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Abstract 
This paper presents a method for optimizing prostate needle biopsy, by creating a 

statistical atlas of the spatial distribution of prostate cancer from a large patient cohort. In 
order to remove inter-individual morphological Variability and to determine the true 
variability in the spatial distribution of cancer within the prostate, an adaptive-focus 
deformable model (AFDM) is first used to register and normalize the prostate samples. A 
probabilistic method is then developed to select the prostate-biopsy strategy that the greatest 
chance of detecting prostate cancer. For a test set of data from 20 prostate subjects, jive 
needle locations are adequate to detect the tumor 100% ofthe time. Furthermore. the results 
on the accuracy of deformable registration and the predictive power of our  statistical^ 
optimized biopsy strategy are presented in this paper. ' ' 

1. Introduction 
Prostate cancer is the second leading cause of death for American men [ I ] .  When 

prostate cancer is diagnosed early, it is usually curable. Therefore, the decision of who 
and when to treat for prostate cancer is very important. Transrectal-Ultrasonography- 
guided symmetric needle biopsy has been widely used as a gold standard for the 
diagnosis of prostate cancer. However, biopsy is currently performed in a rather 
empirical way, since cancer is mostly undetectable in the routinely used ultrasound 
images. Thus, biopsy protocols that designate locations of the needles within the 
prostate, as well as the number of the needles to use, have been developed to help 
urologists perform prostate needle biopsy. The most common biopsy protocol is the 
systematic sextant biopsy [2]; however, recent studies have shown that this protocol 
produces a positive predictive value of only 20-30% [3], which results in a significant 
number of prostate-cancer cases being undetected at initial biopsy. 

Researchers have investigated the possibility, of using a large number of patient 
histopathological images to determine prostate regions that are most likely to develop 
cancer, and therefore should be sampled during biopsy [4]. Those techniques, however, 
are limited by two factors: inter-individual morphological variability, and statistical 
models that do not investigate correlation among different prostate areas. In this paper, 
we present methods that overcome both of these limitations. In order to reduce inter- 
individual variability, we use deformable models [5,6],  which spatially normalize the 
prostate images to a canonical coordinate system with high accuracy. After accurate 
registration of the prostate images of a large number of patients, a full statistical atlas 
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Figure 1. A schematic representation of our method for the diagnosis of prostate cancer. 

2. Normalization of prostate samples 
The major problem in developing a spatial normalization method for prostate 

samples is determining point correspondences among the samples. We have developed a 
deformable shape-modeling framework, for segmentation of anatomical shapes, and for 
determining point correspondences across individuals, from tomographic images [5,6]. 
This framework is based on our adaptive focus deformable model (AFDM). In AFDM, 
for a given set of structures, shape models are first constructed to represent the average 
shapes of these structures. These shape models include two kinds of information: 
information about the geometry of the structures, and information about the statistical 
variation of these structures within a given population. In the application stage, the 
deformable shape model is superimposed on an image, and subsequently set free to 
deform according to features extracted from the images, seeking objects that have 
similar geometry and that fall within the expected range of shape variation. 

AFDM is used here to register the external and internal structures of the prostate 
images, (i. e., the capsule and the urethra.) We select one typical prostate data set as a 
template (Fig. 2a), and other subjects are warped into the space of this template. The 
warping process is performed in two stages. First, AFDM is used to reconstruct the 
shape of each structure and to determine point correspondences between the subject and 
the template. Second, these point correspondences are interpolated elsewhere in the 
space of the template by using an elastic-warping technique [7]. 

Our prostate template has two surfaces that respectively represent the capsule and the 
urethral boundaries (Fig. 2a). In order to allow deformation imposed on a segment of 
the capsule surface to rapidly propagate to the segments of the urethral surface, the new 
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connections between these two surfaces are inserted as gray arrows shown in Fig. 2b. 
Furthermore, in order to capture the geometry of anatomical structures in a hierarchical 
fashion, we employ an attribute vector [6] that is associated with each point of the 
prostate model, which reflects the geometric structure of the model from a global scale 
to a local scale. Local-scale attributes reflect differential geometric characteristics of 
the underlying structure, such as curvature, while global-scale attributes capture spatial 
relationships among distant points. The attribute vectors are an important aspect of 
AFDM, since they provide a means for finding correspondences across individuals by 
examining the similarity of the underlying attribute vectors. In the 3D case, each 
attribute is defined as the volume of a tetrahedron. 

Fig. 3 demonstrates an example of registering and warping prostate image data for a 
typical subject (Fig. 3(bl)) to the space of the template (Fig. 3(al)). Figs. 3(al)  and 
3(bl)  display the same views of the template and the subject. The spatially normalized 
version of the subject is shown in Fig. 3(cl). Fig. 3(a2) shows a selected cross-sectional 
image of the template. The corresponding cross-sectional image of the subject is shown 
in Fig. 3(b2). Note the shape differences between these two cross sections. After using 
our warping algorithm, we obtain the warped'cross-sectional image in Fig. 3(c2), whose 
shape is very similar to that of the template in Fig. 3(a2). 

(a) (b) 
Figure 2. A 3D prostate model with two surfaces that represent the capsule and the 
urethral boundaries, respectively. (a) 3D display, and (b) cross-section. 

L 
(a l )  

Figure 3. An example of normalizing a prostate subject to the space of the template. ( a l )  A 
side view of the prostate template to which all subjects are warped, (b l )  a side view of a 
selected subject, (c l )  a side view of the normalized subject. Figs. (a2-c2) are the 
representative cross-sectional images, corresponding to (al -c l ) .  

3. Optimized needle-biopsy strategy 
With the prostate subjects warped to the space of the prostate template, we are ready 

to calculate the 3D statistical atlas of prostate cancer location, and to use this 
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probabilistic atlas to generate an optimized needle-biopsy strategy for a given patient. 
In this paper, we assume that at the needle tip we collect only one voxel of tissue. In 
reality, the harvested tissue sample is a small cylinder cutting across many voxels. We 
will expand the method from ‘needle tip biopsy’ to ‘cylindrical core biopsy’ in the 
future, In the following, we describe an algorithm to design an optimal K-biopsy 
(biopsy with a number of needles K )  strategy by minimizing the probability of missing 
the cancer on all biopsies. 

O~limizat ian:  A K-biopsy strategy can be optimized by minimizing the probability 
that none of the K needles detect cancer. This probability is defined as 

where B(.Y,) is the biopsy outcome at location x,,  and NC denotes a negative cancer- 
detection result. Location .Y, can be anywhere inside the 3D prostate template. We can 
find the configuration that minimizes this probability by using standard optimization 
methods. Since the probability in ( I )  is likely to have many local minima, the 
simulated-annealing technique is used to find the optimal locations of all needles. We 
start with an initial guess for the coordinates of the K needles, based on the spatial 
prevalence (i. e. marginal probability) of prostate cancer, and then we iteratively change 
these values in a direction that decreases the probability function ( I ) .  Initially, changes 
in the direction that increases the probability function are allowed, but these steps are 
progressively discouraged as the algorithm proceeds, as is customary in nonlinear- 
optimization methods. 

Ini/iuliza/ion: The search space in our optimization problem is very large, since each 
of the K needle coordinates can be at any voxel within the prostate template. Therefore, 
in order to make the simulated-annealing technique practical, we need to find a good 
initial guess for the starting point for this algorithm. Here, we describe a very fast 
heuristic method, which we have implemented based on 20 of the 281 prostate datasets. 
lt does not always guarantee to find the global minimum, although in our preliminary 
experiments with 20 subjects it did find the globally optimal solution. In the following, 
we describe this fast initialization method. 

The probability of missing cancer can be expressed as a product of conditional 
probabilities, 

P ( B ( x , )  = NC,i = 1 ._., K ) ,  (1 )  

P(B(x,)=NC, i = l  .... K )  = P(B(.rl)=NC)xP(B(.rZ)=NC I B(.r,)=NC ) X  

. . . x P(B(x ,  )=NC 1 B(.Y, )=NC, i = I ,._., K-l ). (2) 
Our heuristic method sequentially minimizes a series of the conditiona1;probabilities of 
missing cancer, each of them being one of the terms in (2) above. Suppose there are N 
different locations in the prostate template, and M prostate samples in the training set. 
To minimize (2), one of the K biopsies, let’s say the first biopsy ~ ( x , , ) ,  will be taken 
from the location xI where the spatial prevalence of cancer is greatest, or, equivalently, 
the first term in (2), P ( B ( x , )  = NC), is minimal. Knowing the location of the first biopsy 
.Y,, in order to calculate the conditional probability P(B(x:)=NC 1 B(xI)=NC), we 
remove those prostate samples that have cancer at the location x,, since those do not 
satisfy the condition B(x,)=NC, and calculate the conditional probability for each 
location. It is important to note that if the prevalence of cancer at a location other than 
xI is strongly associated with the prevalence of cancer at location x,,  then the cancer 
occurrence probability of this location will become very low in ,the conditional 
probability P(B(x,)=NC 1 B(-X,)=NC ) .  This is because all subjects with cancer at xI 
have been excluded in calculating the conditional probability P(B(x,)=NC I B(xl)=NC ),. 
This implies that the second biopsy will most likely not be placed at locations strongly 
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associated with location x I .  Analogous to the procedure for determining the optimal 
location x,,  the optimal location x2 can be determined by minimizing the conditional 
probability P(B(x,)=NC I B(x,)=NC ). Using the same procedure, the locations of other 
biopsy sites can be similarly determined. This procedure is efficient, since it doesn't 
operate on the full-joint distribution. Effectively, regions for which cancer prevalence 
strongly correlated will not be sampled simultaneously, whereas regions for which 
cancer occurrences are independent are more likely to form an optimal biopsy strategy. 

. 

4. Experiments 
We performed two sets of experiments in order to test the performance of our 

deformable registration, and as wel1,as to validate the predictive power of our atlas- 
based optimal biopsy strategy in. detecting prostate cancer.. These two sets of 
experiments were performed on 20 of the 281 prostate subjects in our database. 

R-ration accuracv of our AFDM: We measured the percent overlap and average 
distance between prostate structures in 20 images and their counterparts in the template, 
after all prostate subjects were warped to the space of the template. Note that these 
images are all labeled, and therefore the overlap percents of the various prostate 
structures across subjects can be readily computed. For 20 prostate images, the overlap 
fractions range from 97.6% to 98.4%, with a mean of 98.2%. The average boundary 
distances range from 1.7 to 2.1 pixels. Since our prostate template is represented by an 
image with the size of 256x256~124 pixels, these average boundary distances are 
therefore much smaller. 

Positive uredictive value of the optimized biousv strategy: Using our ,registration and 
warping algorithm, we can eliminate most of the overall shape differences across 
individuals, and can therefore compute the spatial distribution of cancer; we use this 
distribution for generating an optimal needle-biopsy strategy. We tested the heuristic 
sequential optimization procedure on 20 subjects. All 256x256~124 voxels were 
considered to be candidate biopsy locations. In Fig.4a, the optimized biopsy sites are 
shown 'as small spheres and the underlying spatial statistical distribution of cancer is 
shown as gray-scale, where a brighter voxel represents a higher probability of finding 
cancer in that location. A typical cross-section of the spatial prostate-cancer probability 
distribution is shown in Fig. 4b. Five needles were adequate to detect the tumor in 
100% of the 20 subjects. The locations of these five needles, with depth information, 
are shown in Fig. 4c. Of course, this strategy will almost certainly change as we 
increase the number of subjects. However, an important implication of these results is 
that optimized needle placement is not necessarily on regions that have high likelihood 
of cancer. As we can see from Fig. 4a, only the first two needles were placed in brighter 
gray-scale (high-prevalence) regions; the rest were.placed in regions that were almost 
independent of the first two. In addition, we validated the predictability of our biopsy 
strategy by using a leave-one-out method, which also showed the rate of success to be 
100%. 

5. Conclusion and future work 

We have presented a method for creating a statistical atlas, and for using this atlas to 
guide the optimization of a needle-biopsy strategy. We tested this method using image 
data from 20 subjects; we will extend this work to the entire database of 28 1 subjects. 
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We will also develop a method for rapid warping our statistical atlas to real-time 
transrectal ultrasound, which is currently the predominant imaging technique in prostate 
biopsy. Successful implementation of this data fusion process is expected to improve 
the overall predictive accuracy of prostate biopsy, and may also assist in deciding the 
appropriate course of treatment. 

Figure 4. Optimal biopsy strategy using a statistical atlas of cancer distribution. The 5 
biopsy positions are shown as spheres in (a), with the statistical atlas of cancer shown as 
gray level. A typical cross-sectional image of the statistical atlas of cancer is shown in (b), 
and the locations of five needles with depth information are shown in (c). 
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