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Abstract—Out-of-plane motion in freehand 3D ultrasound can
be estimated using the correlation of corresponding patches,
leading to sensorless freehand 3D ultrasound systems. Previous
work has shown that the motion estimation in a beef tissue is sys-
tematically underestimated by approximately 33% and that it can
be improved to approximately 25% by limiting the correlation
calculation to the fully developed speckle (FDS) patches [1]. The
improvement in the accuracy is limited because FDS patches are
rare in real tissue. Here, we propose beam steering for detecting
FDS patches and we show that it significantly improves speckle
detection. We further experiment the effect of beam steering on
out-of-plane motion estimation using ex-vivo beef liver and steak
experiment. Without steered images, we find a 17% error in
the liver experiment. Beam steering reduces the error to 9%, a
significant improvement which is mainly due to enhanced FDS
detection. Beef steak results are even more promising: 14.8%
error without beam steering is reduced to 3.2% error.

I. INTRODUCTION

Most common techniques for acquiring 3D ultrasound data
are oscillating head probes and freehand 3D ultrasound. In
oscillating head probes, a 1D ultrasound transducer is automat-
ically swept inside the probe, enabling 3D image acquisition.
In freehand 3D ultrasound, a position sensor is attached to an
ordinary probe which is swept over the desire region by the
clinician.

Freehand 3D ultrasound is inexpensive, works with the
existing 2D probes, and allows arbitrary 3D volume acqui-
sition. However, the need for the additional sensor makes it
difficult to use. Sensorless volume reconstruction of freehand
3D ultrasound is possible using the information in the images
themselves: out of plane motion estimation can be obtained
from image correlation [2], which is the focus of this work,
while in plane motion can be estimated through image regis-
tration [3], [4], [5].

Granular appearance of ultrasound images is the key factor
in out-of-plane motion estimation. Each pixel in an ultrasound
image is formed by the back-scattered echoes from an approx-
imately ellipsoid called the resolution cell. The interference of
scatterers in a resolution cell creates the granular appearance
of the ultrasound image, called speckle. Although of random
appearance, speckle pattern is identical if the same object
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is scanned from the same direction and under the same
focusing and frequency. Speckle characterization is essential
in many areas of quantitative ultrasound. In this work, it is a
prerequisite for speckle-based distance estimation. We use low
order moments to discriminate fully developed speckle (FDS)
patches versus coherent speckle patches [6].

R = SNR =
〈Avr 〉√

〈A2vr 〉 − 〈Avr 〉2
(1)

S = skewness =

〈
(Avs − 〈Avs〉)3〉

(〈A2vs〉 − 〈Avs〉2) 3
2

(2)

where A is the amplitude of the ultrasound RF envelope in
the analysis patch, vr and vs are the signal powers and 〈· · ·〉
denotes the mean. Here we use [7] vr = 2vs = 1. An elliptical
discrimination function is calculated in the R-S plane by
performing principal component analysis (PCA) on the data
from simulated FDS patches [7]. A patch is then classified as
FDS if its R-S duple falls inside this ellipse.

Having found FDS patches in two ultrasound images, the
correlation between them is used for estimating the distance
between the two images [1]. The R-S metric requires approx-
imately 3500 pixels per patch (depending on the correlation
of data [8]), but such large patches (which are rectangles) of
FDS are unlikely to be found in real tissue because of its in-
homogeneity [1]. Gee et al. [9] proposed a heuristic technique
that is robust to the lack of FDS patches in the ultrasound
image. This method allows the calculation of the elevational
distance for all patches of the image, regardless of their level
of coherency, by measuring the axial and lateral correlation
of each patch. Since the behavior of coherent reflectors in the
elevational direction can be different from their behavior in the
axial and lateral directions, the performance of the method can
decline depending on the level of anisotropy of the tissue.

In [10], we proposed a fast algorithm to find irregularly
shaped FDS patches and showed that this algorithm finds
significantly more FDS patches. Here, we propose using beam
steering as another technique to increase the number of FDS
patches found in the image. This is achieved by obtaining
more data from a certain region of tissue, hence reducing
the size of the analysis patch. Having found such small FDS
patches, we further use the steered images for better out-of-
plane (elevational) motion estimation.
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II. SPECKLE CHARACTERIZATION

Methods: We are looking for rectangular FDS patches using
images acquired from the same location at different steering
angles. The key idea is to combine data acquired from a certain
region at different steering angles and therefore reducing the
size of the analysis patch. Figure 1 shows two images acquired
at 0 and θ steering angles. A rectangle patch in the left image
is warped into a parallelogram and is shifted in the steered
right image. The position of the parallelogram can be simply
found as a function of θ, x and y. Therefore, samples nX and
nY from the steered image correspond to samples nx and ny

from the non-steered image and

nX = nx − vUS

2ν
· n

w
· sin(θ) · ny

nY =
ny

cos(θ)
(3)

where vUS = 1540000mm/s is the speed of ultrasound in
tissue, ν is the sampling frequency of the ultrasound machine,
n is the total number of the A-lines and w is the width of
image in mm. To find the correspondent of a patch, the cor-
respondent of its four corners are found using these equations
and applying nearest neighbor interpolation. The parallelogram
connecting these four corners is the correspondent of the patch.
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Fig. 1. Corresponding patches in images acquired with different steering
angles. In the left, a patch is shown in the not-steered image. In the middle,
the patch which corresponds to the same tissue is shown in the scan-converted
steered image. In the right, the patch is shown in the raw steered image (not
scan-converted).

Results: A Siemens Antares ultrasound machine (Issaquah,
WA) with a sampling frequency of ν = 40MHz is used to
acquire RF data. 17 images of a FDS phantom are acquired at
the 17 different steering angles of -5.5, -5, ... -2, 0, 2, 2.5 ...5.5
degrees, with increments of 0.5◦ except for −2◦ to 2◦ due to
machine limitation. All the images are acquired from the same
position by fixing the probe using a passive arm. The phantom
is verified to be FDS using the R-S metrics with patches of
size 3500 pixels in the non-steered image.

In the first experiment, the image with no steering is divided
into rectangular patches (Figure 2 left). The patch size is varied
from 500 to 3500 and the R-S test is applied to each patch
by combining data from other steered images and without
combining data. A 1D measure η for classification is obtained
by first calculating the distance of the (R, S) point to the
center of the FDS ellipse and then dividing it by the radius
of the ellipse in the direction of the point: η < 1 and η > 1
represent the points inside (FDS) and outside (non-FDS) the

ellipse respectively. Figure 2 right shows the results. Data from
different steering angles are combined according to equation
3. The results show that exploiting the data acquired at two
angles allows a reduction in the patch size by a factor of
approximately two: η̄ (mean of η ) for patch size of 3500
pixels for individual angles is 0.87, which is equal to η̄ at the
patch size of 1750 for 2 angles. Including the 15 intermediate
angles does not improve the results significantly, suggesting
that the correlation between these images is high and they
don’t add new information.
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Fig. 2. The effect of the patch size on the false rejection of the FDS
patches. In the left, subdivision of an image of the FDS phantom into patches
is shown (patches are too large and are of size 100x127 for better illustration).
In the right, the mean value of the η metric is shown for three cases: using
each steering angle individually, combining two steering angle of −5.5◦ and
5.5◦ and combining all 17 steering angles. Since the phantom is FDS, small
values of η are desirable.

In the second experiment, the patch size is fixed at 1750
pixels and the data from two steering angles are combined
(to double the number of pixels to 3500). The η̄ metric is
calculated as a function of the difference in the steering angle
of the two images (Figure 3). The η̄ metric is also calculated
for patches of size 3500 pixels in a single steering angle and is
shown by an asterisk. The results show that at 11◦ separation
between two images η̄ is approximately equal to η̄ for patch
size of 3500 (the * in the figure). This suggests almost perfect
decorrelated patches at 11◦ separation and is in accordance
with the results of Figure 2.
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Fig. 3. The effect of the steering angle difference on the false rejection of
the FDS patches. The η value is calculated for sets containing 1750 pixels
from each steering angle (total of 3500 pixels), and mean value of η as a
function of the difference in the two steering angles is calculated. The mean
of η is also calculated when each image is divided into patches of 3500
separately and is shown as a *.

III. OUT-OF-PLANE MOTION ESTIMATION

The correlations are calculated using Pearsons linear corre-
lation coefficient ρ

ρ(W,Z) =
Σwizi − Nµwµz√

(Σw2
i − Nµ2

w) (Σz2
i − Nµ2

z)
(4)

2007 IEEE Ultrasonics Symposium782



where wi and zi, i = 1 · · ·N , are the intensity values of each
pixel in patches W and Z, N is the total number of pixels and
µw and µy are the means of the intensity values of patches
W and Z respectively.

To calibrate the rate of image decorrelation with out-of-
plane motion, RF data of 3x51 parallel frames were acquired
from a FDS phantom at an elevational distance of 0.05mm
between consecutive images; three frames at each location
with steering angles of -5.5, 0 and 5.5 degrees. The exper-
imental setup is shown in Figure 4: the probe is moved with
a micrometer with the accuracy of .001mm while the whole
setup is secured on a rigid optical table. Calibration results
showed that the decorrelation rate is not affected by beam
steering.

linear
stage

optical
table

FDS 
phantom

Fig. 4. Calibration experimental setup. Linear stage secured on an optical
table for generating precise out-of-plane motion.

Out-of-plane motion estimation was performed on ex-vivo
beef liver and steak data. For each tissue, 2x36 RF frames at
an elevational distance of 0.2mm between consecutive frames
were acquired using the setup shown in Figure 4; two images
at each location with −5.5◦ and 5.5◦ steering angles. The
distance between every two frames at a distance of 2× 0.2 =
0.4mm is calculated using three approaches:

1) Only images at -5.5◦ are considered. Each image is
divided into rectangular patches of size 3500 pixels and
R-S speckle characterization is applied to each patch.
The correlation coefficient is calculated for patches
whose η is less than a threshold ηT [1] and the distance
between patches is estimated using the decorrelation
curves obtained from the FDS phantom.

2) Both of the images at −5.5◦ and 5.5◦ are considered.
Speckle detection and correlation calculation is per-
formed on each angle separately similar to the item 1
above using patch sizes of 3500 pixels and a threshold
of ηT .

3) Both of the images at −5.5◦ and 5.5◦ are considered.
The size of the patch window is decreased two fold and
data from both angles are combined using equations 3
to end up with the same 3500 number of pixels in each
patch. Speckles are classified like item 1 above using a
threshold of ηT and image distances are calculated in
patches with η < ηT using the correlation calculated
from all 3500 samples.

The procedure is repeated for all 36-2=34 pairs of images

and the all of the estimated distances are stored. The mean and
standard deviation of these values are shown in Figures 5 and 6
on the top for the liver and steak experiments. On the bottom,
the average number of patches is shown as the threshold ηT is
varied. Average number of patches is calculated by dividing
the total number of distance measurements (associated with
the patches with η < ηT ) by 34. To estimate the rotation
of the two images around the lateral and axial axes and the
elevational motion the elevational distance between at least 3
non-collinear patches should be known.
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Fig. 5. Ex-vivo beef liver experimental results. On the top, mean and
standard deviation of estimated distances between two frames that are 0.4mm
apart are shown as the number of reference patches is changed by changing
ηT . On the bottom, number of patches are shown as the threshold ηT is
relaxed. All results are shown for the three described methods.

Considering the 0.4mm ground truth distance, method 3
is outperforming method 2 and method 2 is outperforming
method 1. The errors for methods 1, 2 and 3 for the liver
experiment at average number of patches of 3 is 0.4−0.332

0.4 =
17%, 0.4−0.345

0.4 = 13% and 0.4−0.364
0.4 = 9% respectively. A

comparison of errors of the three methods for the beef steak
experiment is provided in Table I.

IV. DISCUSSION AND CONCLUSION

Results of Figure 2 show that the patch size can be re-
duced without increasing the false rejection of the R-S test.
Figure 3 shows as the difference in the steering angle of
two images increase, combining their information results in
more reduction in the false rejection of the R-S test. At a
steering angle difference of 11◦, it seems that two images
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Fig. 6. Ex-vivo beef steak experimental results. On the top, mean and
standard deviation of estimated distances between two frames that are 0.4mm
apart are shown as the number of reference patches is changed by changing
ηT . On the bottom, number of patches are shown as the threshold ηT is
relaxed. All results are shown for the three described methods.

Avg. no. of patches 4 5 6 7 std
method 1 11.7% 13.8% 14.8% 15.0% 0.07mm
method 2 7.0% 7.5% 8.6% 8.5% 0.05mm
method 3 3.0% 3.0% 3.2% 3.7% 0.05mm

TABLE I
ERROR IN THE ESTIMATED DISTANCE IN THE BEEF STEAK. THE

STANDARD DEVIATIONS FOR THE RANGE OF 4 TO 7 PATCHES ARE

APPROXIMATELY CONSTANT WITHIN EACH METHOD AND ARE 0.07mm,
0.05mm AND O.05mm FOR METHOD 1, 2 AND 3 RESPECTIVELY.

are highly decorrelated since η̄ value is almost equal to η̄
value of a two times larger patch (asterisk in the figure).
The improvement of motion estimation of approach 2 over
approach 1 as discussed in Section III (Figure 5 and Figure
6) are due to the fact that having two images make it more
likely to find FDS patches and therefore ηT can be reduced to
find better patches. However, the improvement can be further
increased by combining their information for reduced-size
patch speckle detection, as we can see the smaller error of
method 3 compared to method 2.

In summary, the significant improvement in out-of-plane
motion estimation using image steering can be attributed to
three factors. (1) Smaller patch size results in higher likelihood
of finding uniform patches. (2) Boundaries appear fuzzy under
an oblique US beam, which may lead to misclassification

of the patch. Beam steering increases the chance of imaging
boundary more perpendicularly, which reduces the likelihood
of misclassification. (3) Averaging over more data increase the
accuracy of estimation.

Out-of-plane motion estimation is only studied here for
a fixed distance between two frames, 0.4mm. A study of
accuracy as the distance varies gives insight for optimum
frame selection [11], [12]. In freehand experiments the images
are not parallel as they are in our experiments, and therefore
the rotations between the images need to be found [13],
[1], [9]. Recent work has studied a probabilistic approach
on correlation based distance estimation [14] that result in
enhanced out-of-plane motion estimation. We also showed
before [10] that two-step meshing can significantly increase
the number of FDS patches found in an ultrasound image
of real tissue. Beam steering can be combined with these
methods to achieve a higher accuracy sensorless freehand 3D
ultrasound.
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