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Abstract. The clinical feasibility of 2D elastography methods is hin-
dered by the requirement that the operator avoid out-of-plane motion of
the ultrasound image during palpation, and also by the lack of volumet-
ric elastography measurements. In this paper, we develop and evaluate
a 3D elastography method operating on volumetric data acquired from
a 3D probe. Our method is based on minimizing a cost function using
dynamic programming (DP). The cost function incorporates similarity
of echo amplitudes and displacement continuity. We present, to the best
of our knowledge, the first in-vivo patient studies of monitoring liver
ablation with freehand DP elastography. The thermal lesion was not dis-
cernable in the B-mode image but it was clearly visible in the strain
image as well as in validation CT. We also present 3D strain images
from thermal lesions in ex-vivo ablation. Good agreement was observed
between strain images, CT and gross pathology.

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common tumors, caus-
ing 662,000 deaths worldwide annually. Minimally invasive RF ablation [1] has
gained much interest recently since only 10% to 20% of patients with HCC are
amenable to traditional therapy of surgical resection of the tumor. In RF ab-
lation, an electrode is placed into the tumor to cauterize it [1]. Monitoring the
ablation process in order to document adequacy of margins during treatment
is a significant importance. Ultrasonography is the most common modality for
both target imaging and for ablation monitoring. However, ultrasonographic ap-
pearance of ablated tumors only reveals hyperechoic areas due to microbubbles
and outgasing and cannot adequately visualize the margin of tissue coagulation.

Accordingly, ultrasound elastography (Ophir et al, 1991) has emerged as a
useful augmentation to conventional ultrasound imaging. Elastography has been
used for monitoring RF ablation [2], [3] by observing that ablated region is
harder than surrounding tissue. In the most common variation of elastography,
ultrasound images are captured while the tissue is being compressed, and images
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are processed to provide a grid of local displacement measurements. These dis-
placement fields are then used to determine the elastic properties of the tissue
at each grid location. The grid of calculated elastic properties can be displayed
as an image.

Elastography is computationally expensive, making it challenging to display
strain images in real-time. Real-time feedback, however, is required for image
guided ablation operations. Another aspect is that signal decorrelation between
the pre- and post-compression images induces significant noise in the obtained
displacement map and is one of the major limiting factors in elastography [4].
Methods based on cross-correlation and phase zero estimation are currently the
most popular real-time elastography techniques which provide fast and accurate
motion tracking. In RF ablation, however, high decorrelation between pre- and
post-compression images results in high noise in the strain images obtained using
cross-correlation [3]. Phase zero estimation methods require an estimate of the
center frequency of the ultrasound RF signal, which varies with depth due to
frequency-dependent attenuation in tissue [5]. This variation can be significant
in RF ablation, leading to poor displacement estimation [5].

We have recently developed a real-time 2D elastography method based on
dynamic programming (DP) [6]. The method is more robust to signal decorrela-
tion than standard cross-correlation methods and is therefore a good candidate
for ablation monitoring where being real-time and robustness to noise are criti-
cally important. Here we report, to the best of our knowledge, the first in-vivo
patient results on monitoring RF ablation with 2D DP elastography and corrob-
orate the results with CT scans. As initial clinical studies revealed limitations
of 2D elastography in monitoring the thermal ablation, we were compelled to
progress toward 3D. We think the readership will find it informative to see how
our concept and methodology evolved. We extend our DP method to operate on
3D volumes. The benefits of 3D strain imaging of RF ablation are two-fold: 1) 3D
imaging eliminates the need to image the same plane while palpating the tissue,
which can be very difficult in the presence of breathing and cardiac motion, and
2) 3D imaging allows more precise monitoring of temperature deposition which
exhibits variations in 3D, particularly in the presence of blood vessels which act
as heat sinks. Previous work has generated 3D elastography by moving a con-
ventional 2D probe out-of-plane using mechanical guidance [7,8] or freehand [9].
In recent work by Treece et al. [10] and Fisher et al. [11] a 3D probe is used
to acquire 3D elastogrophy, using phase zero and cross-correlation based motion
tracking methods respectively. Here, we use 3D probe to acquire 3D data and
introduce a 3D DP motion tracking algorithm. We show that 3D elastography
can be successfully used to monitor ablation in 3D.

2 3D Displacement Estimation Using DP

Compared to other optimization techniques, DP is an efficient non-iterative
method of global optimization [12,13]. We have recently developed a real-time
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2D elastography method using DP [6]. In DP elastography, a cost function which
incorporates similarity of echo amplitudes and displacement continuity is mini-
mized. Since data alone can be insufficient to solve ambiguities of motion track-
ing due to signal decorrelation, the physical priors of tissue motion continuity
increases the robustness of the technique [6]. We have showed that DP gener-
ates high quality strain images of freehand palpation elastography with up to
10% compression, indicating that the method is more robust to signal decor-
relation (caused by scatterer motion in high axial compression and non-axial
motions of the probe) in comparison to the standard correlation techniques.
The method operates in less than 1sec and is thus also suitable for real time
elastography.

Here, we extend this method to operate on 3D volumes. Devising a DP algo-
rithm for optimization involves:

1. Breaking the total optimization cost into a sum of individual costs, such that
each cost corresponds to a discrete decision. The decisions should follow each
other sequentially and the cost corresponding to each decision should only
depend on the previous and not the future decisions (causality).

2. Determining what decisions are possible at each stage.
3. Writing a recursion on the optimal cost from the first stage to the final stage.

Let gk
j (i) be the intensity of the ith sample (axial direction), jth A-line (lateral

direction) and kth frame (out-of-plane direction) of the pre-compression ultra-
sound volume. Let gk+de

j+dl

′
(i + da) correspond to the post-compression volume

where da, dl and de represents axial, lateral and elevational displacements re-
spectively, and the size of the volume be m× n× p. The difference between the
two signals, Δ, can be quantified using sum of absolute differences (SAD), which
is computationally inexpensive to compute and has been shown to have good
robustness against outliers [14]:

Δ(i, j, k, da, dl, de) =
∣
∣
∣gk

j (i) − gf+de

j+dl

′
(i + da)

∣
∣
∣ (1)

where the axial, lateral and elevational search ranges are limited by da,min ≤
da ≤ da,max, dl,min ≤ dl ≤ dl,max and de,min ≤ de ≤ de,max.

R(dai , dli , dei , dai−1 , dli−1 , dei−1) = (dai − dai−1)
2 + (dli − dli−1)

2 + (dei − dei−1)
2

(2)
is the smoothness regularization. The cost function at each point i, j and k is

Ck
j (da, dl, de, i) = Δ(i, j, k, da, dl, de) + w1R(da, dl, de, d

k−1
a , dk−1

l , dk−1
e ) (3)

+ min
δa,δl,δe

{

Ck
j (δa, δl, δe, i − 1) + Ck

j−1(δa, δl, δe, i)
2

+ w2R(da, dl, de, δa, δl, δe)

}
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where w1 is a weight for governing smoothness in the elevational direction
and w2 is a weight for governing axial and lateral smoothness1. Generally, the
optimum values of δa, δl, δe should be sought in the entire [da,min da,max] ×
[dl,min dl,max] × [de,min de,max] space. However, since the strain value is low
in elastography, it is expected and desired that at each sample of RF data,
the change between the displacement of a sample and its previous sample is
not more than 1. Therefore, the search range is limited to the nine values of
{da − 1, da, da + 1}×{dl − 1, dl, dl + 1}×{de − 1, de, de + 1}, which results
in a significant gain in speed. This limit on the search range does not affect the
results even in a high strain of 10%: Δd is zero for nine samples and one for
the tenth sample on average. For memoization [12], δa, δl and δe values that
minimize the cost function are stored:

Mk
j (i, di, dl, de) = (4)

arg min
δa,δl,δe

{

Ck
j (δa, δl, δe, i − 1) + Ck

j−1(δa, δl, δe, i)
2

+ w2R(da, dl, de, δa, δl, δe)

}

The cost function Ck
j is calculated for i = 1 · · ·m, da = da,min · · · da,max, dl =

dl,min · · ·dl,max and de = de,min · · · de,max. The minimum cost at i = m gives the
displacement of this point, which is traced back to i = 1 using the M function to
calculate the three axial, lateral and elevational displacements (D = (da, dl, de)):

Dk
j (i) = arg min

da,dl,de

{

Ck
j (da, dl, de, i)

}

, i = m

Dk
j (i) = M(i + 1, Dk

j (i + 1)), i = 1 · · ·m − 1 (5)

This gives all three displacements simultaneously, in contrast with other 3D elas-
tography methods which give displacement in each direction in separate steps.

Further speed-up is achieved by downsampling the signal g(i) in the axial
direction by a factor of β to g∗(i), and comparing it with the unaltered signal
g′(i). This is done by simply skipping β−1 samples from g(i) and performing DP
on the βth sample as illustrated in Figure 1 left. This generates integer displace-
ment estimations at m/β samples. The displacement of the skipped samples is
then simply approximated by the linear interpolation of two neighboring points
whose displacements are calculated, as an initial guess for the next step.

The displacement estimates are then refined to subpixel displacement esti-
mation in the axial direction. The original signal g(i) (not downsampled) is
compared with g′(i + d) upsampled by a factor of γ (Figure 1 right) in the axial

1 The inclusion of the cost of the previous line (Ck
j−1(· · ·)) guarantees lateral smooth-

ness. Instead, we could force the displacements of each pixel to be similar to the
displacements of the neighboring pixel in the previous A-line, similar to what we did
in the w1R(· · ·) term to enforce elevational smoothness. The former is preferred since
a wrong displacement estimation does not affect the neighboring A-line’s displace-
ment estimation. However, it requires the Ck

j−1(· · ·) to be kept until the calculation
of Ck

j (· · ·) is completed. Therefore, at each time only two cost finctions are stored in
the memory, making the memory requirement independent of the number of A-lines.
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Fig. 1. In the left, the cost function C is shown when DP is performed on g∗(i) (g(i)
downsampled by a factor of β) and g′(i) (not downsampled). Hashed squares indicate
no cost calculation is performed due to downsampling of g(i), and white and black
representing low and high cost values respectively. Displacement is calculated at m/β
samples in this stage (β = 3 in this figure). In right, a new cost function around the
optimum path of the first stage’s cost function (the dashed line) is created, giving a
1/γ = 1/2 pixel displacement accuracy at m samples.

direction using parabolic interpolation. Repeating the refinement procedure n
times results in a refinement factor of 1/γn. The code runs in approximately
30sec for a typical volume on a 3.8GHz P4 CPU.

In cross correlation methods, subsample displacement is usually achieved by
interpolation of the correlation function, which is subject to bias and jitter [15].
Here we interpolate the original RF data instead, which is shown to have similar
performance [15]. Although cosine-fit outperforms parabolic-fit interpolation in
terms of bias and jitter [15], the latter is used here for computational simplicity.

3 Results

We first present in-vivo elastographic monitoring of RF ablation therapy of HCC
in human during surgery using 2D DP elastography. RF ablation was adminis-
tered using the RITA Model 1500X RF generator (Rita Medical Systems, Fre-
mont, CA). Ultrasound RF data is acquired from an Antares Siemens system
(Issaquah, WA) with a 7.27MHz linear array at a sampling rate of 40MHz. Fig-
ure 2 shows the B-mode scan, the strain image obtained using the DP method
and CT scans performed after RF ablation (first and second row corresponding
to first and second patient respectively). Tissue is simply compressed freehand
with the ultrasound probe without any attachment. The shadow in Figure 2(a)
at 20mm depth is produced by the thermal lesion. Note that it is not possible
to ascertain the size and position of the thermal lesions from B-mode images. In
addition, the thermal lesion has different appearances in the two B-scans. How-
ever, the thermal lesions show very well as hard lesions in both the strain images.
The size of the thermal lesion in the strain images and in CT scans are also in
accordance. The strain images provide with higher contrast of the thermal le-
sion and lower noise in the image, compared to the strain images of RF ablation
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Fig. 2. In-vivo images of the thermal lesion produced by RF ablation therapy of HCC,
first and second row corresponding to the first and second patients. (a) & (d) B-
scan after RF ablation. The shadow in (a) indicates the presence of thermal lesion.
It is almost impossible to ascertain the size and position of the thermal lesion from
the B-scans. (b) & (e) Strain images after RFA ablation, generated using 2D DP
elastography and freehand palpation of the liver tissue. The thermal lesion is visible in
dark surrounded by normal tissue in white. (c) & (f) Post-ablation CT scans, with the
delineated thermal lesions (The non-unity aspect ratio in the axes of the B-mode and
strain images should be considered when comparing them with the CT scans).

reported in [3,8] which are obtained with cross-correlation. To the best of our
knowledge, this is also the first demonstration of the success of elastography in
imaging the thermal lesion in an in-vivo human experiment.

A Radionics device (Valleylab, Boulder, CO) is used for ex-vivo RF ablation.
For 3D elastography, we use a 3D probe that consists of a curvilinear array that
is mechanically rotated to scan a volume. Ultrasound RF data is acquired from
an Ultrasonix system (Vancouver, BC) at 4.5MHz frequency, 20MHz sampling
rate and 30% bandwidth. Figure 3 shows the experimental setup and results.
Comparing strain images obtained during ablation and after ablation, the growth
of the thermal lesion can be observed. There is also a good agreement between
the size of the lesion in axial and lateral directions in the post-ablation strain
images and gross pathology photograph. The ablation goes beyond the field of
view of the 3D ultrasound probe in the elevational direction. The volumetric
elastography contrast to noise ratio (CNR) [2] (CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
where s̄t and

s̄b are the spatial strain average of the target and background and σ2
t and σ2

b are
the spatial strain variance of the target and background) between two 3mm x
3mm x 3mm cubes, one in the thermal lesion and the other half way between the
liver surface and the lesion, is 3.4. Note that due to the lateral and elevational
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Fig. 3. Ex-vivo liver RF ablation experiment. The ablation power is set to 8W for
10 min and the cooler is turned off throughout the experiment. (a) The experimental
setup. The passive arm is holding the 3D probe and the liver is contained in the gelatin
phantom. (b) The liver sample after ablation (cut into four pieces) with the thermal
lesion. (c)-(f) 3D strain images 6min after the start of the ablation (target temperature
reached 90◦C in 3min and was approximately constant in the next 7min of ablation).
(g)-(j) 3D strain images after the ablation. (k)-(n) 3D B-mode images after the ablation.
Each 650 axial samples correspond to 25mm in the strain and B-mode images. Each
40 lateral samples correspond to 16.6mm and 30.4mm on the top and bottom of each
image (different values on the top and bottom since the probe is curved). Each 80
elevational samples correspond to 3.4mm and 6.3mm on the top and bottom of each
image.

regularization, DP elastography is working reasonably in the presence of the
ablation needle.



Ablation Monitoring with Elastography: 2D In-vivo and 3D Ex-vivo Studies 465

4 Discussion and Conclusion

Previous work has shown promise in monitoring ablation in 2D ex-vivo and ani-
mal experiments. In this paper, we present high quality in-vivo 2D strain images
of thermal lesions and compared them to post-ablation CT data. Comparison is
more qualitative, however, since strain images are 2D and CT data is 3D and
ultrasound is not tracked. We also present formulation and experimental results
of a 3D strain imaging system based on DP. In DP, we regularize the problem of
3D displacement estimation: regularization in 2D is shown to increase robustness
[6]. As a result, no post processing step such as median filtering is performed.

We demonstrate the feasibility of 3D elastography monitoring of RF ablation
for the first time using a 3D probe; however, we are planning for a comprehensive
comparison of the 3D DP with other 3D strain imaging techniques [10,11]. The
lateral and elevational search is performed only to increase the quality of the
axial strain: the lateral and elevational displacements are integer values and are
not suitable for calculating strain. Good volumetric CNR between the thermal
lesion and background suggests that the regularization is not adversely affecting
CNR. However, a study similar to [6] on the effect of the 3D regularization on
the CNR and resolution should be done. Having an elastography system for 3D
ablation monitoring with promising ex-vivo results, in-vivo patient studies under
our active Institutional Review Board (IRB) approval are to commence.
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