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Abstract 

Background and Objective: Segmentation is a ubiquitous operation in medical image computing. Various 

data representations can describe segmentation results, such as labelmap volumes or surface models. 

Conversions between them are often required, which typically include complex data processing steps. We 

identified four challenges related to managing multiple representations: conversion method selection, 10 

data provenance, data consistency, and coherence of in-memory objects. Methods: A complex data 

container preserves identity and provenance of the contained representations and ensures data 

coherence. Conversions are executed automatically on-demand. A graph containing the implemented 

conversion algorithms determines each execution, ensuring consistency between various 

representations. The design and implementation of a software library are proposed, in order to provide a 15 

readily usable software tool to manage segmentation data in multiple data representations. A low-level 

core library called PolySeg implemented in The Visualization Toolkit (VTK) manages the data objects and 

conversions. It is used by a high-level application layer, which has been implemented in the medical image 

visualization and analysis platform 3D Slicer. The application layer provides advanced visualization, 

transformation, interoperability, and other functions. Results: The core conversion algorithms comprising 20 

the graph were validated. Several applications were implemented based on the library, demonstrating 

advantages in terms of usability and ease of software development in each case. The Segment Editor 
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application provides fast, comprehensive, and easy-to-use manual and semi-automatic segmentation 

workflows. Clinical applications for gel dosimetry, external beam planning, and MRI-ultrasound image 

fusion in brachytherapy were rapidly prototyped resulting robust applications that are already in use in 25 

clinical research. The conversion algorithms were found to be accurate and reliable using these 

applications. Conclusions:  A generic software library has been designed and developed for automatic 

management of multiple data formats in segmentation tasks. It enhances both user and developer 

experience, enabling fast and convenient manual workflows and quicker and more robust software 

prototyping. The software’s BSD-style open-source license allows complete freedom of use of the library. 30 
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1. Introduction 

Segmentation, which is the process of delineating structures of interest, is a critically important task in 

many medical image computing and visualization workflows: it enables quantitative analysis inside 

structures such as organs and malignancies, facilitates therapy planning, and provides better 35 

understanding of patient anatomy. Various data structures are available to represent segmentation 

results. Unfortunately none of them are optimal for storage, analysis, and real-time visualization at the 

same time, so a trade-off is typically made to choose the most suitable representation for the main 

purpose of a specific application. 

Most commonly, segmentation results are stored in 3D binary labelmap volume (shown in Fig. 1/A) where 40 

the value of each voxel indicates if that point is inside or outside the structure. This representation is the 

usual output of manual segmentation and preferred input for image processing and analysis algorithms. 

However, for 3D visualization of structures a surface model (Fig. 1/B) is more optimal, as it can be 

rendered by graphics cards efficiently. A surface model is a mesh consisting of tens or hundreds of 



thousands of connected triangles. Certain segmentation algorithms yield fractional labelmaps (Fig. 1/C) 45 

with voxels indicating probabilities (Iglesias and Sabuncu, 2015) instead of a binary decision. For radiation 

therapy, the DICOM standard (Mildenberger et al., 2002) requires the structures to be stored as “structure 

sets” - a series of planar contours (Fig. 1/D). Structure sets may also be represented as ribbons (Fig. 1/E), 

which can be easily computed from contours, indicate slice thickness, and make 3D shapes more 

recognizable. 50 

 
Fig. 1: Different representations of the same brain stem structure. A: Binary labelmap, B: 

Closed surface, C: Fractional labelmap, D: Planar contours, E: Ribbon model 
 

In most workflows, it is not sufficient to use a single representation of segmentation data. An example for 

the need of multiple representations is the calculation of dose volume histograms (DVH) for radiation 

therapy, which are used for treatment plan evaluation and optimization. Targets to treat and organs to 

avoid are segmented by delineating their cross-section in multiple slices of the image, which results in a 55 

list of planar contours. Contours are then voxelized into labelmaps, so that they can be used as masks for 

dose distribution volumes and computing the histograms. For 3D visualization closed surfaces are shown, 

which can be created either from contours or labelmaps. 



There are challenges involved in the design and implementation of storage and analysis of anatomical 

structures that must be addressed in all software applications: 60 

1. Conversion method selection: The need for conversion in order to prepare segmentation data for 

certain operations is something to be recognized by the user. Further, some details are often lost or 

altered during conversion. It is important to make users aware of these changes, while at the same 

time keep the software simple and easy to use. 

2. Provenance: The identity and origin of the structures and what they represent. In a typical research 65 

workflow not driven by a rigid processing pipeline it is up to the user to maintain the objects 

participating in the workflow. Often, this results in an unorganized set of objects with arbitrary names. 

When working with more than a few structures it quickly becomes unclear where each object 

originates from and what transformations they went through. 

3. Consistency: Representations may change after conversions (e.g. by manual editing), in which case 70 

the other representations of the same structure become invalid, and the data scene inconsistent. It is 

imperative to make sure that no invalid data is accessible at any time. 

4. Coherence: Structure sets typically correspond to the same entity (i.e., a patient), so when objects are 

stored in memory or disk, processed, or visualized it should be possible to manage them as a unified 

whole. 75 

Extensive research has been performed towards developing fast and accurate conversion algorithms 

between representations (Congalton, 1997; Fuchs et al., 1977; Jian Huang et al., 2014; Meyers et al., 1992; 

Novotný et al., 2010; Schroeder et al., 2015, etc.) for various applications ranging from geography, through 

computer graphics to medical image computing. To our knowledge, however, no investigation has been 

done in terms of a complex workflow involving multiple data representations and the challenges identified 80 

earlier. Keeping the data in good shape is essential, especially if a human user is involved, or the workflow 

steps’ order is not fixed. By making these conversion methods more accessible and robust, the time spent 



in the workflow can be reduced considerably. An example is the dosimetry workflow by Alexander et al. 

(2018), in which the time of analysis was reduced from hours to minutes. 

This paper proposes a software system methodology and implementation for Polymorphic Segmentation 85 

Representation to facilitate dynamic management of multiple data formats representing the same 

structure in a way that addresses the identified challenges involved in the process. It aspires to open the 

way to rapid prototyping of more robust and user-friendly software for medical image analysis research 

and related clinical applications. 

2. Computational methods and theory 90 

A complex data structure called a segmentation object is proposed that unites different representations 

of segmented structures. It provides automatic conversion between representation types. New 

representation types can be dynamically added to the system. The software design is the result of a 

consensus reached through discussions with numerous researchers and developers participating in the 

Project Week open-source programming event series (Kapur et al., 2016). 95 

2.1. Segmentation object 

A segmentation object contains multiple structures and representations in one object, as shown in Fig. 2. 

Each structure in a segmentation object is a segment, which can contain multiple representations. To 

simplify software implementation and user interfaces, we decided to constrain each segment to contain 

the same set of representations. Segments contain their basic properties such as name and color, as well 100 

as a dictionary for storing any additional metadata, such as standard medical terminology. 

One representation is chosen as master representation, which is typically the one that the data was 

originally created in. For example, when segmenting manually using a paintbrush-like tool, it is a binary 

labelmap. The significance of master representation is that it is the only data representation that must be 



persistently stored, and all other representations are derived from it via conversion. Since no conversion 105 

was performed to create the master representation, it is a lossless representation, which most closely 

represents the experts’ opinion or the original algorithm output. 

 
Fig. 2. Segmentation object storing each structure of an entity (patient) with each representation in one data 
object. The example segmentation of a patient contains three segments: brain, tumor, and brain stem. Each 
segment contains three representations: planar contour, binary labelmap, and closed surface. The master 

representation, which is the original representation of the structures, is marked with a star. 
 

2.2. Automatic conversion 

Most clinical or research workflows dealing with segmented structures include steps that make 110 

conversion of the segmentation data necessary. In commercial software, conversions are built-in steps of 

the fixed processing workflow. However, in research software, usually there are no fixed workflows, and 

the users can perform steps in arbitrary order. They are responsible for performing conversions as needed. 

It is a tedious and potentially error-prone task involving manual specification of the input, output, and 

conversion parameters. This manual step is the source of both the Conversion method selection (1) and 115 

Provenance (2) challenges, which can be solved by automation. When a representation is requested by a 



workflow step, then automatic conversion takes place. Examples of such steps: a) Execution of a 

processing pipeline which uses a yet absent representation in one of its steps, b) Change of display settings 

such as showing surface mesh or adjusting the level of smoothing, c) User exporting segmentation for 3D 

printing. The Conversion method selection challenge is thus solved by either obscuring the fact of 120 

conversion from the users or reducing the number of steps to take. Storing all representations within the 

same segmentation object solves the Provenance challenge by taking the burden of managing the atomic 

representation objects off the user. Encapsulation solves the Coherence (4) problem as well, because it 

makes managing the representations as one entity (e.g. a patient) straightforward. 

Automatic conversion between the different representations is driven by a conversion graph. The graph’s 125 

nodes are the representations, and the directed edges are conversion algorithms; a typical graph is shown 

in Fig. 3. Each algorithm – called a converter rule – has the following properties: source and target 

representation type, cost, and parameters. Cost is an approximate relative value roughly representing the 

duration of a typical conversion step using a particular converter and settings. Parameters are a set of 

key-value pairs for each converter rule. For example, the binary labelmap to closed surface rule has three 130 

parameters: strength of smoothing, strength of decimation, and computation of surface normal vectors. 

Upon a conversion request the graph performs a search for the cheapest path from the master 

representation (which is always the source) to the requested one. The graph then executes the converter 

rules comprising the path one by one. The user has the option to manually override both the path and the 

parameters. It could be desirable to perform the search for maximum fidelity instead of conversion time. 135 

In this case, the cost metric should represent how lossy the particular algorithm is with the current 

parameters. This option will be explored in future work. 



 
Fig. 3. Example of a conversion graph. The nodes are the representations and the edges are the conversion 
algorithms (rules). The numbers are the approximate costs of each conversion rule. Star marks the master 

representation. Red frame indicates the rules that are added as an extension. 
 

Another important task is to ensure consistency of the encapsulated data representations. When a 

representation changes, then all the derived (i.e. converted) representations become invalid, as they 140 

contain outdated information. This is prevented by removing the outdated representations, which is 

enough as any absent representation is automatically re-converted on demand. Thus, the Consistency (3) 

challenge is also addressed. User experience could be improved by re-converting the invalid 

representations (preferably in the background) after their removal. This will be addressed in future work. 

Researchers and developers may work with data representations not supplied in the default 145 

implementation, and may wish to add their representations to the graph. In this case, they need to 

implement conversion rules from/to another representation. Once it is registered in the graph, any 

conversion targeting or originating from their representation can be performed. Planar contours and 

ribbons serve as examples for such representations, which are an extension to the core library (see 

representations with red border in Fig. 3). If a new conversion rule parallel to an existing one is added, 150 

then the cost will determine which one gets selected. To force using a conversion rule, it is possible to 

unregister the undesired rule from the graph. 



3. System description 

3.1. Core library 

The basic storage and conversion features are implemented in a software library called PolySeg1. It 155 

includes the segmentation object and segment classes, as well as those responsible for conversion. The 

core library is written entirely in C++ and is based on the Visualization Toolkit (VTK) (Schroeder et al., 

2004). VTK is well-established and one of the most widely used software libraries in the field of medical 

image computing: MITK (Nolden et al., 2013), MeVisLab (Ritter et al., 2011), medInria (Toussaint et al., 

2006), NIfTI (Cox et al., 2004), etc. VTK is also used outside the field of medical applications, such as in 160 

geography and chemistry. 

VTK being the only dependency of PolySeg facilitates its integration into various software applications. 

The core library contains its own set of automated tests, verifying the correct operation of the conversion 

graph, and the coherence of the segmentation object after various operations. Thus, PolySeg is a full-

fledged software library ready to be used in software solutions. 165 

3.2. Application layer – integration into 3D Slicer 

The initial motivation for creating PolySeg was to be able to manage the increasingly complex 

configuration of data objects for the continually emerging use cases for the SlicerRT open-source radiation 

therapy research toolkit (Pinter et al., 2012). SlicerRT is an extension of the widely used medical image 

visualization and analysis application platform 3D Slicer (Fedorov et al., 2012). Thus, the first end-user 170 

application adopting this library is 3D Slicer. 

                                                            
1 https://github.com/PerkLab/PolySeg 
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In order for the library to be utilized in an end-user application, higher-level features were required, such 

as visualization, file storage, etc. These functions were implemented as an application layer within the 3D 

Slicer platform, mostly written in C++ and partially Python. The medium of data management in 3D Slicer 

is the medical reality modeling language (MRML). Thus, the segmentation object was embedded in a 175 

MRML node (vtkMRMLSegmentationNode, see architecture in Fig. 4). Reusable user interface (UI) widgets 

have been implemented for handling certain aspects of a segmentation object: list of segments and their 

properties, representations and conversions, conversion paths and parameters, and display properties. 

These elements comprise an application module in which a segmentation node can be explored and the 

segment properties and representations managed. A logic class provides operations such as 180 

import/export to other formats, bulk transformation using rigid or deformable transforms, etc. This layer 

also includes classes for 2D and 3D display, file storage, and automated testing. Application level testing 

covers data import/export, legacy operations such as creation or merged labelmap, and correct operation 

of certain widgets. SlicerRT includes tests that exercise PolySeg indirectly through various DVH calculation 

scenarios, validating them against other software expecting to exceed an accuracy threshold. 185 

An important component of the application layer is the Segment Editor UI widget, which provides manual 

and semi-automated segmentation methods to create and edit segmentations. Numerous editor “effects” 

have been included, each of which is a tool for segmentation, such as Paint, Threshold, Grow from seeds, 

Smoothing, etc. New editor effects can be – and have been – added in 3D Slicer extensions. 

The main contribution of these components in 3D Slicer is tighter integration of the segmentation related 190 

features and centralized management of segmentation data. The traditional data types storing 

segmentation data were labelmap nodes for one or more structures, and model nodes containing one 

structure in planar contours, ribbons, or closed surface. Conversion between these nodes was only 

possible using individual modules for one particular conversion step. Modules performing analysis had to 



have a fixed input representation type. PolySeg facilitates easier data selection and reduces the number 195 

of modules needed to be used for a single task by allowing modules to simply work on a segmentation 

node, and by providing low-level functionality such as conversions internally and automatically.  

 
Fig. 4. Simplified software architecture diagram of PolySeg. Dark blue: Storage classes representing a 

segmentation object. Light blue: Logic classes taking part in the automatic conversion. The two blue groups 
comprise PolySeg core. Green: Application classes in 3D Slicer for MRML storage and display. Grey: 
Miscellaneous class groups not included in the diagram, such as the various classes comprising the 

Segmentations module, classes displaying the representations in the desired form in 2D and 3D, and the widgets 
listed in 3.2. ‘N’ denotes associations between one object to multiple objects. 

 

3.3. Interoperability 

Because VTK is the only dependency of the core library, it is possible to integrate it to other platforms and 200 

applications as well. To our knowledge, the MITK developers have also started adapting PolySeg into 

MITK-based applications. VTK’s Python wrapping function provides full Python accessibility for PolySeg, 

allowing complex end-user applications or automated workflows to be written using the Python language. 

Using the Matlab Bridge extension 3D Slicer can connect to Matlab, and send and receive data seamlessly 

between the two applications. Interoperability with the Insight Toolkit (ITK) (Yoo et al., 2002) is currently 205 



reached via conversion functions in SlicerRT’s vtkSlicerRtCommon class. In future work, segmentation 

node support will be added to the ITK-based Command Line Processing interface adapted by 3D Slicer, 

MITK, MeVisLab, etc. Support of standard clinical dictionaries (i.e. terminologies) such as SNOMED Clinical 

Terms (Stearns et al., 2001) provides unambiguous identification of the segments, and facilitates lookup 

of structures. 210 

Segmentations can be imported from and exported to DICOM SEG and DICOM RT, providing direct 

connection to clinical software systems. Research formats are also supported, such as nrrd for labelmaps, 

and stereolithography (STL) for surfaces. Geometry in each case is unambiguously described in the file 

headers for DICOM and nrrd. The STL files contain the vertex coordinates in 3D Slicer’s mm-based world 

coordinate system. Data provenance tracking at export is ensured within the capabilities of the output 215 

format: DICOM objects keep their patient and study information, while nrrd and STL files reflect the names 

of the MRML nodes and/or segments.  

3.4. Conversion algorithms 

The edges in the graph of Fig. 3 show the conversion rules implemented. This set of conversion rules cover 

all use cases encountered in radiation therapy workflows, and based on the feedback of the 3D Slicer 220 

community between 2011 and 2018. 

Binary labelmap to closed surface is the most frequently used conversion rule. It is executed every time 

the operator makes changes to a segmentation using Segment Editor while 3D visualization is enabled. 

The converter employs the discrete flying edges algorithm (Schroeder et al., 2015), followed by optional 

decimation (to keep number of vertices reasonably low) and smoothing (to remove staircase artifacts). 225 

It may be desirable to keep the segments non-overlapping if they were touching each other in the input 

labelmap. As the conversion algorithms apply on individual segments, it can only be achieved in regular 



conversion with smoothing turned off. If it is necessary to keep this property while doing smoothing, the 

joint smoothing option in Segment Editor can be used (see 4.1). 

The closed surface to binary labelmap algorithm is typically used when the input data is a surface mesh, 230 

but labelmap is needed for analysis, e.g. when anatomy atlases stored as meshes need to be edited or 

used for statistical analysis. After pre-processing steps ensuring that the surface mesh only contains 

triangles with correct normal vectors, a VTK surface to image algorithm performs the conversion.  

Fractional labelmap is a special labelmap, in which the voxels contain a fractional value instead of a binary 

in/out state. The fractional values may indicate partial occupancy at the edge of a structure, the 235 

probability of being inside the structure, or the probability of the presence of abnormal tissue (Iglesias 

and Sabuncu, 2015). Sunderland et al. (2017) developed the conversion rules between fractional 

labelmap and closed surface representations. 

The planar contours to closed surface conversion provides interpolation of the contours in the direction 

perpendicular to the contour planes for accurate recovery of the original structure. This is the most 240 

complex of the provided converters, as triangulation needs to support special cases such as branching 

structures, hollow “keyhole” contours, sudden changes, and sealing the mesh with “end-capping” 

(Sunderland et al., 2015). 

The planar contour to ribbon model algorithm is a conversion method for fast and crude visualization of 

planar contours. It creates ribbon-like triangulations from contours with width equal to the distance 245 

between the contours (Fig. 1/E). The last two algorithms were implemented as extensions to PolySeg 

within SlicerRT. 



3.5. Accuracy and performance of the conversion algorithms 

Quantitative validation of the two most critical conversion rules – binary labelmap to and from closed 

surface – is possible through a round-trip conversion from labelmap to closed surface and back, and 250 

comparing the input and output labelmaps. Hausdorff distance (Huttenlocher et al., 1993) was measured 

on three radiation therapy plans2; an ear-nose-throat (“ENT”) and a prostate RANDO® phantom (“PROS”), 

and a brain fractionated stereotactic clinical plan (“FSRT”), as shown in Table 1.  

 ENT PROS FSRT 
Mean Hausdorff Max. (mm) 2.16 1.18 0.92 
Mean Hausdorff 95% (mm) 1.16 0.98 0.66 
Mean Hausdorff Avg. (mm) 1.13 0.11 0.22 
Table 1. Comparison of the input and output binary labelmaps of a round-

trip labelmap-surface-labelmap conversion 
 

The reference grid used for voxelization was the CT image of each study, and the voxel size for the ENT, 

PROS, and FSRT binary labelmaps were 1.07 x 1.07 x 2.5mm3, 0.98 x 0.98 x 2.5mm3, and 0.68 x 0.68 x 255 

1mm3, respectively. Default conversion parameters were used, meaning moderate smoothing on the 

created closed surface. The Hausdorff distances suggest that the difference between the input and output 

of the round-trip is less than one voxel, meaning that both conversions were accurate. 

The fractional labelmap to and from closed surface converters were validated in the paper introducing 

fractional labelmaps (Sunderland et al., 2017). To evaluate the closed surface to fractional labelmap 260 

conversion the fractional labelmaps were compared to the binary labelmaps, and were found to be more 

accurate representing structures than binary labelmaps at the same resolution: an average of 7% increase 

in total volume accuracy was measured. Derived DVHs were also assessed, and an average accuracy 

improvement of 5% and 3.6% were found against a commercial treatment planning system and a radiation 

therapy research toolkit, respectively. A round-trip conversion helped evaluate the fractional labelmap to 265 

                                                            
2 All data used for validation are available in the SlicerRT data repository: https://github.com/SlicerRt/SlicerRtData 
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closed surface algorithm, finding an average of 0.7mm improvement in maximum point-to-point distance 

considering all structures, compared to round-trip conversion through binary labelmaps. 

4. Samples of typical system 

It has been shown through various applications that building on PolySeg yields robust and versatile 

software in a short development time. The following applications are based on 3D Slicer, being the first 270 

fully supported platform utilizing the PolySeg features. However, similar applications are possible to 

develop using PolySeg directly, or after integration to a similar medical image computing toolkit. 

4.1. Segment editor 

The most intuitive use case is manual and semi-automated segmentation from anatomical volumes, which 

has a wide range of applications, such as visualization, quantification, 3D printing, surgical planning, 275 

machine learning training, etc. Labelmap volume – i.e. a single 3D image containing multiple structures 

(labels) as its voxel values – are typically used in segmentation tools, such as 3D Slicer’s legacy Editor 

module, or ITK-SNAP (Yushkevich et al., 2006). While it is tempting to choose labelmap volume as master 

representation due to its simplicity and memory efficiency, the fact that it does not support overlapping 

labels makes it impossible to use it as a generic storage format. Using individual volumes for segments 280 

allows having overlapping segments and storing masks or intermediate processing results in the same 

segmentation object. Segments may contain each other (e.g. body > brain > planning target volume > 

clinical target volume > gross tumor volume), and margins can be added without the risk of losing data in 

other structures. Segmentation objects have comparable storage cost to labelmap volumes in most cases 

thanks to only storing the “effective extent” in memory (the region that contains non-zero voxels). 285 

We developed the Segment Editor module within 3D Slicer. Besides the advantages provided by 

overlapping structure support, a major additional feature is real-time visualization of the 3D surface 



created from the edited binary labelmap. The automatic conversion mechanism makes sure that every 

time the master binary labelmap is changed, the surface is also updated, allowing the user to see changes 

almost in real-time without user interaction. The reworked architecture enabled a general speed-up and 290 

richer features for traditionally existing Editor “effects” such as Paint, which was given a 3D brush and the 

possibility to paint on non-axis-aligned (oblique) slices, or Grow from seeds (a.k.a. GrowCut (Zhu et al., 

2014)), which now features preview and correction. It also enabled the developers to add novel tools, 

such as Scissors, which cuts the space using a projection through a drawn shape in 2D or 3D, or Surface 

cut, which enables creating surfaces from points in space. Various smoothing operations are available 295 

such as Gaussian smoothing or Joint smoothing, which achieves smoothing without shrinking the structure 

and thus preserve touching surfaces (Taubin et al., 1996). Segment Editor is a reusable widget that can be 

added into any 3D Slicer module. Additionally, the Terminologies feature allows assigning standard 

terminology entries to the segments, meaning that instead of relying on arbitrary names, standard codes 

can be assigned (e.g. type: Morphologically altered structure / Necrosis, region: Cerebral cortex / Left), 300 

which allows automatic look-up and grouping of structures in a database without curation or heuristics. 

Since its release in June 2016, we experienced a high interest in Segment Editor. The majority of the topics 

in the 3D Slicer forum (https://discourse.slicer.org, introduced in April 2017) are related to segmentation 

and the usage of Segment Editor. This is illustrated by the tags given to the topics: “segmentation” is the 

most frequent tag with 169 occurrences, followed by tags of 68, 65, and 46 occurrences (as of July 2018). 305 

The release also correlates with an apparent steepening of the 3D Slicer download statistics, see Fig. 5. 

 

https://discourse.slicer.org/


Fig. 5: 3D Slicer downloads between January 2015 and July 2018. The frequent jumps corresponds to workdays 
and weekends. Downloads spiked when the Segment Editor module was released, and the increase of 

downloads per day accelerated. 
 

4.2. Batch structure set conversion 

Conversion of a large number of datasets from one format to another is a frequent operation. A 

command-line script for a particular conversion from DICOM RT structure sets (planar contours) to nrrd 310 

(labelmap volumes) has been implemented within SlicerRT. It uses PolySeg to convert from planar 

contours to binary labelmap through closed surface, and populate the output images. The script 

demonstrates how the method and implementation scales and extends to larger collections of 

segmentations across a population, or to statistical anatomical atlases. 

4.3. MRI-US contour propagation for prostate cancer biopsy and brachytherapy planning 315 

Brachytherapy is a treatment modality based on placing radioactive point sources into a tumor. An 

alternative to treating the whole prostate is to irradiate the intraprostatic lesion. Many clinics use 

ultrasound for planning, which is not effective in identifying lesions, however MRI allows accurate 

segmentation of the gland, lesion, and urethra. A clinical application has been developed and evaluated 

(Poulin et al., 2017) for automated fusion of the MRI and US delineations. Prostate contours are used to 320 

register the modalities, after which the MRI structures are warped to the ultrasound frame of reference. 

Finally, the warped MRI structures are exported to DICOM for use in treatment planning and catheter 

insertion guidance. PolySeg greatly facilitated the development process in terms of geometric pre-

processing, conversions, import/export, bulk transformation, resampling, and advanced visualization.  

4.4. Gel dosimetry analysis 325 

An emerging 3D dosimetry technique called gel dosimetry aspires to replace the conventional one- and 

two-dimensional methods, so that dose delivery verification can be performed on complex radiation 



techniques. A streamlined clinical application has been developed and validated (Alexander et al., 2018) 

to replace the lengthy and complex in-house scripts previously used, reducing the duration of the analysis 

from 3-4 hours to 10 minutes. PolySeg helped reduce code complexity and development time. 330 

4.5. Open-source external beam radiation therapy treatment planning system 

Commercial radiation therapy treatment planning systems (TPS) are single-purpose applications 

optimized for fixed workflows in an extremely robust and directed way. This makes them challenging to 

use for testing and evaluating new techniques. A SlicerRT module called External Beam Planning (EBP) 

aspires to be a generic platform for evaluating cutting edge radiotherapy techniques. EBP provides tools 335 

for radiation plan creation and setup, and a plugin mechanism so that clinics only need to supply their 

dose engine. An example is the proton engine from Massachusetts General Hospital (Sharp et al., 2017). 

4.6. User and developer experience 

Based on experience during the development of the above applications and the feedback of clinicians 

using them, the most important outcome of PolySeg is the improved user and developer experience. The 340 

chance for both user and developer errors are reduced by offering a solution for the four challenges 

described in section 1. 

User workflows involving conversions in 3D Slicer have been made considerably more convenient and 

straightforward using PolySeg compared to the former methods. The previous approach included manual 

conversions in individual UI modules involving input selection and output naming, both potentially leading 345 

to errors or ambiguities. Especially as conversions need to be performed on each structure, and repeated 

after any changes, automation provided by PolySeg brings considerable simplification. In addition, the 

need to use converter modules in a workflow increased the number of modules and thus interactions 

involved. An example is the Segment Comparison module (in SlicerRT), which requests the necessary 



conversions based on the representation needed for the comparison algorithm. Similarly in data export, 350 

the only necessary step is the selection of the MRML node and the output file format. This improvement 

in reliability and user interaction applies to all research applications with flexible workflows instead of a 

fixed stream of steps.  

PolySeg also improves the development process compared to having a set of individual conversion 

algorithms that need to be used to manage the versatile data the application works with. With a library 355 

automatically managing all structure representation related operations, the number of lines of code is 

largely decreased. Thus, the opportunity to write faulty, inefficient, or unstable code is reduced. Similarly 

to the user experience, many aspects cannot be quantified, such as the correctness or stability of the 

application code that is developed on top of PolySeg. However, we can provide a simple example to 

illustrate the simplified process. Two code snippets were implemented to convert the PROS dataset, one 360 

using 3D Slicer’s binary labelmap to closed surface conversion module ModelMaker, and the other using 

PolySeg. The number of lines of (reasonably compact) Python code starting with the input variable present 

in the context are 11 for ModelMaker and 2 for PolySeg. It is also worth mentioning that the input of 

ModelMaker was a simple labelmap volume that does not support overlaps, so the code that preserves 

overlaps would be even longer. Furthermore, the developer needs to pay attention to the names of the 365 

output objects if correspondence between the representations is to be preserved. Besides the reduced 

code, having access to a validated set of conversion algorithms that are automatically executed when 

needed allows researchers to focus on the task at hand. This has been demonstrated during the 

development of the Segment Editor: each new effect took between a few hours and a few days to develop, 

and they showed good initial robustness. PolySeg’s support for some of the most popular programming 370 

languages (C++, Python, and Matlab through 3D Slicer) makes the library accessible in a wide variety of 

projects.  



5. Hardware and software specifications 

PolySeg is platform-independent, and is tested on Windows, MacOS, and Linux. Nightly automated testing 

ensures error-free operation on each operating system. The end-user application prototypes 375 

implemented using PolySeg and 3D Slicer work on the same three operating systems. 

Hardware requirements are specific to the end-user applications built on top of PolySeg. However, the 

general requirement is a configuration that has the graphics capabilities to display and memory to hold 

the original medical image datasets, as well as the converted data structures as specified in the workflow 

employed by the application. Due to the potentially large datasets used, a 64-bit architecture is typically 380 

required. 

6. Mode of availability of the system and programs 

The PolySeg library is distributed under the BSD 2-clause open-source license, which contains no 

restrictions on the use of the software. The source code and documentation are accessible freely on 

GitHub: https://github.com/PerkLab/PolySeg. 385 

The implemented end-user applications are also under the BSD 2-clause license, and can be freely 

accessed at the following locations: 

• Segment Editor within the 3D Slicer application: https://www.slicer.org 

• Batch structure set conversion and open-source external beam radiation therapy treatment 

planning system within the SlicerRT toolkit: http://slicerrt.org 390 

• MRI-US contour propagation for prostate cancer biopsy and brachytherapy planning: 

https://github.com/SlicerRt/SegmentRegistration 

• Gel dosimetry analysis: https://github.com/SlicerRt/GelDosimetryAnalysis 

https://github.com/PerkLab/PolySeg
https://www.slicer.org/
http://slicerrt.org/
https://github.com/SlicerRt/SegmentRegistration
https://github.com/SlicerRt/GelDosimetryAnalysis


Acknowledgement 

This work was supported by Cancer Care Ontario through the Applied Cancer Research Unit and 395 

Research Chair in Cancer Imaging grant, The Ontario Consortium for Adaptive Interventions in Radiation 

Oncology (OCAIRO) grant funded by the Ontario Research Fund, and the Research Software Program 

provided by CANARIE. 

Conflict of Interest Statement 

The authors have no relevant conflicts of interest to disclose. 400 

References 

Alexander, K.M., Pinter, C., Fichtinger, G., Olding, T., Schreiner, L.J., 2018. Streamlined Open-Source Gel 
Dosimetry Analysis in 3D Slicer. Biomed. Phys. Eng. Express 1–23. 

Congalton, R.G., 1997. Exploring and Evaluating the Consequences of Vector-to-Raster and Raster-to-
Vector Conversion. Photogramm. Eng. Remote Sens. 63, 425–434. 405 

Cox, R.W., Ashburner, J., Breman, H., Fissell, K., Haselgrove, C., Holmes, C.J., Lancaster, J.L., Rex, D.E., 
Smith, S.M., Woodward, J.B., Strother, S.C., 2004. A (Sort of) New Image Data Format Standard: 
{NIfTI-1}. Neuroimage 22, 1. 

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., 
Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J. V, Pieper, S., Kikinis, R., 2012. 3D Slicer as 410 
an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 
1323–41. https://doi.org/10.1016/j.mri.2012.05.001 

Fuchs, H., Kedem, Z.M., Uselton, S.P., 1977. Optimal surface reconstruction from planar contours. ACM 
SIGGRAPH Comput. Graph. 11, 236–236. https://doi.org/10.1145/965141.563899 

Huttenlocher, D.P., Klanderman, G. a., Rucklidge, W.J., 1993. Comparing images using the Hausdorff 415 
distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863. https://doi.org/10.1109/34.232073 

Iglesias, J.E., Sabuncu, M.R., 2015. Multi-atlas segmentation of biomedical images: A survey. Med. Image 
Anal. 24, 205–219. https://doi.org/10.1016/j.media.2015.06.012 

Jian Huang, Roni Yagel, Vassily Filippov, Yair Kurzion, 2014. An accurate method for voxelizing polygon 
meshes. IEEE Symp. Vol. Vis. (Cat. No.989EX300) 119–126,. 420 
https://doi.org/10.1109/SVV.1998.729593 

Kapur, T., Pinter, C., Lasso, A., 2016. Increasing the Impact of Medical Image Computing Using 
Community-Based Open- Access Hackathons : the NA-MIC and 3D Slicer Experience. 



https://doi.org/10.1016/j.media.2016.06.035 

Meyers, D., Skinner, S., Sloan, K., 1992. Surfaces from contours. ACM Trans. Graph. 11, 228–258. 425 
https://doi.org/10.1145/130881.131213 

Mildenberger, P., Eichelberg, M., Martin, E., 2002. Introduction to the DICOM standard. Eur. Radiol. 12, 
920–927. https://doi.org/10.1007/s003300101100 

Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D., Fangerau, M., 
Baumhauer, M., Maier-Hein, L., Maier-Hein, K.H., Meinzer, H.-P., Wolf, I., 2013. The Medical 430 
Imaging Interaction Toolkit: challenges and advances : 10 years of open-source development. Int. J. 
Comput. Assist. Radiol. Surg. 8, 607–20. https://doi.org/10.1007/s11548-013-0840-8 

Novotný, P., Dimitrov, L.I., Šrámek, M., 2010. Enhanced voxelization and representation of objects with 
sharp details in truncated distance fields. IEEE Trans. Vis. Comput. Graph. 16, 484–498. 
https://doi.org/10.1109/TVCG.2009.74 435 

Pinter, C., Lasso, A., Wang, A., Jaffray, D., Fichtinger, G., 2012. SlicerRT: radiation therapy research 
toolkit for 3D Slicer. Med. Phys. 39, 6332–8. https://doi.org/10.1118/1.4754659 

Poulin, E., Boudam, K., Pinter, C., Kadoury, S., Lasso, A., Fichtinger, G., Ménard, C., 2017. Validation of 
MRI to US Registration for Focal HDR Prostate Brachytherapy. Brachytherapy 16, S56--S57. 

Ritter, F., Boskamp, T., Homeyer, A., Laue, H., Schwier, M., Link, F., Peitgen, H.O., 2011. Medical image 440 
analysis. IEEE Pulse 2, 60–70. https://doi.org/10.1109/MPUL.2011.942929 

Schroeder, W.J., Lorensen, B., Martin, K., 2004. The visualization toolkit: an object-oriented approach to 
3D graphics. Kitware. 

Schroeder, W.J., Maynard, R., Geveci, B., 2015. Flying Edges: A High-Performance Scalable Isocontouring 
Algorithm, in: IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV). 445 
https://doi.org/10.13140/RG.2.1.3415.9609 

Sharp, G.C., Pinter, C., Fichtinger, G., Unkelbach, J., 2017. Proceedings to the 56 th Annual Meeting of 
the Particle Therapy Cooperative Group (PTCOG), 8-13 May 2017. Int. J. Part. Ther. 4, 14–83. 
https://doi.org/10.14338/IJPT.17-PTCOG-1.1 

Stearns, M.Q., Price, C., Spackman, K.A., Wang, A.Y., Authority, I., Cross, A., 2001. SNOMED Clinical 450 
Terms : Overview of the Development Process and Project Status 662–666. 

Sunderland, K., Pinter, C., Lasso, A., Fichtinger, G., 2017. Fractional labelmaps for computing accurate 
dose volume histograms, in: SPIE Medical Imaging. p. 101352Y--101352Y. 
https://doi.org/10.1117/12.2254978 

Sunderland, K., Woo, B., Pinter, C., Fichtinger, G., 2015. Reconstruction of surfaces from planar contours 455 
through contour interpolation, in: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 
https://doi.org/10.1117/12.2081436 

Taubin, G., Zhang, T., Golub, G., 1996. Optimal surface smoothing as filter design 283–292. 
https://doi.org/10.1007/BFb0015544 

Toussaint, N., Souplet, J.-C., Fillard, P., 2006. Medical Image Navigation and Research Tool by INRIA ( 460 
MedINRIA ). Enseignement 1–39. 



Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxas, D., 
Whitaker, R., 2002. Engineering and Algorithm Design for an Image Processing API: A Technical 
Report on ITK - the Insight Toolkit, in: Proc. of Medicine Meets Virtual Reality, J. Westwood, Ed. pp. 
586–592. 465 

Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., 2006. User-guided 3D 
active contour segmentation of anatomical structures: Significantly improved efficiency and 
reliability. Neuroimage 31, 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 

Zhu, L., Kolesov, I., Gao, Y., Kikinis, R., Tannenbaum, A., 2014. An Effective Interactive Medical Image 
Segmentation Method Using Fast GrowCut. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 470 
submitted. 

 

 


	Polymorph Segmentation Representation for Medical Image Computing
	Abstract
	1. Introduction
	2. Computational methods and theory
	2.1. Segmentation object
	2.2. Automatic conversion

	3. System description
	3.1. Core library
	3.2. Application layer – integration into 3D Slicer
	3.3. Interoperability
	3.4. Conversion algorithms
	3.5. Accuracy and performance of the conversion algorithms

	4. Samples of typical system
	4.1. Segment editor
	4.2. Batch structure set conversion
	4.3. MRI-US contour propagation for prostate cancer biopsy and brachytherapy planning
	4.4. Gel dosimetry analysis
	4.5. Open-source external beam radiation therapy treatment planning system
	4.6. User and developer experience

	5. Hardware and software specifications
	6. Mode of availability of the system and programs
	Acknowledgement
	Conflict of Interest Statement
	References

