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ABSTRACT

The elevational distance between two ultrasound images can be obtained from the correlation between the two
images, leading to sensorless freehand 3D ultrasound systems. Most of these systems rely on the correlation
between patches of fully developed speckles (FDS). Previous work1 has compared different FDS detectors and
concluded that the elevational distance measurement limited to the FDS patches obtained by low order moment
test yields significantly more accurate results than other FDS detectors. However, small coherent and FDS
regions are spread throughout a typical ultrasound image of real tissue. This makes it extremely unlikely to
find a regularly shaped (conventionally a rectangle) FDS patch, making it infeasible to estimate elevational
distance accurately.1 In this work, first we propose a simple and fast algorithm which is capable of detecting
arbitrarily irregular FDS regions in an ultrasound image. In vitro experiments on beef liver, beef steak and
chicken breast indicates that the proposed algorithm generates remarkably more FDS patches than the current
methods. Preliminary results show that the FDS patches obtained by this algorithm generate more accurate
elevational distance measurement. Second, we propose a new calibration scheme to generate decorrelation curves.
At a particular location in the image, conventional methods acquire one decorrelation curve. We create multiple
curves, as a function of particular statistical properties of the patch. The results reveal a theoretically expected
relation between the decorrelation curve and the statistical properties of the patch. As a result of this calibration
based on the patch statistical properties, improvement in the out of plane motion estimation is expected.
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1. INTRODUCTION

Current technology allows acquiring 3D ultrasound data either using oscillating head probes or freehand 3D
ultrasound. In oscillating head probes, a 1D ultrasound transducer is automatically swept inside the probe,
enabling 3D image acquisition. In freehand 3D ultrasound, a position sensor is attached to an ordinary probe
which is swept over the desire region by the clinician.

Freehand 3D ultrasound is inexpensive, works with the existing 2D probes, and allows arbitrary 3D volume
acquisition. However, the need for the additional sensor makes it difficult to use. Sensorless volume reconstruc-
tion of freehand 3D ultrasound is possible using the information in the images themselves: out of plane motion
estimation can be obtained from image correlation,2 which is the focus of this work, while in plane motion can
be estimated through image registration.3–5

Granular apperance of ultrasound images is the key factor in out-of-plane motion estimation. Each pixel in an
ultrasound image is formed by the back scattered echoes from an approximately ellipsoid called the resolution cell
(Figure 1). The interference of scatterers in a resolution cell creates the granular appearance of the ultrasound
image, called speckle. Although of random appearance, speckle pattern is identical if the same object is scanned
from the same direction and under the same focusing and frequency.
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Figure 1. Aquisition of two ultrasound images at a distance of ∆z. Ultrasound beam is in order of a millimeter wide.
This wideness affects the resolution of ultrasound image in the lateral, y, and elevational, z, directions, as well as creating
a granular pattern, called speckle. The size of the resolution cell in the axial direction, x, is determined by the wavelength
of the ultrasound wave and is magnified in this image.

Each pixel in the ultrasound image is created by the backscattered echoes from the resolution cell. If two
images are acquired at a small enough elevational distance,6, 7 their corresponding resolution cells share some
overlapped volume (Figure 1) and therefore some scatterers. Thus, the pixels brightness of such two images are
correlated. The correlation can be used along with a decorrelation curve, obtained by a acquiring images of a
FDS phantom at small elevational steps , to calculate the elevational distance.2 Since the wideness of ultrasound
beam varies axially and laterally, multiple decorrelation curves are usually obtained for patches of image located
at different axial and lateral positions.

Coherent scattering causes the elevational distance measurement from the conventional correlation algorithms
to be underestimated.1 Thus, distance measurement is limited to the patches of the ultrasound image that con-
tain only FDS.1 To completely determine the out-of-plane degrees of freedom between two planes, at least three
non-collinear pairs of such patches are required.5

Since FDS patches are extremely rare in real tissue, these methods usually have a low accuracy and are only
relevant in limited tissue types. Gee et al.8 proposed a heuristic technique that is robust to the lack of FDS
patches in the ultrasound image. This method allows the calculation of the elevational distance for all patches
of the image, regardless of their level of coherency, by measuring the axial and lateral correlation of each patch.
Since the behavior of coherent reflectors in the elevational direction can be different from their behavior in the
axial and lateral directions, the performance of the method can decline depending on the level of anisotropy of
the tissue. The purpose of this work is to devise a method applicable to a various tissue types that accurately
reconstructs 3D volumes from ultrasound images.

We perform a two-step meshing scheme to reduce the level of the coherency of the image patches. We use
signal to noise ratio and skewness of data, same as the statistics that are used in the calibration, in both steps.9

This step allows us to segment irregularly shaped patches that have low coherency.
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Having a set of decorrelation curves as a function of coherent scattering would also potentially improve the
elevational distance measurement. However, acquiring such a set would require thousands of calibration experi-
ments performed on phantoms with different coherent scattering properties. We cope this problem by performing
the calibration on a “low quality” phantom as described in the next section.

2. CREATING IMAGE PATCHES WITH LOW COHERENCY
To calculate the elevational distance between two ultrasound frames, image patches with low coherency from the
two frames are required. We use low order moments to classify speckle:

R = SNR =
〈Avr 〉√

〈A2vr 〉 − 〈Avr 〉2
(1)

S = skewness =

〈
(Avs − 〈Avs〉)3〉

(〈A2vs〉 − 〈Avs〉2) 3
2

(2)

where A is the amplitude of the ultrasound RF envelope, vr and vs are the signal powers and 〈· · ·〉 denotes the
mean. Here we use9 vr = 2vs = 1. R and S of a image patch which contains few thousand pixels, depending
on the correlation of pixels in the patch,10 are calculated. If the R and S duple falls inside an elliptical FDS
discriminative function, the patch is considered to contain FDS. The ratio of the distance of the R and S duple
from the center of the FDS ellipse to the radius of the ellipse in the point’s direction, ϑ, may be used to quantify
the closeness of a patch to FDS.

To best of our knowledge, current freehand 3D systems work with rectangular patches. However, small
coherent and FDS regions are spread throughout a typical ultrasound image of real tissue. This makes it
extremely unlikely to find a regularly shaped, i.e. rectangular, FDS patch. We propose a simple and fast
two-step meshing algorithm which is capable of detecting arbitrarily irregular FDS regions in an ultrasound
image.

2.1. Two-Step Meshing Algorithm
To classify a patch reliably, it should contain thousands of data samples. However, some small patches are very
coherent and they can be classified as non-FDS with much fewer data samples. This is the inspiration for the
two-step meshing algorithm. We elaborate the algorithm with using an ultrasound image of beef liver (Figure
2). The size of this image is (r x c) = (1500 x 500), where r stands for row and c for column. Approximately
3600 samples are required to classify a patch in this image.

In the first step, the image is divided into small patches of (r1 x c1)=(50 x 10) containing 500 samples (Figure
2 a). Because of the small sample size, patches cannot be classified reliably and false acceptances and rejections
are likely in this stage. However, it is possible to eliminate patches that are very far from FDS (large ϑ). We
mark patches with ϑ < 5 as potential FDS. The mesh is then shifted by (rs x cs)=(10 x 2) pixels, where rs
and cs stand for row shift and column shift, and the speckle classification is performed. The shifting process is
repeated for r1

rs × c1
cs = 25 times. This will create a very fine grid of size rs x cs where each patch can be classified

as a FDS potential for r1
rs × c1

cs times. We then mark the fine patches that are identified as FDS potential less
than a threshold TH = 4 as non-FDS (black regions in Figure 2 b).

In the second step, we overlay the final mesh of size (r2 x c2)=(75 x 125) on the output of step 1. We then
search for patches with ϑ < 4 that contain more than 7500 non-black pixels (Figure 2 c). Three such patches
are found in the image , while a conventional method finds one patch with ϑ < 4.

Figure 3 shows the performance of the two-step meshing algorithm in the R-S plane. Comparing to the
results of a one-step mesh, the two-step mesh generates remarkably more patches close to the FDS ellipse. We
have found similar results with chicken breast and beef steak.
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(a) Original B-mode.
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(b) Potential FDS parts.
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(c) FDS patches.

Figure 2. The two-step meshing algorithm. (a) shows the original B-mode image of beef liver. (b) shows the output of
the first step of the algorithm. (c) shows the three FDS patches found in the image. The (r2 x c2)=(75 x 125) grid is
superimposed in the parts (a) and (b) only to ease comparison with part (c).
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(a) One-step meshing.
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(b) Two-step meshing.

Figure 3. The comparison of one-step mesh and two-step mesh using beef liver image of Figure 2 (a). (a) shows the
R-S values of a 75 x 100 grid and (b) shows the R-S values of the two-step meshing algorithm with parameter values as
described before. In (a) only points close to the ellipse and in (b) only R-S of the patches that contain more than 7500
pixels are shown. The radius of the ellipse is magnified by ϑ = 4.

3. ELEVATIONAL MOTION ESTIMATION

In this section, we first acquire the decorrelation curves, i.e. estimate the size of the resolution cell, at different
locations of the image using a FDS phantom. We then use the decorrelation curves, along with the irregular
patches that are found using the method described in the previous section, to estimate the elevational distance
motion of an in-vitro beef liver experiment.

3.1. Acquiring decorrelation curves in a FDS phantom

A Siemens Antares ultrasound machine with research interface is used to acquire RF data. Homogeneous parts
of a CIRS elasticity QA phantom (CIRS, Norfolk, VA, USA) is used as the FDS phantom. 60 image frames
are acquired at δz = 0.05mm elevational distance, each image 20mm deep with a single focus at 5mm depth
at 6.67MHz frequency. Each image consists of 508 RF lines, with each RF line containing 1500 samples. The
images are filtered using a 4.67-8.67 MHz passband Butterworth filter.

The correlations are calculated using Pearsons linear correlation coefficient ρ

ρ(X, Y ) =
NΣxiyi − µxµy√

(NΣx2
i − µ2

x)
(
NΣy2

i − µ2
y

) (3)

where xi and yi, i = 1 · · ·N , are the magnitude of the RF data from patches X and Y and µx and µy are
the means of patches X and Y respectively. Because of the high level of correlation in the image data in the
lateral and axial directions, each patch consists of 75 pixels in the axial direction and 100 pixels in the lateral
direction, containing 7500 data samples. 20 x 5 decorrelation curves are calculated and are used in the next step
to estimate out of plane motion of the probe.

3.2. Using the irregular FDS patches to estimate motion

17 image frames are acquired from beef liver at ∆z = 0.05mm elevational distance. The imaging parameters and
parameters of the two-step meshing algorithm are as mentioned before. The correlation between corresponding
FDS patches in frames i and j is used to calculate their elevational distance. We “stitch” the two frames i
and j and search for FDS patches which now consist of pixels from both frames. This will guarantee finding
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(a) One-step mesh.
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(b) Two-step mesh.
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(c) One-step mesh.
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(d) Two-step mesh.

Figure 4. (a) shows the difference of the distance calculated from the mean of the two distances obtained from the two
FDS patches found from the actual distance and (b) shows the same value using two-step mesh. (c) and (d) show the
number of FDS patches found in each case.

corresponding FDS patches in the two frames.

Unlike a one-step mesh, the output of the two-step mesh is patches that are not at the same place where
decorrelation curves are calculated. As a result, we calculate the center of gravity (CG) of each FDS patch and
linearly interpolate the two calibration curves on top and bottom of the CG to obtain the calibration curve for
the FDS patch.

Figure 4 (a) and (b) show the error of the estimated distance using regular meshing and the two-step meshing
algorithm. The threshold ϑ in the regular meshing algorithm is set such that at least one FDS patch is found
between each two frames. The x-axis is the exact value of the distance between two frames and the y-axis shows
the error in the measurement. The two step meshing algorithm has increased the accuracy by a factor of almost
two. Figure 4 (c) and (d) shows the number of FDS patches found in each case. In addition to the more accuracy,
more patches are found in the two-step meshing algorithm which is important in determining the 3D orientation
of two image frames.

By inspecting all the distances measured from the FDS patches, we realize that 2 patches give very accurate
distance estimation (patches found from frames 1 and 13 at x=0.65mm in Figure 4 (b) and (d)), while three other
patches give a non-accurate estimation. We expect to increase the accuracy of the two step meshing algorithm by
adding other statistical parameters to the R-S to classify speckles, since the R-S test fails to reject some coherent
patches. Particularly, the axial and lateral correlation of a patch at a known axial and lateral displacement are
expected to decrease false positive FDS detection and therefore increase the level of accuracy.
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Figure 5. An example of the selection of 12 patches from the 24 small patches such that each of the 3 rows contains 4
patches.

Figure 6. Correlation as a function of R and S. Different pixels of two frames of beef liver, acquired at ∆z = 0.8mm, are
selected as depicted in Figure 4 to obtain a statistics dependent calibration.

4. THE CALIBRATION APPROACH

Current sensorless freehand 3D ultrasound systems perform the calibration only for FDS patches. This is be-
cause it is practically impossible to make hundreds of different phantoms with different properties and obtain
calibration curve as a function of statistical properties. We obtain the decorrelation curves as a function of R-S,
i.e. the level of coherency as follows.

Consider two patches of frames i and j, at a known ∆z distance, each containing 75 x 200 pixels (Figure 4).
Half of the pixels of each patch is required to calculate the correlation between the two patches assuming that
we need 7500 data samples in each patch. Divide each patch to smaller patches of size 25 x 25, resulting in 3 x 8
patches as depicted in the figure. Now we choose 4 patches from the 8 patches in each row, 12 patches out of the 24
in total. This selection is possible in

(
8
4

)3
= 343000 different ways, and therefore 343000 different R-S values. For

each selected patch, we calculate the correlation between the two patches and average the values in the R-S plane.

Figure 6 is a result of such an averaging on two patches from two image frames of beef liver ∆z = 0.8mm
apart. The calibration result show an increase in the correlation as the R-S value of the patch moves further
from the FDS ellipse. This is in accordance with physics of ultrasound, resulting in an expected increase of the
accuracy of motion estimation.
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5. DISCUSSION AND CONCLUSIONS

In-vitro experiments on real tissue shows that the two-step meshing algorithm is substantially effective in elim-
inating coherent parts of the image and finding low coherency patches. Preliminary experiments show that
such low coherency patches result in a 50% increase in the accuracy of out of plane motion estimation using
image correlation compared to a conventional one-step mesh. Adding other statistical measures, such as cor-
relations in the lateral and axial directions will decrease the false positive probability of the R-S speckle classifier.

The linear interpolation step to obtain the decorrelation curve at the center of gravity of the FDS patches
increases the uncertainty of the decorrelation curves. Future research will consider other approaches to acquire
the calibration curve for the FDS patches found in the experiment.

The calibration approach based on the statistics of the patch is expected to increase the accuracy of motion
estimation. It will also help to eliminate the need for a FDS phantom for calibration. Given the novel meshing
and calibration approaches, accurate and robust motion estimation in real tissue will be possible, eliminating
the need for an external sensor in freehand 3D ultrasound systems.
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