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Purpose: Central venous catheterization (CVC) involves inserting a catheter into a major vein such as the internal 
jugular or subclavian veins. Since major veins lay alongside major arteries this procedure has many risks, and the 
probability of complications is mainly dependant on the experience of the physician [1]. Not only does CVC pose 
many risks, but it also has a long and complex workflow that trainees have difficulty remembering. By using video 
to recognize the tasks in the CVC workflow, our goal is to provide instruction and feedback to trainees without 
needing an expert observer. The seven tasks that we attempt recognize are: applying the anesthetic, inserting the 
needle into the vessel, inserting the guidewire, cutting with the scalpel, using the dilator, inserting the catheter and 
finally removing the guidewire. We have previously attempted to use convolutional neural networks (CNN) alone 
to recognize the current task based solely on the tool in use from video [2]. While this approach was able to produce 
modest results, it is prone to error when the tools are obscured by the trainee’s hands. Here, we present a method 
for recognizing CVC workflow tasks from video that combines a CNN and a task identification policy trained 
using reinforcement learning.  

Methods: To recognize the tasks in the CVC workflow, we first use a convolutional neural network (CNN) to 
recognize the tool in use. The output from the CNN is then used to determine the current task according to a task 
identification policy that has been trained using reinforcement learning techniques. For our CNN, we use 
MobileNet as in our previous study. The network is trained on a collection of 133,135 images of the various tools 
used in the procedure. The task identification policy is then applied to the CNN output to determine the current 
task.  

We use reinforcement learning to create our task identification policy. Reinforcement learning is a form of machine 
learning that is concerned with action selection based on a cumulative reward scheme. In our case, the action that 
we wish to select is how to label the current task that the trainee is performing. We recognize the seven tasks and 
we also include the option that the user may be doing none of these actions. We model the problem as one of trying 
to find an optimal path through a grid, where each column in the grid represents a frame in the video, and the rows 
represent the tasks in the procedure. In this way, our action becomes selecting which row of the grid the agent 
should be in in the following frame. To train the policy we use Q-Learning, which is used to locate the correct task 
that will yield the highest reward. To predict the label for a novel frame, we use the policy of the most similar 
frame in the training set. The most similar frame is one that has the most similar CNN output and occurs at a 
similar time within the video. 

To evaluate our approach, we perform 7-fold cross validation. We use 6 videos for training a policy and test on 
the remaining video. Each video is composed of an average of 2294 frames and we predict the current task in each 
frame of the video. We measure the average accuracy of the prediction along with the precision and recall for each 
of the seven tasks. We also compare our results to our previous method of using only a CNN to recognize the tasks 
based on the tool in use. 

   
 

 

Figure 1. Optimal task recognition path. Figure 2. Predicted task recognition path. 



Results: The approach combining the CNN with Q-Learning achieved an average accuracy of 85%. This can be 
seen by the strong resemblance between the optimal path and the predicted path, an example of which can be seen 
in Figure 1 and 2 respectively. In contrast, the CNN alone had an average accuracy of 61%. The combined 
approach also achieved higher average precision and recall compared to the CNN alone (Table 1). 

Table 1. Precision and recall for all tasks. 

Task 
CNN + Q-Learning CNN 

Precision Recall Precision Recall 

Applying anesthetic 90% 84% 87% 87% 

Inserting Needle 74% 85% 97% 61% 

Inserting Guidewire 93% 91% 99% 91% 

Cut with Scalpel 82% 85% 94% 87% 

Use Dilator 81% 82% 98% 83% 

Insert Catheter 87% 89% 79% 78% 

Remove Guidewire 60% 61% 3% 76% 

No Task 88% 87% 71% 52% 

Average 82% 83% 79% 77% 

 

Conclusion: The approach combining a CNN and Q-Learning shows promise for recognizing the tasks in the 
CVC workflow. This approach was able to outperform the CNN alone in average accuracy, precision and recall. 
The strength of the combined approach lies in the inclusion of temporal information into the task prediction. This 
allows our approach to still predict the correct task, regardless of whether the CNN produces a correct 
classification. While 85% accuracy may not seem particularly high, the goal is to use this approach to recognize 
tasks in real-time. In real-time we are able to classify multiple frames per second. As long as we can recognize the 
correct task in at least one frame per second, there will be little impact when identifying the transition between 
tasks. 
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