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Ultrasound Elastography: A Dynamic
Programming Approach

Hassan Rivaz*, Emad Boctor, Pezhman Foroughi, Richard Zellars, Gabor Fichtinger, and Gregory Hager

Abstract—This paper introduces a 2-D strain imaging technique
based on minimizing a cost function using dynamic programming
(DP). The cost function incorporates similarity of echo ampli-
tudes and displacement continuity. Since tissue deformations are
smooth, the incorporation of the smoothness into the cost function
results in reduced decorrelation noise. As a result, the method
generates high-quality strain images of freehand palpation elas-
tography with up to 10% compression, showing that the method
is more robust to signal decorrelation (caused by scatterer motion
in high axial compression and nonaxial motions of the probe) in
comparison to the standard correlation techniques. The method
operates in less than 1 s and is thus also potentially suitable for
real time elastography.

Index Terms—Dynamic programming, freehand ultrasound
(US), real time strain imaging, regularization, ultrasound elastog-
raphy.

1. INTRODUCTION

LASTOGRAPHY, the computation of the spatial varia-
E tion of the elastic modulus of tissue, is an emerging med-
ical imaging method with medical applications such as tumor
detection [1]. This paper focuses on static elastography, a well-
known technique that applies quasi-static compression of tissue
and simultaneously images it with ultrasound. Through analysis
of the ultrasound images, a tissue displacement map can be ob-
tained [2], [3]. A least squares technique is then typically used
to generate a low noise strain estimate from the displacement
map [2].

Despite having numerous potential clinical applications, sev-
eral practical challenges have hindered wide application of static
elastography. First, signal decorrelation between the precom-
pression and postcompression images induces significant noise
in the obtained displacement map and is one of the major lim-
iting factors in elastography [4]. Major sources of signal decor-
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relation are scatterer motion in high axial compression, nonaxial
motions of the probe, and physiologic motion. Most elastog-
raphy techniques estimate local displacements of tissue based
on correlation analysis of radio-frequency (RF) echoes [2], [3].
Large windows are required to reduce the variance (i.e., noise)
of the estimated displacement and to avoid ambiguity in time
delay estimation, especially when tracking a motion that ex-
ceeds one wavelength. At the same time, signal decorrelation
within large windows limits the tolerable level of compression
[2]-[4]. To reduce signal decorrelation, stretching methods have
been proposed [5], [6], which are computationally expensive
and are not suitable for real-time elastography. Moreover, large
errors due to false peaks and smaller errors due to jitter [7] limit
the performance of correlation techniques.

Second, in many methods, the compression is applied by a
mechanical actuator in order to generate an excitation that mini-
mizes signal decorrelation [1], [8] or because accurate motion is
otherwise required by the particular elastography technique [9].
Freehand palpation elastography is a much more attractive alter-
native, as it requires no extra hardware and provides ease of use.
It has attracted increasing interest in recent years [8], [10]-[13],
however it introduces additional sources of signal decorrelation
caused by operator’s hand unwanted motion.

Third, elastography is computationally expensive, making it
challenging to display elastograms in real time. Real-time elas-
tography provides the feedback to the operator to best capture
the region of interest in the elastogram and is required for image
guided surgical operations that can potentially use elastograms.
Combined autocorrelation method [14] and phase zero estima-
tion [15] are the first work that generate real-time elastograms.
Hall et al. [12] have presented a real-time elastography system
where tissue compression is performed by freehand palpation
based on a 2-D block matching algorithm. Dynamic program-
ming is used for one A-line of the image for guiding the block
matching algorithm [16]. While these methods use the displace-
ment of each window to confine the search range for the neigh-
boring windows, the displacement of each window is calculated
independently and hence are sensitive to signal decorrelation.

In work closely related to this paper, Pellot-Barakat et al. [17]
have proposed minimizing an energy function that combines
constraints of conservation of echo amplitude and displacement
continuity. Since data alone can be insufficient to solve ambi-
guities due to signal decorrelation, the physical priors of tissue
motion continuity increases the robustness of the technique. The
RF data is first upsampled by a factor of four in the axial direc-
tion. The image is then subdivided into four parts and a coarse
displacement map is calculated for each part iteratively. Each
part is subsequently divided into four parts and the displace-
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ment of each part is calculated by the same iterative technique
using the displacement of the parent grid as an initial guess. The
method is shown to generate accurate low noise displacement
fields. However, the computation time is reported to be more
than 1 min for a strain image that is less than half of the number
of pixels in the strain images generated in this paper. Hence, the
method is not immediately suitable for real time elastography.

The contribution of this paper is the demonstration of the
feasibility of an elastography technique based on dynamic pro-
gramming (DP) for image matching [18]. Compared to other
optimization techniques, DP is an efficient noniterative method
of global optimization [19], [20]. However, it can only be used
to optimize causal cost functions (Section II).

II. ONE-DIMENSIONAL DISPLACEMENT ESTIMATION USING DP

Devising a DP algorithm for optimization involves the fol-
lowing.

1) Breaking the total optimization cost into a sum of indi-
vidual costs, such that each cost corresponds to a discrete
decision. The decisions should follow each other sequen-
tially and the cost corresponding to each decision should
only depend on the previous and not the future decisions
(causality).

2) Determining what decisions are possible at each stage.

3) Writing a recursion on the optimal cost from the first stage
to the final stage.

We first consider the problem of 1-D strain estimation with
1-D smoothness regularization. Consider two echo signals g(7)
and ¢'() corresponding to two A-lines acquired before and after
compression (Fig. 1, left), each signal sampledati =1, 2- - - m.
The difference between the two signals A can be quantified
using sum of absolute differences (SAD), which is computation-
ally inexpensive to compute and has been shown to have good
robustness against outliers [21], [20]

A(i,d) = |g(i) — (i + d)] ()

where dpin < d < dpax is the displacement at the sample ¢
(Fig. 1, left) and dnin and dpax specify the allowed displace-
ment. Gains of RF data can be changed in ultrasound machines
to improve visualization. To reduce the effect of these changes
on A, both precompression and postcompression ultrasound im-
ages are divided by the maximum value of one of the images.
The smoothness of the displacements is S

S(di,di—1) = (d; — di_1)" ©)
where d; is the displacement at the sample ¢ and d;_; is the
displacement at the sample ¢ — 1 of the g(7). To avoid large
jumps in the displacement, S should be strictly convex

a(dy — di—)* + (1= ) (din — di_1)* >
[adii + (1 — a)diz — di—1]", 0<a <1 (3)

i.e., a small jump and a large jump (left-hand side) are penalized
more than two medium jumps (right-hand side). This holds for
even k, we choose k = 2: for & > 2 larger jumps are more
heavily penalized which adversely affects contrast to noise ratio.
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Fig. 1. Intheleft, values of g(i) and g’ (i4d) corresponding to precompression
and postcompression RF data are compared. Right shows the cost function C
of (4) (white and black represent low and high cost values, respectively).

The cost function C' at a point 7 and associated displacement d;
is defined as a recursive function

C(Z dz) = min{C’(i — 1, di—l) + U)S(dl di—l)} + A(L dl)

i—1
“)
where w is a regularization weight which governs smooth-
ness. The study of its effect on the estimated displacement is
postponed to the discussion of 2-D displacement estimation
in Section III-A. The values of the C' function are stored in a
(dmax — dmin + 1) X m matrix (Fig. 1, right).

Generally, the optimum value of d;_; should be sought in the
entire [dmin, dmax] range. However, since the strain value is low
in elastography, it is expected and desired that at each sample of
RF data, the change between the displacement of a sample and
its previous sample is not more than 1. Therefore, the search
range of optimum value for d;_; is limited to the three values of
d; —1,d; and d; 4+ 1, which results in a significant gain in speed.
This limit on the search range does not affect the results even in
a high strain of 10%: Ad is zero for nine samples and one for
the tenth sample on average. The value of d;_; that minimizes
(4) is also “memoized” [19] in a function M for later use

M(Z d,) = argflnin {C(L -1, di—l) + ’U)S(di, dqj_l)} . (5

The cost function C' is calculated forz = 1 - - - m. The minimum
cost at ¢ = m gives the displacement of this point, which is
traced back to ¢ = 1 using the M function to calculate all the
displacements (D)

D(3) :argrrtliin{C(i./di)} ,i=m

D(i)=M@GE+1,D(t+1)), i=1---m—1. (6)
The displacement map of all A-lines is calculated using the same
procedure independently. In Section III, we present a method for
coupling adjacent A-lines.

A. Hierarchical Search and Subpixel Displacement Estimation

Further speedup is achieved by downsampling the signal g(¢)
by a factor of 3 to ¢*(4), and comparing it with the unaltered
signal ¢'(i). This is done by simply skipping § — 1 samples
from ¢(7) and performing DP on the Sth sample, as illustrated
in Fig. 2 left. This generates integer displacement estimations at
m /3 samples. The displacement of the skipped samples is then
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Fig. 2. Inthe left, the cost function C' is shown when DP is performed on g* (¢)
(g(7) downsampled by a factor of 3) and ¢’(7) (not downsampled). Hashed
squares indicate no cost calculation is performed due to downsampling of g(¢),
and white and black representing low and high cost values respectively. Dis-
placement is calculated at m /3 samples in this stage (3 = 3 in this figure).
In right, a new cost function around the optimum path of the first stage’s cost
function (the dashed line) is created, giving a 1/ = 1/2 pixel displacement
accuracy at m samples.

simply approximated by the linear interpolation of two neigh-
boring points whose displacements are calculated, as an initial
guess for the next step.

The displacement estimates are then refined to subpixel dis-
placement estimation at all m samples. The original signal g(¢)
(not downsampled) is compared with ¢'(i + d) upsampled by a
factor of y (Fig. 2 right) using parabolic interpolation. Repeating
the refinement procedure n times results in a refinement factor
of 1/4™.

In cross correlation methods, subsample displacement is usu-
ally achieved by interpolation of the correlation function [22],
which is subject to bias and jitter [22], [23]. Here, we interpo-
late the original RF data instead, which is shown to have similar
performance [23]. Although cosine-fit outperforms parabolic-fit
interpolation in terms of bias and jitter [22], [23], the latter is
used here for computational simplicity.

B. Results

For experimental evaluation, RF data was acquired from
an Antares Siemens system (Issaquah, WA) with a 7.27-MHz
linear array at a sampling rate of 40 MHz. For the purposes of
comparison, strain images were also calculated using a standard
cross correlation method with a 3-mm window size and 80%
overlap and a three point parabolic interpolation to find the sub-
sample location of the correlation peak [22]. Linear regression
with a 5-sample window is performed on the displacement field
to calculate strain. Normalization was performed to decrease
the dynamic range of the strain images: any strain value outside
5 & 30 was set to s = 3o to eliminate the outliers in the strain
map (S and o are the mean and standard deviation of the strain
values across the whole image). The unitless performance
metric signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) were calculated according to [2]

N

Q | @

where 5; and s, are the spatial strain average of the target and
background, o? and og are the spatial strain variance of the
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Fig. 3. (a)-(c) strain images obtained from freehand palpation of the phantom
using cross correlation, cross correlation with a 3 X 3 median filter applied on
the displacement image and 1-D DP respectively. The target window is fixed on
the lesion and the background window is moved to allow multiple CNR calcu-
lation. (d) Normalized CNR values of the lesion, obtained by dividing each bin
by the total of 36 CNR measurements. (¢) SNR values of the cross correlation
and 1-D DP techniques. (f) Strain images obtained from freehand palpation of
the phantom using 2-D DP.

target and background, and § and o are the spatial average and
variance of a window in the strain image, respectively.

In the first experiment, a breast elastography phantom (CIRS,
Norfolk, VA) with a lesion of 10 mm diameter and three times
stiffer than the background was palpated freehand. In consecu-
tive images, where axial compression is low and there is little
nonaxial motion, both methods perform well. However, as the
axial compression and attendant nonaxial motion increase, the
DP method outperforms the cross correlation method. Fig. 3(a)
shows the strain image obtained with cross correlation. In
Fig. 3(b), a 3 x 3 median filter is applied to the displacement
measurements, before differentiation, as a 2-D continuity
check. Fig. 3(c) shows the strain image obtained with the 1-D
DP method. A high level of lateral motion, slightly more than 2
A-lines, at the left of the image and high axial strain cause the
cross correlation method to fail. To calculate the CNR values
the target window was selected as specified in the figure. The
background window was then moved across the strain image
(with 3.8 mm margin from all four sides and from the lesion
where the strain is expected to vary considerably) to allow
for a more comprehensive CNR measurement. The histogram
of Fig. 3(d) shows that 1-D DP gives better CNR values: the
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mean value of the 36 CNR measurements for cross correlation,
cross correlation with the 3 X 3 median filter, and 1-D DP are,
respectively, 2.60, 3.98, and 6.24. The standard deviation value
of CNR for cross correlation, cross correlation with the 3 x 3
median filter, and 1-D DP are, respectively, 2.08, 2.70, and
4.27, reflecting the changes in strain across the image caused
by medium inhomogeneity and nonuniform loading condition.

To obtain a strain filter [2], a CIRS elasticity QA phantom
with the Young’s modulus of 33 kPa was compressed in 24
steps, each step 0.005 in. The experiment was performed far
from the lesions of the phantom to generate close to uniform
strain due to a uniform compression. The strain map between
the first frame and all other frame was calculated using the cross
correlation and DP methods. The SNR metric was calculated in
a small window located at the top center of the image, where
strain is approximately constant. Fig. 3(e) shows that the 1-D
DP method has a higher dynamic range, an important elastog-
raphy performance metric [2].

III. 2-D DISPLACEMENT ESTIMATION

Until now, we have assumed pure axial compression inde-
pendently estimated on each A-line. However, lateral displace-
ment in a soft material is inevitable even when it undergoes pure
axial compression. This displacement is related to the Poisson’s
ratio, which describes the material compressibility. Also, free-
hand palpation is rarely a pure compression and thus also re-
sults in nonaxial tissue motion. As a result, a 2-D smoothness
regularization that considers the displacements between adja-
cent A-lines is more natural. The DP algorithm of Section II is
modified here to allow for 2-D displacement estimation and 2-D
smoothness regularization.

Assuming that ultrasound images consist of n A-lines, the
distance between the pre and postcompression signals is

A(i, j,do,di) = |g;(i) — g1, (i + da)| (8)

where da,min S da S d(l,,max and dl,min S dl S dl,max are the
axial and lateral displacements, respectively, and j = 1---n
refers to jth A-lineand¢ = 1---m

S(dm ’ dl7, ) da171 ’ dl?f‘l ) = (da7 - da171 )2 + (dl7, - dlm—l )2 (9)

is the smoothness regularization with subscripts a and [ referring
to axial and lateral. The cost function at the ¢th sample of the jth
A-line is

Cj(da,dl,i) = A(da,dl,i) + min

a>01

{Cj(6a76l7i - 1) + Oj—1(6a7617i)
2

+ ’U)S(dg,, dh ‘5117 ‘51)} .
(10)

For memoization, 6, and 6; values that minimize the cost
function are stored for all d,, d; and ¢ values. The specific form
of the cost function allows the calculation of the displacement
of each A-line using the cost values of the previous A-line. The
cost function of the jth line, C;(d,, d;, %), is calculated and is
minimized, resulting in its displacement map. The C;(d,, di, ¢)
function is also used for the calculation of the next cost function
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Fig. 4. Two-dimensional DP results of freehand palpation of the breast
phantom. (a) Strain image with the target window and four background
windows for CNR calculation. (b) CNR values between the target window and
the four background windows on the top, right, bottom and left of the lesion
calculated for different regularization coefficient values w in (10).

Cj+1(dg, dy, 1) and is deleted from the memory afterward. This
makes the amount of memory required to store the cost function
values independent of the number of A-lines.

A. Results

To study the effect of the regularization weight w on the CNR,
the breast phantom is palpated freehand. For two RF frames,
the elastogram is obtained using the 2-D DP algorithm with dif-
ferent w values. CNR is calculated between the shown target
window and the four background windows on top, right, bottom,
and left of the lesion (Fig. 4). At low w values, CNR is low
because of high noise in the windows, while at high w values
CNR drops because high displacement changes are heavily pe-
nalized. 3 < w < 50 is optimizing the tradeoff between noise
and contrast to maximize CNR, both in the lateral (background
windows on the right and left of the target) and axial (back-
ground windows on the top and bottom of the target) directions.
Since the background windows are close to the lesion, the strain
within each window is not expected to be constant even though
the phantom is homogeneous within them. This variation in the
ground truth strain will be reflected as noise in the CNR cal-
culation which is undesirable. However, we have selected the
windows such that they best capture the effect of w on CNR
close to an inhomogeneity, which also contains some resolution
information.

Fig. 3(f) shows the strain image obtained using the 2-D DP
method using the same two frames that are used to generate the
strain images in Fig. 3(a)—(c). The CNR values [Fig. 3(d)] are
calculated for the same target and 36 background windows as
before, giving a mean of 8.96 and a standard deviation of 5.75.
Since the elasticity QA phantom cannot be compressed more
than 4%, we use the breast phantom for experimental evalua-
tion of the strain filter of the 2-D DP method. Fig. 3(e) shows
the SNR values, showing no degradation of the SNR even at a
high strain of 10%. Comparing these results with the 1-D DP
and cross correlation results, a significant increase in the image
quality, CNR value, and maximum allowed strain is achieved.

Substituting other computationally more expensive similarity
measures like normalized cross correlation in the A function re-
sulted in no significant difference in the performance. Currently,
the algorithm takes 0.72 s to calculate the displacement map of
each pixel in an image with 1000 x 100 pixels with maximum
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axial displacement of 10 samples (1% strain) and maximum lat-
eral displacement of =1 A-lines on a 3.8 GHz P4 CPU. The cur-
rent implementation is in MATLAB with the DP optimization
in mex functions.

IV. DIscUSSION AND CONCLUSION

The lateral search is performed in the 2-D DP method only to
decrease the noise and increase the robustness of the axial strain:
the lateral displacements are integer values and are not suitable
for calculating lateral strain. Results of Fig. 3 show that DP is
more robust to the signal decorrelation (caused by scatterer mo-
tion in high axial compression, and lateral and out of plane mo-
tions of the probe) than standard cross correlation techniques.
This s critically important since it tolerates higher axial compres-
sion [Fig. 3(e)], increasing the dynamic range of the elastogram
which is crucial for lesion detection. Nonlinear elastic properties
of tissue also only appear at high strain values [3]. It also gener-
ates low-noise elastograms using almost any two frames in free-
hand palpation, given that they both belong to the same compres-
sion or relaxation cycle of the palpation excitation. Finally, no
postprocessing step such as median filtering is required.

The CNR and SNR metrics seem to indicate that the regu-
larization creates smooth elastograms while preserving contrast.
The only tunable parameter of the method, w in (10), was kept
constantat w = 10 throughout this work. It can also be varied be-
tween 5 and 50, as Fig. 4 indicates, with almost no effect on CNR.
This might indicate that the w value optimized for phantom will
work well for real tissue. These features of the DP, along with
its high speed make it a promising elastography method.

DP strain images in Figs. 3 and 4 show some stress concen-
tration around the lesion which is not seen in the corresponding
cross correlation images. We are not sure yet whether this is an
artifact or high strains are created just around the lesion because
of nonlinear mechanical properties of the phantom. We are plan-
ning for validation of the estimated displacement of DP using
simulation and laboratory experiments for clarification. High
strain is also seen on the top edges in both cross correlation and
DP images. The curved shape of the breast phantom is probably
the reason for this high strain: in order for the edges of the probe
to touch the phantom, the part of the phantom just under middle
of the probe has to compress considerably. If the phantom ma-
terial hardens under high strains, the phantom around the edges
experiences higher strain. The absence of this stress concen-
tration in our experiments with noncurved phantoms seems to
prove this.

We have chosen to use the cross correlation as a compara-
tive benchmark to assess the potential of DP. This is because
cross correlation is the most commonly used method and has
been shown to accomplish at least as accurate results as any
other method, and thus it represents a “gold-standard” [24], [23].
However, we are planning for a comprehensive comparison of
the DP with other strain imaging techniques. Further work is re-
quired to study the effect of regularization on resolution [25]. To
achieve real-time performance in freehand palpation imaging,
an adaptive search range selection can be implemented by using
the continuity of displacement in time to confine the search. The
2-D algorithm can be extended to 2-D + ¢ to exploit the cost
function in previous time, optimize frame selection [26], and
incorporate a 2-D + ¢ regularization.
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