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Using fuzzy logics to determine optimal oversampling factor for voxelizing RT structures in DVH computation 

Abstract. Voxelizing three-dimensional surfaces into binary image volumes is a frequently performed 

operation in medical applications. In radiation therapy (RT), dose-volume histograms (DVH) calculated 

within such surfaces are used to assess the quality of an RT treatment plan in both clinical and research 

settings. To calculate a DVH, the 3D surfaces need to be voxelized into binary volumes. The voxelization 

parameters may considerably influence the output DVH. An effective way to improve the quality of the 

voxelized volume (i.e. increasing similarity between that and the original structure) is to apply 

oversampling to increase the resolution of the output binary volume. However, increasing the 

oversampling factor raises computational and storage demand. This paper introduces a fuzzy inference 

system that determines an optimal oversampling factor based on relative structure size and complexity, 

finding the balance between voxelization accuracy and computation time. The proposed algorithm was 

used to automatically calculate oversampling factor in four RT studies, two phantoms and two real 

patients. The results show that the method is able to find the optimal oversampling factor in most cases, 

and the calculated DVHs show good match to those calculated using manual overall oversampling of two. 

The algorithm can potentially be adopted by RT treatment planning systems based on the open-source 

implementation to maintain high DVH quality, enabling the planning system to find the optimal treatment 

plan faster and more reliably. 

Keywords: Voxelization, Fuzzy logics, Radiation therapy, Dose volume histogram. 

 

1. Introduction 
Radiation therapy (RT) is a form of cancer treatment, which uses high-energy radiation to kill cancer cells 

by damaging their DNA. However, the radiation can also kill healthy cells, so carefully designed radiation 

plans need to be designed that targeting mainly the cancerous cells. A basic tool for evaluating radiation 

therapy (RT) treatment plan quality is the dose-volume histogram (DVH) that provides dose information 

for target and organ-at-risk structures that is easily assessable by the radiation treatment care providers. 

As DVH and derived metrics often form the objective function in automatic treatment plan optimization, 

their accuracy is important to ensure that indeed the most optimal plan is selected. The task group 

commissioned by the American Association of Physicists in Medicine to identify features to include in RT 

quality assurance considered DVH one of such features to be analyzed (Fraass et al. 1998). The role and 

importance of DVH in RT treatment planning have been shown by several research groups as well (Nelms 

et al. 2015, Corbett et al. 2002, Sunderland et al. 2016). 
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An early step in DVH calculation is converting the structures that are stored in series of 2D planar contours 

into 3D binary volumes, i.e. voxelization. These planar contours are often converted into 3D surfaces as a 

pre-processing step so that voxelization can be performed more easily. Although the voxelization step 

itself is rather straightforward, there are certain decisions to be made that may significantly influence the 

resulting DVH. One such decision is whether to include each border voxel, i.e. voxels only a part of which 

falls inside the structure. This is an especially important factor in areas of high dose gradient (often at the 

edges of organs-at-risk in an effort to spare the structure), where inclusion or exclusion of a single border 

voxel may influence the DVH in such a way that it compromises the treatment plan optimization process, 

potentially resulting in a sub-optimal plan being selected by the planning system (Leasure et al. 2017). 

Another decision to be made is the resolution of the grid that is used for voxelization. The accompanying 

dose distribution volume is typically used as a grid reference, but its resolution is unsatisfactory in case of 

smaller or more complex structures, where a high ratio of the voxels are border voxels. Using a too low 

resolution voxelization grid can introduce several types of artifacts in the DVH, potentially distorting DVH 

metrics used in plan optimization. These artifacts are most likely to appear in high dose gradient areas, 

which means that the targets and the most endangered organs at risk are most prone to produce 

inaccurate metrics, potentially steering the plan optimizer away from the real optimum. Figure 1.a shows 

the “staircase” artifact, caused by the low number of voxels taking part in the calculation, and Figure 1.b 

shows consistent shift, which is caused by a difference in coverage at the borders. As the grid resolution 

directly influences the proportion of border voxels, which we established above as critical regarding the 

measurements, by increasing the grid resolution, the DVH inaccuracies can be mitigated. In this situation, 

dividing the reference voxels into smaller equally sized voxels (i.e. oversampling) seems to be a good idea, 

because then the borders of small or complex structures can be approximated more accurately. 

The number of divisions along each axis is called the oversampling factor. Simply increasing the 

oversampling factor for each structure, however, is not feasible, because it poses a greater computational 

and storage demand, which may increase the processing time beyond the clinically acceptable range (time 

is important because thousands of DVHs are calculated in each plan optimization process). To mitigate 

this issue, determination of the oversampling factor for each structure is necessary. Application of such 

per-structure voxelization grid resolution was also suggested by Drzymala et al. (1991) in their overview 

paper about DVHs. Although manual selection of these factors is a possibility, it would not be feasible due 

to i) the added unnecessary complication to the planning process, ii) the required additional staff training, 

and iii) its time requirements beyond clinical applicability. 
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Fig. 1  Representative DVHs from a head and neck analytical dataset to illustrate the potential artifacts associated with 
voxelization of structures at low resolution (2.5mm isotropic, typical dose volume spacing in clinical setting – solid line) and high 
resolution (0.25mm isotropic – dashed line). The resolution effects are more pronounced in small sized structures than of large 
structures. A: Staircase effect on histogram of an optic lens (blue lines) and eyeball (maroon lines), caused by the low number of 
voxels (samples) available for that structure. B: Consistent shift on the histogram of an optic chiasm (pink lines), brain stem 
(brown), and brain (green), caused by the difference of coverage of the structure’s border on the dose volume 

Extensive research has been performed on the properties of DVHs in terms of their usability in radiation 

oncology. The most active research area is the aforementioned treatment plan optimization, where DVHs 

are used to evaluate potential plans to automatically find the optimal plan (e.g. Kirisits et al. 2005; Babier 

et al. 2018, Mountris et al. 2019). DVHs are often used to compare treatment techniques (e.g. Das et al. 

2008; Hazell et al. 2016, Makishima et al. 2019). Its utility in outcome prediction has been assessed in 

numerous publications as well, as summarized by Rodrigues et al. (2004) and Rose et al. (2009). Limited 

literature exists, however, about the accuracy of DVHs in terms of various structures and dose grid 

resolutions: the most relevant publications are the original paper about DVHs by Drzymala et al. (1991), 

and the article by Nelms et al. (2015), the validation dataset from which is used to evaluate the proposed 

method in section 3. Notable research in the area includes the method Kooy et al. (1993) suggesting a 

non-uniform sampling formalism, the article of Corbett et al. (2002) investigating the effect of voxel size 

on DVH accuracy for a specific procedure, and the paper of Sunderland et al. (2016), which can be 

considered the precursor of this research. 

The topic of voxelization has also been investigated in depth. Efficient methods have been proposed using 

graphics cards to maximize performance (e.g. Eisemann et al., 2008; Schwarz et al., 2010). Specialized 

algorithms have been proposed to enforce particular geometric properties, such as topology (Huang et 

al., 2014) or sharp edges (Novotný et al., 2010). To our knowledge, however, no publication discusses 

accuracy in terms of voxelization grid resolution, may it be constant or variable. 
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The objective of this research is to automate the selection of the optimal oversampling factor to avoid 

both inaccurate voxelizations potentially resulting in erroneous treatment plan optimization and clinically 

unfeasible computation time. We propose a fuzzy-based method for calculation of the oversampling 

factor, so that the DVH calculation process only uses high oversampling factors in case of the 

aforementioned problematic small or complex structures, but uses the standard reference grid (factor of 

one) for the structures that are relatively insensitive to the grid resolution, or even subsamples the volume 

for especially large structures (factor of one half). 

Specifically, this research contributes to data science innovation in the following ways: 

• Introduce the concept of per-structure voxelization grid (determined by the oversampling factor), 

optimized for the relevant geometric properties of volumetric structures 

• Per-structure voxelization parameters allow accurate quantification of metrics for each structure, 

while keeping the computational burden low 

• Introduce a fuzzy inference system for calculating the per-structure oversampling factor 

The hypothesis is that the proposed method finds the optimal oversampling factor in various meaningful 

test cases. It aims to increase DVH quality in a clinically feasible way, while leaving the planning workflow 

unchanged. The proposed system and its details are presented in section 2. Evaluation of accuracy and 

speed are discussed in section 3: the calculated results are compared against baselines determined by 

experts in four RT studies, followed by validation against a standard synthetic dataset, then against 

commercial and research software. Summary of the results and future work are discussed in section 4. 

2. Methods 
A few factors may influence the choice of the magnitude of oversampling, the two most significant of 

which are relative structure size and complexity. The smaller the structure, the greater the ratio of the 

border voxels among all structure voxels, which means greater uncertainty of volume measurement and 

dose value inclusion (or exclusion). In these cases we can increase the accuracy by increasing the 

oversampling factor. In the case of large structures the opposite is true, so using low oversampling values 

can be used to reduce computation time, while not sacrificing accuracy. In this work we measure accuracy 

based on comparison of DVHs calculated on the structure images voxelized using the proposed method, 

and DVHs calculated by third party applications. This is necessary because commercial treatment planning 

systems that serve as validation baseline do not give access to intermediate data such as voxelized 

structure images. The other deciding factor is structure complexity, as it also influences the ratio of border 
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voxels. If a structure is simple, then most of the included voxels fall inside the volume, while if it is complex, 

then the border voxels are more emphasized. 

It can be noted that we have used terms such as “relatively small”, and “complex” which may be 

straightforward to decide for a human, but less quantifiable. A natural choice of method for making a 

limited-choice decision based on relatively subjective terms is the use of a fuzzy inference system. 

2.1. Voxelization pipeline 
RT structures are stored in series of 2D planar contours, which can be processed in different ways so that 

they properly enclose the contoured volume for voxelization. To achieve the highest similarity between 

the contours and the voxelized volume, we chose to perform the intermediate step of converting the 

planar contours to a closed surface (Sunderland et al. 2015). This step ensures out-of-plane interpolation, 

handles structures with branches and holes, and applies end-capping as described by Nelms et al. (2015). 

The only input of the triangulation algorithm is the contour set. 

The closed surface created using the first step is then used for the voxelization, during which each voxel 

in the oversampled grid is evaluated whether they are inside or outside the surface. This step has a 

reference image geometry parameter that is set to be the dose grid, and an oversampling factor 

parameter, which is determined by the proposed fuzzy-based method. 

2.2. Relative structure size 
Relative structure size (RSS) is the primary metric based on which the optimal oversampling factor is 

calculated. We chose to define it as the cubic root of the ratio of the structure volume and the volume of 

one voxel in the reference dose image, i.e. the number of voxels the structure spans on average along 

each axis. 

 

𝑅𝑆𝑆 = √
𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑉𝑜𝑙𝑢𝑚𝑒

𝑣𝑜𝑥𝑒𝑙𝑉𝑜𝑙𝑢𝑚𝑒

3

 

(1) 

The structure volume in Equation 1 is the total volume of the structure in cubic mm, and can be calculated 

from the closed surface intermediate representation. Voxel volume is the volume of a single voxel, which 

can be determined as the product of the spacing values along the three axes. Four fuzzy sets describing 

the relative structure size are shown in Figure 2: 

i) Very small – optic lens, optic chiasm, optic nerve, hotspot isodose volume, etc. 

ii) Small – brain stem, eyeball, spinal canal, etc. 

iii) Medium – bladder, heart, brain, group of small organs, etc. 
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iv) Large – body, lung, group of medium-sized organs, large isodose volume, etc. 

2.3. Structure complexity (compactness) 
The topic of quantifying complexity of spatial objects has been studied by several groups. Brinkhoff et al. 

(1995) proposed a 2D contour complexity calculation method mainly for geographical formations. 

However, the stack of contours representation is a legacy format used in DICOM RT (Mildenberger et al., 

2002), and modern formats such as DICOM SEG or research formats are represented as volumes or surface 

meshes. Furthermore, complexity also needs to be measured in the out-of-plane direction. O’Rourke et 

al. (1985) developed a method for finding minimal enclosing boxes for shapes, which could potentially be 

useful to apply for complexity measure computation, but aside from the same problem mentioned above, 

it would also be computationally too complex. Other approaches exist, such as the method of Rigau et al. 

(2005), which uses mutual information to measure object complexity, but it is also too computationally 

demanding for a task where we actually strive to save computation time by calculating these measures. 

Another possibility for quantifying complexity would be to compute a similarity metric – Dice similarity 

(Dice 1945) or Hausdorff distance (Huttenlocher et al. 1993) – of the structure and the sphere centered 

at the structure’s center of mass, with a volume equal to that of the structure. However, these similarity 

measures require voxelized inputs, so using them would be a major overhead. 

The measure of complexity we chose for our algorithm is derived from the work of Alyassin et al. (1994), 

which is specifically designed for medical data, and is implemented in the VTK toolkit (Schroeder et al. 

2006) in the filter called vtkMassProperties. This algorithm calculates the normalized shape index (NSI, 

see Equation 2 and Figure 5), which characterizes the deviation of the shape of an object from a sphere. 

NSI is calculated from the surface area and the volume of the structure as 

 

𝑁𝑆𝐼 =  
√𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎

√𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑉𝑜𝑙𝑢𝑚𝑒
3

(

 
√4Π 3⁄
3

√2Π
)

  

(2) 

A sphere's NSI is one by definition due to the normalization expression in Equation 2. The NSI is always 

greater than or equal to one for complex structures. In experiments conducted on typical anatomical 

structure sets from the SlicerRT data repository (Pinter et al. 2012) (which includes the datasets detailed 

below) the NSI values fell between 1 and 2. So that the minimum of the complexity measure lies at 0 

(instead of 1 which is the minimum of NSI), we define complexity as 

 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  𝑁𝑆𝐼 − 1 (3) 
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For example, complexity of the eyeballs is zero, and of branching vessels it is 0.6. Two fuzzy sets were 

defined to describe the complexity of a structure: Low and High (see Figure 2). The fuzzy set parameters 

were determined based on metrics calculated on a set of structures that were subjectively classified. 

2.4. Output oversampling factor 
On one hand, too low oversampling factors make an overly crude voxelization grid resulting in 

unacceptable data loss even for the largest and simplest structures, while the computational gain is less 

significant with every decrease of the factor. On the other hand if a too large factor value is chosen, the 

voxelization step will take too long to be feasible, while the geometric gain will become negligible. Thus 

four possible values were chosen for oversampling factors: ½, 1, 2, and 4. The fuzzy sets of the input 

measures and the output oversampling factor are reviewed in Figure 2. The input membership functions 

represent the degree of membership of each structure’s quantified property in the defined fuzzy sets.  

 
Fig. 2  Fuzzy memberships for the input measures and for the output oversampling factor used in the voxelization process 
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The membership functions have been established based on the measured metrics (RSS and complexity) 

and the subjective size and complexity assignments made by the expert clinicians determining the 

baselines. The system can be considered robust overall against tuning of the parameters. One exception 

is the separation between the Very small and Small structure size classes, moving which by a value of 1 

may mean the difference between an oversampling factor of 2 or 4 for some structures. Thus this value 

was chosen very carefully considering the structures in the baseline datasets. 

2.5. Fuzzy inference system 
The two most widely used fuzzy inference systems (Lee 1990) are the Mamdani Model and the Sugeno 

Model. The primary difference between the two models is in the method for determining a final output 

value. In a Mamdani Inference System the output of each inference rule is a fuzzy set. To obtain a single 

output value the output sets are combined and a defuzzification operator is applied. In a Sugeno Inference 

System the output of each inference rule is a crisp scalar, typically computed as a linear combination of 

the input variables. The final output value is a weighted average of the output values of the inference 

rules, where the weights are the degree of applicability of the rules. The Mamdani Model allows for 

greater flexibility and easier design and comprehension, while the Sugeno Model offers greater 

computational efficiency (though determining the proper coefficient values in the linear combinations is 

a potentially difficult problem). In this paper we choose to use a Mamdani Inference System to take 

advantage of the ease of designing the fuzzy output sets and the greater flexibility offered by the 

defuzzification stage of the computation. The number of rules we use is small and the computational 

demands of defuzzification are acceptable. The system defines the following rules: 

i) If RSS is Very small, then Oversampling is Very high 

ii) If RSS is Small and Complexity is High then Oversampling is High 

iii) If RSS is Medium and Complexity is High then Oversampling is High 

iv) If RSS is Small and Complexity is Low then Oversampling is Normal 

v) If RSS is Medium and Complexity is Low then Oversampling is Normal 

vi) If RSS is Large, then Oversampling is Low 

First, the input measurements are fuzzified using the membership functions, i.e. the measured exact value 

is converted into membership value for each set. Next, the rules are applied on them, yielding the output 

(consequent) functions that are clipped to the membership values, and finally their center of mass is 

computed, which is the output “crisp” value. This crisp resulting oversampling factor power is rounded, 

and the actual oversampling factor is calculated as follows: 
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 𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 = 2𝑟𝑜𝑢𝑛𝑑(𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝑀𝑎𝑠𝑠) (4) 

Seeing how the inference system works in practice helps in understanding. We choose to illustrate the 

process through the example of the Orbit Lt structure of the ENT dataset as seen in Table 1. The input 

crisp measurements are 8.16 for RSS, and 0.09 for complexity. The 8.16 crisp RSS value yields the fuzzy 

membership values 0.78, 0.22, 0, and 0 for the RSS fuzzy sets Very small, Small, Medium, and Large, 

respectively (as can be derived from the functions in Figure 2), and 1 and 0 for the Low and High complexity 

sets, respectively. Based on the six rules, the consequent values that are used for clipping the output 

functions are 0.78 for the first rule, 0 for the second rule (because RSS is Small to the degree of 0.22, but 

complexity is High to the degree of 0, and the ‘and’ operator takes the minimum of the operands in the 

Mamdani system), 0 for the third rule, 0.22 for the fourth rule, and 0 for the last two rules. After applying 

the consequent values to the output sets based on the rules, the consequent functions are formed as seen 

in Figure 3. The center of mass of the consequent functions 1.26, and so Equation 4 yields the value of 2, 

which is the defuzzified output. 

 
Fig. 3  Consequent functions for the Orbit Lt structure used in the example. The first rule resulted in clipping the Very high 
output function to 0.78, the fourth rule clipped the Normal function to 0.22, and the rest of the rules resulted in clipping to 0. 
The center of mass of these consequent functions is 1.26 

 

2.6. Implementation 
The fuzzy inference system was initially implemented as part of the SlicerRT toolkit (Pinter et al. 2012), 

which is a general radiation therapy research toolkit. It was later integrated into its host application 3D 

Slicer (Fedorov et al. 2012), an open-source medical image analysis and visualization platform. The fuzzy 

oversampling calculation algorithm was implemented as one C++ class (vtkCalculateOversamplingFactor) 

that integrates in the general SlicerRT contour handling mechanism and the DVH module. 

The only inputs of the algorithm are the intermediate closed surface model and the reference dose image 

geometry. The steps of the algorithm are illustrated in Figure 4. 
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Fig. 4  System diagram of the proposed system. Boxes: algorithms. Orange cylinders (left): input data. Green cylinders (top): 
parameters of the fuzzy inference system. Purple cylinder (right): output oversampling factor 

The system consists of three computational components: relative structure size calculation (see section 

2.2), structural complexity calculation (normalized shape index metric, see section 2.3), and the fuzzy 

inference system discussed in section 2.5. The calculation of the size and complexity metrics involves a 

single run of the vtkMassProperties algorithm on the input surface mesh. The computational complexity 

of this execution is O(n), where n is the number of triangles in the surface mesh (see Figure 5). 

 

Fig. 5  Algorithm calculating the normalized shape index (NSI), determining complexity measure, see Equations 2 and 3. The 
operations “calculate” and “increment” only use basic operations and square root. Hence the algorithmic complexity is O(n). 

The algorithm is discussed in detail in the paper of Alyassin et al. (1994), and the source code is available 

in VTK1. The outputs of this algorithm are used directly for calculating the structure size and complexity 

metrics (see Equations 2 and 3), not adding additional computational complexity. The execution of fuzzy 

inference system mainly involves operations on linear piecewise functions (i.e. functions consisting of 

linear segments). The cost of these operations is O(n), where n is the number of segments. This number 

in the current implementation ranges from 2 to 4, so its computational complexity is negligible. The overall 

 
1 https://github.com/Kitware/VTK/blob/master/Filters/Core/vtkMassProperties.cxx 

https://github.com/Kitware/VTK/blob/master/Filters/Core/vtkMassProperties.cxx
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complexity of the system is thus O(n), as a function of the number of triangles in the input structure 

surface mesh. 

3. Experimental Results and Discussion 
Four RT studies were used to test the method: a treatment plan study for the RANDO® prostate phantom 

(referred to as “PROS”), a study for the RANDO® ear-nose-throat phantom (“ENT”), a treatment plan for 

a real patient that contains elaborate contours (“Branching”), and another real patient plan for 

Fractionated Stereotactic Radiation Therapy (FSRT) treatment that has small targets and high dose 

gradients (“FSRT”). The results are shown in Table 1. 

Structure Approximate shape RSS 
Subjective 

size 
Complexity 

measure 
Subjective 
complexity 

Oversampling 
factor 

PROS               

Bladder spherical 19.59 Med 0.04 Low 1 1 

Rectum cylindrical-vertical 12.53 Med 0.27 Med 2 1 * 

Body cylindrical 88.14 Large 0.09 Low 0.5 0.5 

Femoral Head Lt spherical 14.68 Med 0.03 Low 1 1 

ENT               

Brain spherical 41.47 Med/Large 0.15 Low 1 1 

Brain Stem 
cylindrical-vert. 
(banana) 

12.63 Small 0.3 Med 2 1 * 

Lens Lt hemisphere 2.06 Very small 0.02 Low 4 4 

Optic Chiasm "bone-shaped" 4.19 Very small 0.05 Med 4 4 

Optic Nerve Lt cylindrical-horizontal 4.82 Very small 0 Low/Med 4 4 

Orbit Lt spherical 8.16 VeryS/Small 0.09 Low 2 2 

PTV1 spherical 20.10 Med 0.08 Low 1 1 

Branching               

Body cylindrical 145.70 Large 0.38 Med 0.5 0.5 

Kidney Rt kidney 25.76 Med 0.23 Low/Med 2 1 * 

Vessels branching cylindrical (Y) 27.13 Med 0.99 High 2 2 

Spinal Canal cylindrical-vertical-long 15.65 Small/Med 0.52 Med/High 2 2 

Liver liver 48.50 Med/Large 0.47 Med/High 1 1 

FSRT               

Body cylindrical 92.49 Large 0.15 Low 0.5 0.5 

Brain spherical 59.78 Med/Large 0.08 Low 1 1 

Brain Stem cylindrical 15.96 Small 0.2 Med 1 1 

Cochlea Lt cylindrical 6.03 Very small 0.06 Low 4 4 

GTV1 32.5/5 spherical 7.26 VeryS/Small 0.11 Low 4 4 

GTV2 30.0/5 spherical 4.51 Very small 0.08 Low 4 4 

Lens Lt hemisphere 3.34 Very small 0.16 Low 4 4 

Optic Chiasm bone-shaped 4.26 Very small 0.34 Med 4 4 
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Optic Nerve Lt cylindrical-horizontal 5.14 Very small 0.31 Low/Med 4 4 

Orbit Lt spherical 10.50 VeryS/Small 0.02 Low 2 2 

PTV1 spherical 10.17 VeryS/Small 0.06 Low 2 2 

PTV2 spherical 7.28 VeryS/Small 0.04 Low 4 4 

Skin thin layer 51.08 Med/Large 1.35 High 1 1 

Spinal Canal 
cylindrical-vert. 
(banana) 

14.27 Small 0.31 Med 1 1 

Table 1. Test structures, their computed and subjectively determined measures, and their computed oversampling factors. 
Oversampling factor color-codes: blue – baseline, green – perfect match, yellow (*) – not optimal but acceptable. 

 

Baseline oversampling factors for each test structure were determined as consensus by several clinicians 

in the cancer program at the Kingston Health Sciences Centre. Each of the participating clinicians can be 

considered an expert in RT treatment planning, and the decision was made based on their personal 

experience. The decision regarding the optimal oversampling factor involved considering the following 

properties of the individual structures: typical size and complexity, variance in size and shape within the 

patient population, and proximity of the structure to high dose gradients. The calculated oversampling 

factors using the three different surface representations were compared to the consensus clinical 

decision. The results show good matching overall, with most of the cases matching perfectly, few 

acceptable deviations, and no failures. 

Oversampling factor calculation was also tested on the synthetic test dataset used by Nelms et al. (2015). 

The four dose volumes in the dataset had the resolutions of 0.4x0.4x0.2mm3, isotropic 1mm, 2mm, and 

3mm. The 50 structures were converted to closed surface as described in 2.1. The system calculated 

oversampling factors for all dose-structure pairs. The results are shown in Table 2. 

Dose resolution 
(mm) 

Number of structures with oversampling factor 

0.5 1 2 4 

0.4 x 0.4 x 0.2 20 30 - - 

1 x 1 x 1 - 50 - - 

2 x 2 x 2 - 20 30 - 

3 x 3 x 3 - - 6 44 

Table 2. Oversampling factors calculated on the Nelms et al. 2015 dataset. Each cell 
contains the number of structures being assigned an oversampling factor paired with the 
different dose volumes. 

 

Unsurprisingly, the resulting oversampling factors were mostly influenced by the resolution of the 

reference dose volume. In case of the dose volumes where one oversampling factor was assigned to some 

structures and another to others, the lower oversampling factor was calculated without exception for 
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cylinder structures created on low resolution dose volumes. One reason for this divide is that these 

structures were considered low complexity due to end-capping, which added a top and bottom circular 

“slice” with smaller diameter. The other reason is that the cylinders contain a larger number of voxels 

than the spheres and cones, and these two factors contributed to lower outputs. We can say that the 

results obtained on the validation datasets show oversampling values as expected. 

The DVHs computed using automatic oversampling factors and a constant manual factor of two were also 

compared to results of third party applications via SlicerRT’s DVH comparison module. The comparison 

algorithm follows the gamma-like DVH comparison method described by Ebert et al. (2010). We used the 

results from two applications, one being Computational Environment for Radiotherapy Research (CERR) 

(O’Deasy et al. 2003), a popular Matlab-based tool, and Eclipse® (Varian Medical, Palo Alto, CA, USA), a 

commercial RT treatment planning system that is used in many hospitals and clinics all over the world. 

According to the CERR documentation no oversampling is performed, which means the software uses a 

factor of 1. Unfortunately we were not able to access such documentation for Eclipse®, and the software 

gives no information about the DVH calculation details. However, its DVH calculation has been validated 

(Gossman et al. 2010), and was found to satisfy the requirements set by the authors, so can be considered 

a suitable baseline for this study. The comparison results (see Table 3) show that the new method utilizing 

automatic oversampling factor calculation provides a similar match to the DVHs calculated by the third-

party applications than the use of a fixed oversampling factor of two. In most comparisons the automatic 

oversampling factor performs better than the fixed factor of two, however, general improvement cannot 

be concluded. The goal of the comparison was to provide a wide range of accuracy values for better 

comparison, which was achieved by applying very strict tolerance values to be able to detect even the 

smallest deviations (1%/1mm instead of the typical gamma tolerances 3%/3mm). 
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Structure 
Eclipse® w/ 
Auto 

Eclipse® w/ 
Manual 

CERR w/ 
Auto 

CERR w/ 
Manual 

PROS Overall 95.74 97.53 99.93 97.68 
BODY 100 100 100 100 
Bladder 100 100 100 100 
Femoral Head Lt 99.90 99.90 99.58 100 
Femoral Head Rt 98.14 99.90 100 100 
PTV 99.61 99.61 100 100 
Rectum 76.76 85.74 100 86.08 
ENT Overall 95.64 95.23 95.60 95.82 
BODY 100 100 100 100 
BRAIN 100 100 100 100 
BRSTEM 100 99.04 93.31 100 
CTV 100 100 100 100 
GTV 98.95 98.95 99.04 99.04 
Lens Lt 98.56 98.56 98.73 98.73 
Lens Rt 99.52 99.52 99.36 99.68 
Optic Chiasm 87.74 82.18 85.67 82.48 
Optic Nerve Rt 86.49 86.59 85.99 85.99 
Optic Nerve Lt 85.82 85.73 85.67 85.67 
Orbit Lt 98.08 98.08 99.73 98.73 
Orbit Rt 98.95 98.95 98.73 98.73 
PTV 100 100 100 100 
optBRAIN 100 100 100 100 
optOptic 90.42 90.42 98.41 98.41 
FSRT Overall 97.14 94.24 95.65 95.07 
Body 100 100 100 100 
Brain 100 100 100 100 
Brain Stem 100 100 100 100 
Cochlea Lt 99.17 99.14 98.97 98.97 
Cochlea Rt 99.53 99.51 99.48 99.48 
GTV1 100 100 93.81 92.78 
GTV2 95.87 96.28 93.30 93.30 
Lens Lt 93.19 93.79 92.27 92.27 
Lens Rt 96.28 96.75 95.36 95.36 
Optic Chiasm 94.36 94.54 90.72 88.66 
Optic Nerve Lt 78.15 79.42 79.90 73.20 
Optic Nerve Rt 98.18 98.42 92.78 92.78 
Orbit Lt 100 100 99.48 99.48 
Orbit Rt 100 100 97.42 97.42 
PTV1 97.14 97.14 97.94 97.94 
PTV2 96.86 95.53 90.21 89.69 
Skin 100 100 100 100 
Spinal Canal 99.84 99.87 100 100 

Table 3. DVH comparison for SlicerRT manual oversampling of 2 (columns with Manual) 
and automatic oversampling (columns with Auto), to CERR and Eclipse® 

 

The computation time of the oversampling calculation algorithm itself was also assessed, by measuring 

the time needed to perform the two input measurements, and the time needed to run the fuzzy inference 

system. 178 measurements were made with all the three types of input surfaces and all the test 

structures. The summarized average computation times can be seen in Table 4. 
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 Total time (ms) Measures (ms) Fuzzy rules (ms) 
Mean 16.5 5.9 10.6 
Std.Dev. 16.1 14.5 4.1 
Min 6.0 0.0 5.0 
Max 112.0 99.0 37.0 

Table 4. Overall averaged time measurements (in milliseconds) for calculating the 
automatic oversampling factor on each structure listed in Table 1. 

 

Comparison of the computation times in SlicerRT of the DVHs with automatic oversampling and manual 

oversampling of two was also performed. The measured times include calculation of the oversampling 

factor (in case of automatic), voxelization using the oversampling factor, and calculation of the DVH itself. 

Each calculation was run five times. The mean and standard deviation, as well as the improvement is 

summarized in Table 5. It can be seen that the computation times improved in every case, and in case of 

the datasets with limited number of structures falling in the very small category, the time needed to do 

the entire calculation was halved. 

  Auto (s)  Manual (s) Improvement 
in mean (%)   Mean Std.Dev.  Mean Std.Dev. 

PROS  0.93 0.04  1.56 0.02 0.40 
ENT  1.40 0.01  2.74 0.07 0.49 
Branching  5.52 0.03  11.90 0.29 0.54 
FSRT  16.53 0.18  22.46 1.00 0.26 
Table 5. Comparison of calculating DVH in SlicerRT using automatic and manual oversampling. The 
measured times include: calculation of the oversampling factor (only for automatic); voxelization 
using the oversampling factor; calculating the DVH 

 

3D Slicer can be freely downloaded2 for Windows, Mac, and Linux 64-bit operating systems. Although the 

inference system and the voxelization algorithms are included in 3D Slicer core, the SlicerRT extension is 

needed to be able to use it for DVH calculation. It can be installed from the Extension Manager in 3D Slicer. 

SlicerRT versions 0.15.2 and above contain the described method. Information about usage can be found 

on the SlicerRT website3. The software comes with BSD-style license, so it is freely usable, modifiable and 

distributable. 

3.1. Discussion 
We recognize that the most robust validation setting would be against the corresponding components of 

commercial treatment planning systems, such as Eclipse® or Pinnacle³ (Philips, Koninklijke Philips N.V, 

Netherlands). However, without disclosed implementation details or source code, the atomic algorithms 

 
2 http://download.slicer.org 
3 http://slicerrt.org 

http://download.slicer.org/
http://slicerrt.org/
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are not accessible for comparative execution. Thus it is unfeasible to assess DVH quality without the 

knowledge of the properties of the structure volume data, which is the direct input of the DVH calculation. 

Similarly, it is also impossible to compare computation speeds, as although thousands of DVHs are 

calculated in each plan optimization process, DVH calculation happens among many other operations, 

without the possibility to isolate the DVH calculation and related operations. The proprietary nature of 

these software also prevents showing any improvements beyond their capabilities in the comparative 

validation. The DVHs calculated using the proposed method for very small and/or high complexity 

structures, which are most prone to data loss during voxelization are potentially more accurate than the 

baselines used for validation, so any improvement manifests itself as discrepancy to these baselines. 

A possible improvement could be using other complexity measures. The current one only calculates a 

global complexity measure, but we may also be interested in local complexity, so that locally highly 

complex regions (“zig-zags”) are not oversimplified during voxelization. 

It would be also interesting to see how odd oversampling values perform versus the currently used even 

numbers. As the paper by Nelms et al. (2015) suggests that using odd values ensures that “no slabs of 

‘new’ voxels (that will need to be interpolated) are centered exactly between the original dose plane 

locations”, this consideration might further improve the accuracy of the voxelized structure volumes. For 

accuracy measurement, a vertex-based Hausdorff evaluation would be also useful in addition to 

comparative DVH validation. 

4. Conclusion 
Accurate and fast DVH calculation is essential for dose evaluation in both clinical and research settings. It 

is even more so if inverse treatment planning is performed based on thousands of calculated DVHs, where 

small or complex structures involved in the dose-volume objectives may skew the optimization process 

due to voxelization inaccuracies, potentially resulting in sub-optimal treatment plans. 

A fuzzy-based method was implemented for automatically determining oversampling factor for each 

processed structure to facilitate accurate DVH calculation while keeping computational cost reasonable. 

The results show that the proposed algorithm reliably identifies the small and complex structures on 

various input types and on a wide range of clinical structures including the extreme cases. Considerable 

savings of computation times can be achieved by using the oversampling factor automatically determined 

by the fuzzy inference system, while keeping the DVH accuracy very similar, compared to the assessed 

third party applications. 
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Widening the range of possible output oversampling factors in the future may show further improvements 

in accuracy. Also, including analytical datasets besides clinical datasets in DVH validation would increase 

confidence in the accuracy of the system. 

In conclusion, the proposed method potentially facilitates more dependable dose-volume based 

optimization methods, while yielding a good balance between metric accuracy and calculation time, both 

critical in the clinic. 
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