̂ ðViÞ is the affine-invariant attribute vector for the ith
model point Vi .

3.3. Energy function of the prostate surface model

Deformable models integrate model-driven and data-

driven analysis through the deployment of an energy

function and a set of regularization parameters. The energy

that our deformable model minimizes is defined as follows:
E ¼
i

xiEi ¼
i

xi Emodel
i

�
þ Edata

i

�
: ð1Þ

The weighting parameter xi determines the relative

weight given to the local energy term Ei, which is defined

for the ith model point Vi in the surface model. The

energy term Ei is composed of two terms, Emodel
i and

Edata
i .

The model energy term Emodel
i is defined to allow

AFDM to determine correspondences, in addition to

segmenting structures of interest. In particular, the
model energy term Emodel

i is defined as the difference

between the attribute vectors of the model and its de-

formed configuration at the point Vi, and it is given by

Emodel
i ¼ D F̂ DefðViÞ; F̂MdlðViÞ

� �
;

where F̂ DefðViÞ and F̂MdlðViÞ are, respectively, the nor-

malized attribute vectors of the deformed model con-

figuration and the model at the point Vi . Dð�Þ is a

similarity definition. In this paper, we use a simple def-

inition for the difference between the two attribute vec-

tors, that is,

D F̂ DefðViÞ; F̂MdlðViÞ
� �

¼
X
l

dl F̂ Def
l ðViÞ

�
� F̂Mdl

l ðViÞ
�2

;

where F̂ Def
l ðViÞ and F̂Mdl

l ðViÞ are the lth component of the

attribute vectors F̂ DefðViÞ and F̂MdlðViÞ, respectively. The
parameter dl denotes the weighting for the lth attribute

F̂ Def
l ðViÞ. We use small weights for the large attributes
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that are calculated from the higher neighborhood layers,

in order to avoid large attributes dominating the cal-

culation of the difference of the attribute vectors.

The data energy term Edata
i is defined for the model

point Vi, and it is designed to move the deformable
model towards an object boundary. Since our defor-

mation mechanism deforms a segment of surface around

each model point Vi at a time, we design a data energy

term Edata
i that reflects how each segment of surface,

rather than a single model point, fits with the subject

boundaries. This deformation mechanism provides

some degree of robustness to spurious or disconnected

edges. Suppose that Hi is a segment of surface around
the model point Vi. The size for the segment of surface

Hi is large in the initial deformation stages, and it is

designed to decrease gradually with the progress of de-

formation. For every point x on Hi, we calculate its

shortest distance dðxÞ to the corresponding surface in

the subject. Notably, all the prostate boundaries, such as

capsule and urethra, have been reconstructed and la-

beled as separate surfaces, using the procedures de-
scribed in Section 2. In this way, for each model point

such as a point in the capsule, we are able to estimate its

shortest distance to the corresponding surface of subject,

such as the capsule of subject. The data energy term

Edata
i is defined as follows:

Edata
i ¼

X
x2Hi

gxdðxÞ;

where x is a point on the segment of surface Hi and gx is
a weighting parameter.

3.4. Adaptive-focus deformation strategies

In our previous work we have determined that model

adaptivity is very important for robust segmentation

and correspondence estimation. We explore the utility of
adaptive modeling further in the registration of prostate

samples (see Fig. 4). Two types of prior knowledge about

prostate shapes are available. First, the mesh structures

in the model points along the two open surface bound-
Fig. 4. The procedure of warping an individual�s prostate to the

prostate model. (a) A side view of the prostate model that is given in

Fig. 2; (b) a side view of the prostate of an individual, whose front view

is displayed in Fig. 5(b1).
aries are very different from the mesh structures in other

internal model points, such as points in the middle cross-

section of the prostate model. This is because the

boundary points have unpaired mesh edges, while all

other points have the paired mesh edges. With this prior
knowledge, we can focus on the two surface ends of the

prostate shape model in the initial deformation stages,

which leads to a rough match between the prostate

model and the individual prostate. Second, the prostate

capsule is more accurately and reliably outlined in the

histopathological samples, while the urethra, which does

not include soft tissue, is very deformed and more dif-

ficult to segment. By using this priori knowledge of re-
liability, AFDM approach initially focuses on

deforming the capsule surface of the model, a relatively

more reliable anatomical part, to the capsule of the in-

dividual, while the urethral surface of the model simply

follows this deformation by the forces from the capsule

surface and also the constraints from shape statistics.

After several iterative deformations, both capsule and

urethral surfaces of the model are close to their coun-
terparts in the individual. At that point, the urethral

surface of the model, a relatively less reliable anatomical

part, starts to actively search for its counterpart in the

individual�s images. The use of these adaptive strategies

provides some degree of robustness of our approach in

registering prostate samples.
4. Optimal needle biopsy strategy

After warping and normalizing all prostate subjects

into the space of the prostate model by AFDM that is

described in Section 3, we construct the 3-D statistical

atlas of spatial distribution of prostate cancer and fur-

ther design optimal needle biopsy strategy for diagnos-

ing prostate cancer. Our optimal biopsy strategy reflects
the statistical properties of the spatial distribution of

cancer. In the following, we will describe an algorithm to

design optimal K-biopsy (biopsy with a number K of

needles) strategy by minimizing the probability of

missing the cancer.

4.1. Method description

A K-biopsy strategy can be optimized by maximizing

the probability that at least one needle detects cancer or

equivalently by minimizing the probability that none of

the K needles detects cancer. The latter probability is

defined by

P ðBðxiÞ ¼ NC; i ¼ 1; . . . ;KÞ; ð2Þ
where BðxiÞ is the biopsy outcome of the ith needle at the

location xi and NC denotes a negative cancer detection

result. The location xi can be anywhere inside of a 3-D

prostate model. We can find the configuration that
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minimizes this probability by using standard optimiza-

tion methods. Since the probability in (2) is likely to

have many local minima, we use the simulated annealing

technique to find globally optimal values for x1; . . . ; xk.
We start with an initial guess for the coordinates of the
K needles, and then we iteratively change these values in

a direction that decreases the probability function in (2).

Initially, changes in the direction that increases the

probability in (2) are allowed, but these steps are pro-

gressively discouraged more and more as the algorithm

proceeds, as customary in random optimization meth-

ods. In the following section, we will give a fast heuristic

method for determining a good initial guess of the co-
ordinates of the K needles.
4.2. A fast heuristic method

The principle of the heuristic optimization method is

to place the needles in the regions where the cancer

developments are almost independent each other. In this

way, for the same cancer detection rate, the number of

the needles that are used for biopsy can be minimized. In

the following, we describe a very fast heuristic method.

The result of this method will be used as an initial guess

of the coordinates of the K needles, which will be iter-
atively optimized later by the simulated annealing

technique.

The probability of missing the cancer can be ex-

pressed as a product of conditional probabilities,

P ðBðxiÞ ¼ NC; i ¼ 1; . . . ;KÞ
¼ P ðBðx1Þ ¼ NCÞ
� PðBðx2Þ ¼ NCjBðx1Þ ¼ NCÞ � � � �
� PðBðxKÞ ¼ NCjBðxiÞ ¼ NC; i ¼ 1; . . . ;K � 1Þ:

ð3Þ

Our heuristic method sequentially minimizes a series of

the conditional probabilities of missing cancer, each of

them being one of the terms in (3). Suppose that there

are N different locations in the prostate model and M
prostate samples in the training set. To minimize (3), one

of K biopsies, let us say the first biopsy Bðx1Þ, will be
taken from the location x1 where the likelihood of cancer

is the highest, that is, the first term in (3), PðBðx1Þ ¼
NCÞ, is the lowest. Knowing the location of the first

biopsy x1, in order to calculate the conditional proba-

bility P ðBðx2Þ ¼ NCjBðx1Þ ¼ NCÞ, we remove those

prostate samples that have cancer at location x1, since
those do not satisfy the condition Bðx1Þ ¼ NC, and re-

calculate the probability at each location. It is important

to note that if the incidence of cancer at a location other

than x1 is strongly related with the incidence of cancer at
location x1, then the cancer occurrence probability of

this location will become very low in the conditional

probability P ðBðx2Þ ¼ NCjBðx1Þ ¼ NCÞ. This is because
all subjects with cancer at x1 have been excluded in

calculating the conditional probability P ðBðx2Þ ¼
NCjBðx1Þ ¼ NCÞ. This implies that the second biopsy

will most likely not be placed at the cancer locations

strongly related with the location x1. With this new
conditional probability, the biopsy location x2 can be

determined by selecting the location where the likeli-

hood of cancer is highest, i.e., the conditional proba-

bility P ðBðx2Þ ¼ NCjBðx1Þ ¼ NCÞ is lowest. Using the

same procedure, the locations of other biopsy sites can

similarly be determined. Effectively, this procedure

minimizes each of the terms in (3) sequentially, rather

than operating at the full joint distribution, and is
therefore extremely fast. The result of this heuristic

optimization method is used as an initial guess for the

coordinates of the K needles, and then the simulated

annealing technique is used to find globally optimal

values for x1; . . . ; xk.

4.3. Spatial smoothing of statistical atlas

In surgical planning, the prostate model that is used

to define a standard coordinate system for reporting

cancer locations is adapted to the individual morphol-

ogy of a patient, thereby transferring the statistical atlas

of cancer locations to the patient�s images native space.

This adaptation leads to a patient-specific atlas for im-

age-guided needle biopsy (Grimm et al., 1994). Ultra-

sound images are the popular image modality for this
kind of adaptation. So far, we have developed a statis-

tical shape model for the segmentation of the prostate

boundaries from the 2-D ultrasound images (Shen et al.,

2003). This method is currently being extended to the 3-

D case.

The performance of the actual needle biopsy in the

individual patients is related to at least three errors, i.e.,

the errors in reconstructing atlas and prostate surface
models, the unavoidable errors in registration and ad-

aptation of the model to an individual patient�s ultra-

sound volume, and the errors in placing needles inherent

in the tracking devices. In order to make our biopsy

strategy robust to such errors, each cancer probability

(or conditional cancer probability) function is spatially

smoothed prior to finding optimal needle locations. This

is also designed to avoid the cases that optimal needle
locations are determined to be on isolated, high-proba-

bility regions, since those regions might be difficult to

accurately sample in practice due to unavoidable errors

in the model registration and the needle placements.

With this formulation, our biopsy strategy becomes

more robust, since it places needles on regions with both

high cancer probability and relatively wider spatial ex-

tent. Therefore, even if a needle is placed in the neigh-
borhood of (but not on) the expected location, due to

instrumentation errors or registration errors, our

method would still have a high probability of detecting
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cancer. In this paper, we used an isotropic Gaussian

filter of 1 mm, to smooth the statistical atlas of prostate

cancer distribution.
5. Experiments

Two groups of experiments are described in this

section. The first set of experiments is provided to

demonstrate the performance of our deformable regis-

tration. The second set of experiments is used to validate

the predictive power of our atlas-based optimal biopsy

strategy in detecting prostate cancer. These two sets of
experiments were performed on 100 prostate subjects

from the CPDR database.

5.1. Performance of deformable registration

Several experiments are provided here to demonstrate

the performance of our 3-D deformable registration and

warping algorithm. All the results shown below are done
in 3-D. Fig. 5 demonstrates a procedure of registering

and warping a representative prostate specimen image

(Fig. 5(b1)) to the space of the prostate model

(Fig. 5(a1)). The side views of the model and the subject

are shown in Fig. 4. Fig. 5(a2) shows a middle cross-

section of the model prostate. The corresponding cross-

section of the subject�s prostate is shown in Fig. 5(b2).

Notable are the shape differences between these two
cross-sections. After using the warping algorithm, we

obtain the subject�s warped image in Fig. 5(c2), whose

shape is very similar to that of the model prostate in

Fig. 5(a2). In Fig. 6, we provide the side views of 10

typical training subjects, before and after AFDM-based

deformable registration. The pictures in the first row of

Figs. 6(a) and (b) are the original prostate subjects,

while the pictures in the second row of Figs. 6(a) and (b)
Fig. 5. Results of the deformable registration technique on prostate

subjects. (a1) A model of the prostate to which all subjects� images are

warped, (b1) a selected subject. (a2) and (b2) show the representative

cross-sections, respectively, taken from (a1) and (b1). (c2) is the nor-

malized version, roughly corresponding to (b2).
are the spatially normalized versions of the prostate

subjects. Here, we can easily observe that the variations

across the prostate subjects are very large, before de-

formable normalization. Therefore, the procedure of

deformable registration is important, by observing the
now-very-similar normalized shapes in the second rows

of Figs. 6(a) and (b). In Fig. 7, we provide the middle

cross-sections of those 10 subjects, before and after the

deformable normalization. Also, we can observe that the

slices are very similar when finally deformed.

5.2. Predictability of our statistical atlas

Using the registration and warping algorithm, we can

eliminate the overall shape differences across individu-

als. In this way, we can find the spatial distribution of

cancer within the space of the prostate model, which can

be used to determine the needle biopsy strategy. We

tested our needle optimization method on 100 subjects

(M ¼ 100). All N ¼ 256� 256� 124 voxels were con-

sidered to be candidate biopsy locations. In Fig. 8, the
optimal biopsy sites are shown as white spheres and the

prostate capsule is shown as red. The underlying spatial

statistical distribution of cancer inside of prostate cap-

sule is shown as green. Brighter green indicates higher

likelihood in finding cancer in that location. It can be

observed that tumors are not symmetrically distributed,

as indicated in (Donohue and Miller, 1991). Seven

needles were adequate to detect the tumor 100% in those
100 subjects. In particular, the first five needles can de-

tect the tumor 97%. An important implication is that the

optimized needle placement is not necessarily in regions

that have a high likelihood of cancer. As we can see

from Fig. 8, only first three white needles were placed in

brighter green (high likelihood) regions. The remaining

four were placed in regions that were almost statistically

independent from the first three. Furthermore, Fig. 9
gives more information about the locations of the seven

needles, with the needles shown overlaid on cross-sec-

tions of the cancer distribution atlas. In Fig. 9, the white

spheres/points denote the locations of the needles, while

the white curves are the capsule boundaries of the

prostate model. It can be easily observed that two nee-

dles are placed near the apex of the prostate, three

needles in the middle of the prostate, and two needles
near the base of the prostate.

We validated the predictive power of our statistical

atlas in several ways. First, we used the leave-one-out

method to validate it. For each time, we selected one

subject from our 100 prostate samples and we regener-

ated the statistical atlas from the remaining 99 samples.

We then determined again the optimal biopsy sites, and

we applied them to this left-out subject. We repeated this
procedure for 100 times, equal to the number of the

prostate samples. This way, we measured the probability

of missing the cancer. For the 7-biopsy strategy, the



Fig. 6. Side views of 10 selected prostate subjects, before and after deformable registration. The images in the first row of (a) and (b) are the original

prostate subjects, while the images in the second row of (a) and (b) are the spatially normalized prostate subjects. The arrows here indicate the

procedure of deformable registration.

Fig. 7. The middle cross-sections of 10 prostate subjects, before and after normalization. These cross-sections are extracted from those 10 subjects in

Fig. 6 and are displayed in the same order.
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Table 1

Testing the predictability of the statistical atlas by using different

number of training samples

No. of

training

samples

No. of testing

samples

No. of optimal

biopsy sites

Success

rate

Case 1 20 80 5 76/80

Case 2 64 36 6 35/36

Fig. 8. Optimal biopsy strategy determined by 100 samples. The seven

biopsy positions are shown as white spheres, with the statistical atlas of

cancer shown as green and prostate capsule shown as red.
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leave-one-out method showed that the rate of success of

locating cancer was 99%. Second, we evaluated the

predictability of our statistical atlas as the way described

in Table 1. For example, case 1 used 20 samples for

training and the other 80 samples for testing. In this
case, five needles were adequate to detect the tumor
Fig. 9. Optimal needle positions overlaid on cross-sections of the probability

displays the statistical atlas and the capsule of the prostate model in the 3-D

two needles near the base. Notice that the posterior part of the prostate is di

the needles and white curves are the capsule boundaries of the prostate mod
100% in those 20 training samples, while these five op-

timal biopsy sites successfully detected cancer in 76 out

of 80 testing samples. Case 2 used 64 samples for the

training purpose and the other 36 samples for testing. In

this case, six needles were adequate to detect cancer
100% in those 64 training samples, while these six op-

timal biopsy sites successfully detected cancer in 35 out

of 36 testing samples. The positions of the optimal bi-

opsy sites, determined by 20, 64 and 100 samples, re-

spectively, are displayed in Fig. 10. From this figure, we

can observe that the locations of the six needle sites

determined by 64 samples are very similar to those de-

termined by 100 samples. This indicates that, after a
sufficient number of prostate samples have been used for
of cancer, from the apex to the base of prostate model. The top image

. There are two needles near the apex, three needles in the middle, and

splayed in the front. Here, white spheres/points denote the locations of

el. Notably, these optimal biopsy sites are determined by 100 samples.



Fig. 12. The rates of success, as a function of the number of needles K,
and different percentages of tissue volume that the needle actually

extracts from the expected locations.

Fig. 10. The probability distribution of cancer development and optimal needle biopsy sites, changing with the number of samples used to construct

the atlas. The optimal biopsy sites that are determined for detecting cancer 100% are displayed as white. (a) 20 training samples, requiring five biopsy

sites for 100% cancer detection rate; (b) 64 training samples, requiring six optimal biopsy sites; (c) 100 training samples, requiring seven optimal

biopsy sites, which are the exactly same as those in Figs. 8 and 9. Notably, the probability of cancer distribution changes less after enough samples are

used. For example, the locations of six optimal needles determined by 64 samples are very similar to those determined by 100 samples, except adding

one additional needle that is indicated by an arrow in (c). This also shows the robustness of the optimal biopsy sites after sufficient samples have been

used.
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training, the calculated statistical atlas of the cancer
distribution becomes relatively reliable.

We also evaluated the success rates of cancer detec-

tion, using the tissue volume that the needle actually

extracts from the expected locations. For example, in

Fig. 11 the black region represents the tissue volume

that a certain needle is expected to sample. In reality,

due to the errors in needle placement and image regis-

tration, only the volumes represented by the grey region
in Fig. 11 are sampled. That is, only a part of the target

volume is extracted. Suppose that the volume extracted

by a needle is V . In Fig. 12, we provide the rates of

success, as a function of the number of the needles (K)
and the partial tissue volume that the needle actually

extracts from the expected locations. If each needle ac-

tually extracts 80–100% of V from its optimized loca-

tion, then identical curves of success rates are obtained,
shown as the curve with ���. Seven needles are adequate

to detect the tumor 100%, while five needles can detect

the tumor in 97 out of 100 cases, and six needles can

detect the tumor in 99 out of 100 cases. For other per-

centages of actual vs. theoretical volume extraction, i.e.,

30�70%, 20% and 10%, the rates of success with the

number of the needles are shown as curves with �j�, �N�
Fig. 11. Schematic description of the actual tissue volume that is taken

from the expected locations. The black region represents the expected

tissue volume that a certain needle should take. The grey region is the

actual tissue volume that is taken in reality from the prostate. That

means that only a partial volume of the necessary tissue, as shown by

the overlapped region, is taken from the expected location.
and �r�. Importantly, this numerical figure of success

rate can be valuable for clinicians using our method,

since they will be able to quantitatively evaluate

the trade-off between biopsy success rate and patient
discomfort.

We also compared our results with the method pro-

posed in (Zeng et al., 2000). That method emphasizes a

representation that a physician is familiar with and re-

quires left–right symmetry in biopsy locations. The

major limitation of this method is that the registration

method is less precise because it uses the bounding box,

and the needle optimization is performed only on a
resolution of prostate zones. Our method is based on

voxel-to-voxel registration and analysis techniques. It

eliminates the need to reduce of the data resolution, by

subdividing the segments of the prostate images into

relatively large anatomical partitions. Therefore, the

accuracy of prostate registration in our method is higher

relative to that in (Zeng et al., 2000). Also, the success

rate of cancer detection is higher. Tested on the same
datasets, except more of them, the method in (Zeng

et al., 2000) had detection rate 79.3% using six needles,
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82.9% using eight needles, and 85.5% using 10 needles

(Zeng et al., 2000). Importantly, these results reflected

detection rates in the training samples, since the leave-

one-out method was not applied in (Zeng et al., 2000).
6. Summary and conclusion

We presented a methodology for constructing a sta-
tistical atlas of prostate cancer and for using this atlas to

determine an optimal needle biopsy strategy. We used

100 prostate samples provided by the DoD Center for

Prostate Disease Research. Using cross-validation, we

demonstrated that 99% of the cases are detected with

seven needles, which represents a higher detection

rate than previous techniques for needle placement

optimization.
Several future extensions of this methodology are

possible. In particular, we are working toward adding

more prostate structures to the prostate model and

adding more prostate subjects to the predictive model.

Currently, there are over 300 prostate samples available

in the same database, which we will use in the future to

augment our current statistical model. Moreover, our

current and future work involves techniques for de-
formable registration of the prostate cancer atlas with

ultrasound images of the patients obtained during bi-

opsy, which will allow us to adapt the optimal needle

locations to the individual patient�s anatomy. Finally,

extensions of our work will incorporate physical con-

straints in the optimizer, related to the possible entry

points and angling of the biopsy needle. These con-

straints are imposed by practical issues of the clinical
application of the method.
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