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Abstract— Speckle detection is essential in many areas of
quantitative ultrasound. In this work, speckle is characterized
with R=SNR and S=skewness of the amplitude of the ultrasound
signal data A. Different powers of A can be used to calculate
R and S. Prager et al. [1] proposed a method for finding the
optimum power value, which then was further scrutinized [2].
We propose using two different powers of A in R and S, and
perform a large number of computer simulations to find these
optimal values.

I. INTRODUCTION

Each pixel in an ultrasound image is formed by the back
scattered echoes from an approximately ellipsoid called the
resolution cell (Figure 1). The interference of scatterers in a
resolution cell creates the granular appearance of the ultra-
sound image, called speckle. Although of random appearance,
speckle pattern is identical if the same object is scanned from
the same direction and under the same focusing and frequency.

Fig. 1. Ultrasound beam is in order of a millimeter wide. This wideness
affects the resolution of ultrasound image, as well as creating a granular
pattern, called speckle. The diameter of the ellipsoid in the axial direction
(x axis) is magnified in this image.

Diffuse scattering happens if the scatterers in a resolution
cell are placed independently and uniformly at random. If each
resolution cell in an image patch has many such scatterers, the
patch is said to be fully developed speckle (FDS). In contrast,
white and dark features in the ultrasound B-mode images are
caused by coherent back-scattering of ultrasound pulse.

Speckle detection is useful in segmentation, sensorless
3D freehand US, speckle cancellation and quantitative tissue

characterization. In ultrasound compounding, for example, the
goal is to cancel the speckles, while in sensorless 3D freehand
ultrasound they are utilized to estimate probe movement.

Assume the effective number of scatterers per resolution
cell to be µ, and the diffuse and coherent signal energy to be
2σ2 and s2 respectively. Speckles can be classified by µ and
k = s

σ , with µ > 10 and k < 1 being FDS.
Dutt et al. [3], [4] and Prager et al. [1] proposed using R

and S to estimate µ and k and therefore classify speckles

R = SNR =
〈Av〉√

〈A2v〉 − 〈Av〉2
(1)

S = skewness =

〈
(Av − 〈Av〉)3〉

(〈A2v〉 − 〈Av〉2) 3
2

(2)

where A is the amplitude of the ultrasound RF envelope, v
is the signal power and 〈· · · 〉 denotes mean. Depending on
the correlation of data, thousands of sample data are required
to reliably calculate R and S [4]. In [4] and [1], values of
v that reduce this sample size are sought. Useful variability
of clusters of sample data with different µ and k values are
maximized in [1] to find the optimal v, a method that is
scrutinized by [2].

Since R and S are different order moments of sample data,
optimal values for v in R and S are not necessarily the same.
We propose using different values of v in R and S. We follow
a similar approach to [1] to simulate the B-scan.

II. SIMULATION METHODS

We seek the optimal values of vR and vS that substitute v
in equations 1 and 2 respectively. To create the sample data,
the sum of µ vectors of length

√
2/µ and arbitrary phase (a

random walk) is added to a single vector with zero phase and
length k, resulting in a vector A, with amplitude A.

The first step to compare the performance of different
values for vR and vS is to obtain an FDS discriminant
function. To this end, we set vR = 0.2, 0.4 · · · 3 and similarly
vS = 0.2, 0.4 · · · 3, and for all combinations of vR and vS

(15×15 = 225 cases) acquire an FDS elliptical discrimination
function in 3 steps (Figure 2):

1) 30000 sets of 5000 random A that represent FDS with
different parameters 0 < k < 1 and 10 < µ < 60 are
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Fig. 2. The procedure for acquiring the elliptical discriminant function for
all values of 0 < vR < 3 and 0 < vS < 3. Each data sample A is calculated
by a random walk. Each one of the 30000 sets of A has 5000 samples as
indicated. The A values inside a set all share the same µ and k values. For
each set, R and S values are calculated for all combinations of vR and vS

between 0 and 3. Using the 30000 R and S pairs obtained for a specific vR

and vS , we calculate the FDS discriminant ellipse by PCA and the covariance
method.

calculated (each data sample A itself is obtained by the
random walk described above, not shown in Figure 2).

2) For each set, R and S are calculated for all combinations
of 0.2 ≤ vS ≤ 3 and 0.2 ≤ vS ≤ 3, resulting in 30000×
225 samples of R and S.

3) Using the 30000 samples of R and S for each vR and
vS combination, 225 elliptical discriminant functions
that encompasse 95% of R and S values is obtained
automatically using PCA and the covariance method.

Figure 3 shows the elliptical discriminant functions for
vR = 0.2 and vS = 0.2 in the left images and for vR = 2
and vS = 0.8 in the right ones. The two top images show
100 (R,S) points that correspond to 100 sets of data A with
µ = 6 and k = 0 values (few scatterers). These sets have
to be categorized as non-FDS, therefore one can say that the
pair vR = 2 and vS = 0.8 is performing better in this case
(minimizing false acceptance). In the two bottom images, same
vR and vS values are used, but for µ = 12 and k = 0 (many
scatterers, FDS). Both left and right discriminant functions
categorize all 100 sets correctly (minimizing false rejection).
This example shows that different vR and vS values affect the
performance of the discriminant function.

In order to find the optimal vR and vS values, we obtain
the probability that a set with properties µ and k be identified
as FDS, i.e. the (R,S) pair calculated for this set falls inside
the ellipse. Having such a pseudo pdf (pFDS) for all values
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Fig. 3. The elliptical discriminant function and 100 points corresponding
to 100 sets with different vR and vS values as labelled (each set has 5000
sample data A). In the two top figures, the sets are not FDS, since they
have few scatterers. Therefore, ideally they all have to be placed outside the
elliptical discriminant function. The two bottom figures the sets are FDS and
the ellipse is expected to encompass them.

of µ, k, vR and vS , it is possible to optimize vR and vS

to achieve a desired probability distribution. Obtaining pFDS ,
which requires a large number of simulations, is as follows.

1) For all combinations of k = 0, 0.1, 0.2 · · · 1.5 (16
values) and µ = 2, 3 · · · 60 (59 values) in the k − µ
plane (Figure 4), generate 100 sets of 5000 random A.
The result is 16×59×100×5000 random A, with each
A being calculated by a random walk.

2) Calculate R and S of each set for all combinations of
vR and vS .

3) pFDS = number of the (R,S) pairs that fall inside
the FDS discriminant ellipse. The resultant pFDS is a
function of vR, vS , µ and k.

Different optimum values for vR and vS can be found
depending on the criteria.

III. OPTIMIZING vR AND vS

Using pFDS and depending on the particular application,
different optimum values for vR and vS can be found. We
analyze three cases here.

A. Minimizing False Acceptance for Coherent Sets

To minimize false acceptance for the coherent data, one
can sum pFDS over the area C in Figure 4. Figure 5 top
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Fig. 4. The regions with µ < 10 and k > 1 are labelled by FS (few
scatterers) and C (coherent) respectively.

left shows the summation result. Generally speaking, the four
corners of the vR−vS plane should be avoided to prevent false
acceptance. The FDS discriminant ellipse along with (R,S) of
100 sets of 5000 sample A for three values of vR = 0.4, vS =
0.2, vR = 3, vS = 3 (bad choices) and vR = 1.2, vS = 0.6
(good choice) are also shown.
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Fig. 5. Top left: summation of pFDS over the area C in Figure 4 as a
function of vR and vS . The bigger number indicates bigger false acceptance
and therefore should be avoided. Top right and bottom left and right: The
R − S values of 100 sets of coherent data (each set has 5000 sample data
A) for different vR and vS values as labelled. A more reliable discriminant
function will classify less percentage of the points as FDS (bottom right).

B. Minimizing False Acceptance for Few Scatterer Sets

We sum pFDS over the area FS in Figure 4 to minimize
false acceptance of the sets with low scatterers (Figure 6 top
left). The low values for vR and vS suffer from high false
acceptance (Figure 6 top right and bottom left). A vR > 2

and vS < 1.5 value generates low false acceptance (Figure 6
bottom right).

v
S

v R

1 2 3

0.5

1

1.5

2

2.5

3

1000

1200

1400

1600

1800

2000

2200

4 4.2 4.4 4.6 4.8
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

R

S

µ=5,  k=0, v
R

=0.4, v
S
=0.4

2.2 2.3 2.4 2.5 2.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R

S

µ=5,  k=0, v
R

=0.8, v
S
=0.8

0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R

S

µ=5,  k=0, v
R

=2.6, v
S
=1

Fig. 6. Top left: summation of pFDS over the area FS in Figure 4 as a
function of vR and vS . The bigger number indicates bigger false acceptance
and therefore should be avoided. Top right and bottom left and right: The
R−S values of 100 sets of few scatterers data (each set has 5000 sample data
A) for different vR and vS values as labelled. A more reliable discriminant
function will classify less percentage of the points as FDS (bottom right).

C. Minimizing False Rejection for FDS Sets

To minimize the rejection of FDS sets, we sum pFDS over
the area FDS in Figure 4. Figure 7 shows the results.

IV. EXPERIMENTAL RESULTS

Based on the results of Figures 5 and 6, we conclude that in
order to minimize false acceptance of non-FDS sets vS has to
be approximately half of vR. We performed the R−S speckle
detection method with different vR and vS values on bovine
liver B-scans.

Figure 8 shows the image divided into patches of 100× 50
pixels. The R and S values of each patch is calculated. The
resultant point in the R − S plane is connected to the center
of the FDS discriminant ellipse and the ratio of the length of
the line segment to the radius of ellipse at the intersection of
the line segment and the ellipse is shown at the center of each
patch. A patch with the ratio less than 1 can be considered as
a FDS patch.

While the three different vR and vS values give similar
results for the patches that are close to FDS, the pair vR = 2
and vS = 1 yields larger values for patches that are clearly
not FDS (some samples marked by circle).
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Fig. 7. Top left: summation of pFDS over the area FDS in Figure 4. The
bigger number indicates better acceptance of the FDS. Top right and bottom
left and right: The R− S values of 100 sets of FDS data (each set has 5000
sample data A) for different vR and vS values as labelled. All three cases
perform well in accepting FDS.

V. DISCUSSION AND CONCLUSION

This work provides a complete simulation analysis for
finding optimum powers to classify speckles. In ultrasound
images, one patch includes a variety of backscattering effects:
FDS, few scatterers and coherent scatterers. A future research
direction would be to consider sets that have a mixture of
samples with different µ and k values. This is, however,
challenging since the percentage of each set should be relevant
to what is observed in real tissue. Therefore the sensitivity of
the results to the percentages of data with specific µ and k
value should be considered. The attenuation effect is not also
considered in this work, which is specifically important for
patchs that are elongated in the axial direction.

To achieve optimal results in the moment-based speckle
classification method discussed in this work, the sample power
in S has to be approximately half of the sample power in
R. The values for vR and vS have to be selected according
to specific concerns: minimizing false acceptance or false
rejection or a combination of both. The three optimization
criteria analyzed in this work provide a guideline for choosing
appropriate values. Proper power selection can result in 50%
more reliable classification.
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Fig. 8. Bovine liver B-scans at three different vR and vS values as labelled
(specular top and noisy bottom are discarded). The numbers at the center of
each patch indicates how close the R and S of the patch is to the FDS ellipse.
Big numbers are assigned to the patches that clearly are not FDS (marked by
a circle around the number) in the bottom image.
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