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In tracked ultrasound systems, temporal misalignment between image and tracker data results in incorrect image pose. We present a fully automatic 

temporal calibration. We image a flat plate in water with a tracked probe undergoing periodic uniaxial freehand translation. Using robust line 

detection scheme, we compute temporal misalignment as difference between probe and corresponding image position. From 240 sequences, 

standard deviation was under 5ms for standard imaging parameters. Source code is available in Public Library for Ultrasound Research, PLUS 

(www.plustoolkit.org). 
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1. Introduction 

1.1. Motivation 

Ultrasound (US) machines can be coupled with tracking systems 
that sample the probe’s position and orientation (pose). 
Recorded poses are then associated with the corresponding US 
images, allowing each image to be positioned and oriented in 3-
D space. However, the difference in hardware delays between 
the imaging and tracking systems produces a temporal offset 
that causes corresponding images and poses to receive different 
timestamps. To compensate for this misalignment temporal 
calibration is used to estimate the temporal offset between the 
image and tracker data. 

1.2. Prior work on temporal calibration 

Temporal calibration of US systems has been explored in a 
number of previous studies. Existing techniques can be divided 
into hardware-based and software-based techniques. Hardware-
based techniques, for example [1], have a speed advantage 
compared to software-based techniques, but are generally 
inflexible; furthermore, many US systems are not be amenable 
to hardware modification. Software-based temporal calibration 
techniques can be roughly partitioned into those that use a 
volume reconstruction step and those that do not. In an attempt 
to limit the scope of this paper to a manageable size we restrict 
our attention to approaches that, like ours, do not involve a 
volume reconstruction step. It is, however, worth briefly 
mentioning that there are a number of existing volume 
reconstruction-based calibration techniques—see [2], for 
example. Volume reconstruction-based techniques have 
advantages, including the ability to implicitly account for 
changes in imaging parameters. There are, however, 

disadvantages: accurate spatial calibration is needed, the 
computational burden is increased, and all acquired frames must 
be stored, meaning that the volume cannot be reconstructed, in 
real-time, as it is being acquired.  

Considering the calibration techniques that do not require 
volume reconstruction, we begin with Prager et al. [3,4], who 
perform temporal calibration by introducing a step perturbation 
into the image and tracker data through a sudden movement of 
the US probe. The image recording corresponding to the 
perturbation is automatically found by looking at the intensity 
difference between adjacent frames. The timestamp difference 
between the image and tracker recordings corresponding to the 
perturbation provides an estimate of the temporal offset. 
Although the simplicity of this approach is appealing, its 
accuracy is limited to the average of the tracker and image 
sampling periods. Furthermore, we have found that accurately 
detecting the perturbations in the image and tracker data can be 
difficult, causing the technique to be delicate in practice. 

Addressing some of these deficiencies, Treece et al. [5] 
proposed a technique wherein a sequence of line motifs is 
introduced into the image data by imaging the bottom of a water 
tank with a probe undergoing an up-down motion. Next, the 
positions of the bottom of the water tank (derived from the line 
motifs) along with those of the probe (derived from the tracker 
data) are calculated. The temporal offset is then taken as the 
temporal shift that best aligns the image position and tracker 
position signals. Deriving the positions of the bottom of the 
water tank requires segmenting the line motif in each US image. 
To do this, they sample intensity information along regularly 
spaced vertical scan lines, compute the intersections between 
each scan line and the line motif, and then fit a line through the 
intersection points using the random sample consensus 
(RANSAC) algorithm [6]. To compute the intersection points, 
Treece et al. smooth and differentiate the intensity information 
along each scanline and then use the maximum of the derivative 
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signal. Their technique has improved accuracy when compared 
to that of Prager et al.. Treece et al.’s technique, however, 
appears to have some limitations in the image processing steps: 
smoothing the data set can distort the image and gradient 
information is sensitive to noise, which reduces the robustness 
of the techniques; furthermore, their algorithm has been reported 
to fail on noisy sequences [7]. The basic methodology presented 
by Treece et al. has been widely adopted [8,9,7]. Using a related 
approach, Rousseau et al. [7] proposed a fully-automatic 
temporal calibration algorithm, which, as in Treece et al., begins 
by producing a sequence of line motifs by imaging the bottom 
of a water tank. Next, the line motifs are segmented using the 
Hough transform and failed extractions are eliminated through 
continuity constraints on the detected lines. Lastly, the temporal 
offset is estimated by matching the extrema of the image 
position and the tracker position signals. When compared to 
Treece et al., the approach of Rousseau et al. has the advantage 
that the probe is not constrained to up-down motion. It has, 
however, two disadvantages. First, the extraction of line motifs 
using the Hough transform has a greater computational cost than 
the line-sampling RANSAC scheme. Second, alignment using 
only signal extrema, rather than the entire signal, discards a 
substantial amount of potentially useful information. 

Along with the drawbacks already discussed, it should be 
noted that none of the above works provides a systematic 
validation of the algorithms over a range of imaging parameters. 
Additionally, the source code for the above algorithms is not 
readily available, making them challenging to use, reproduce, 
incorporate, or extend [10]. 

1.3. Contribution 

In this work we present a correlation-based temporal calibration 
algorithm that, through a robust and fully automatic line 
detection scheme, improves on the work of Treece et al.. The 
algorithm is validated over a range of imaging parameters and 
all source code is freely available under a BSD license through 
the Public Library for Ultrasound research (PLUS) [11]. 

2. Methodology 

We partition the temporal calibration process into four steps: (1) 
data acquisition, (2) construction of the image position signal, 
(3) construction of the tracker position signal, and (4) alignment 
of the image position and tracker position signals. 

2.1.  Data acquisition 

We begin the calibration process by imaging a rubber sheet 
(approximately 2 cm thick) that is submerged in a water tank. It 
should be noted that the rubber sheet was used only as a means 
to increase the thickness of the wall of the tank being imaged; 
the choice of the rubber sheet was arbitrary and any material that 
produces a line motif should suffice. Under free-hand motion, 
we repeatedly move the probe towards and away from the 
rubber sheet while attempting to follow a purely translational 
and uniaxial trajectory. While deviations from a pure 
translational and uniaxial trajectory will slightly degrade the 

calibration, we have found that in practice any reasonably 
translational and uniaxial periodic free-hand motion is 
acceptable. For our experiments, the length of one period of 
probe motion was generally kept above 1 second, and the 
average length of collection was 47.2 seconds. 

2.2. Construction of the image position signal 

Signal construction begins by segmenting the line motif in each 
image. Segmentation is achieved by sampling intensity 
information along regularly spaced vertical scan lines (we used 
40 sample lines per image), computing the intersections between 
each scan line and the line motif, and then fitting a line through 
the intersection points using the RANSAC algorithm (Figure 1). 
To find the intersection points we use a center-of-gravity (COG) 
approach (Figure 2).  

 
In the COG scheme we compute, for each scanline, the largest 
intensity sum along a contiguous block of pixels having 
intensities above half of the maximum intensity value along that 
scanline. Unlike the method by Treece et al., the COG scheme 
does not use the gradient operator, which is sensitive to noise 

 

Fig. 2.  Plot of pixel intensity vs. pixel coordinate along a 

sample scanline. There are two contiguous blocks of pixels 

above the threshold 1/2 Max: [A0, A1] and [B0, B1]. Because the 

intensity sum of [A0, A1] is larger than that of [B0, B1], [A0, A1] 

is used to calculate the center-of-gravity (COG). 

 

Fig. 1. Two average-quality ultrasound images with presence of 

secondary reflections; scanlines (white vertical lines), detected 

intensity peaks (red squares) and fitted lines (red lines) 
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and reduces robustness. To fit a line through the intersection 
points we used a generic implementation of the RANSAC 
algorithm by Yaniv [12], and left the parameters set to their 
default values. After computing the RANSAC line, the position 
of the image is taken as the detected line’s y (vertical) coordinate 
at the image’s x (horizontal) midpoint. 

2.3. Construction of the tracker position signal 

In forming the tracker position signal we ignore any rotational 
components of motion, leaving a sequence of position vectors 
that describe the probe’s trajectory. To map the 3-D position 
vectors to scalar values, we compute, as in Treece et al., the 
principal axis of probe motion using the principal component 
analysis (PCA) algorithm. The position vectors are then 
projected onto this principal axis. By projecting onto the 
principal axis of probe motion the algorithm is able to cope with 
probe motions that are not strictly uniaxial. 

2.4. Alignment of image and tracker positions 

In this step the tracker position and image position signals are 
aligned by minimizing the sum of squared differences (SSD) 
between the two signals (as in Treece et al.). To compute the 
SSD, the tracker position signal, which is generally denser than 
the video position signal, is resampled at the video position 
signal’s timestamps via linear interpolation. Additionally, 
because the image and tracker positions are not of similar 
dimensions, the two signals are normalized by subtracting their 
means and dividing by their standard deviations. 

Signal alignment proceeds in two phases. In the first phase, 
coarse alignment is achieved by minimizing the SSD of the 
tracker position and temporally shifted image position signals, 
where the temporal shifts are integer multiples of the average 
sampling period of the image data. In the second phase, 
alignment is improved with a finer (user-defined) temporal shift 
resolution. In our experiments, a 1 ms temporal shift resolution, 
which is the best timestamping accuracy that can be reliably 
achieved on standard PC hardware, was used for the second 
phase. An example of showing the unaligned and aligned 
position signals is shown in Figure 3. 

2.5. Software implementation 

The presented algorithm was implemented in C++ and is 
included in PLUS toolkit (www.plustoolkit.org), a free and 
open-source software package for real-time acquisition, 
processing, and broadcasting of medical imaging and tracking 
data. PLUS can get images directly through vendor-specific 
software interfaces from a number of US systems (such as 
Ultrasonix, Telemed, Interson, BK, and Philips) and indirectly, 
through framegrabbers, from other devices. PLUS provides 
fully automatic US probe spatial calibration, US image 
simulation, conversion, bone enhancement, and volume 
reconstruction algorithms. The toolkit can also collect data 
simultaneously from a wide range of other imaging and tracking 
devices and sensors, such inertial measurement units, 
spectrometers, and robotic devices that are useful for 
prototyping of new clinical interventional systems. 
 

Overview of PLUS architecture is show in Figure 4. The toolkit 
consists of a library component that contains all algorithms, 
device interfaces for data collection, and OpenIGTLink network 
communication. These are implemented based on open-source 
toolkits, such as VTK, ITK, OpenIGTLink, and they also use 
vendor-specific software development kits. PLUS library hosts 
a number of tools, tests and example applications, including a 
command-line tool for temporal calibration. PLUS applications 
contain additional tools and applications with convenient user 
interfaces, implemented using Qt framework. 

2.6. Experimental design 

To determine the algorithm’s robustness and precision, and to 
investigate factors affecting the temporal offset, the algorithm 
was tested over a range of imaging parameters. In particular, we 
began the tests with a set of baseline imaging parameters and 
then proceeded to perturb the parameters, one at a time, from 
these baseline values. The baseline parameter set is listed in 
Table 1. All experiments were performed using the SonixTouch 
US system (Ultrasonix, Richmond, B.C., Canada) coupled with 
the SonixGPS electromagnetic (EM) pose tracking extension, 
allowing for simultaneous image acquisition and tracking. All 

 

Fig. 4. PLUS toolkit architecture overview 

 

Fig. 3.  (A) Unaligned and (B) aligned position signals. The 

blue curve corresponds to the image position signal and the 

green curve corresponds to the tracker position signal. The time 

between consecutive ticks on the time axis is 2 seconds. Signal 

amplitude has no unit, as it is a generic position signal 

normalized to the ±1.0 range. 
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data was collected through the Ultrasonix research interface 
using the L14-5/38 Linear probe. 

Table 1.  Parameters for baseline study 

Parameter Value 

Depth (cm) 5.5 

Gain (dB) 25 

Dynamic range (dB) 0 

Focus points 5 

Frequency (MHz) 6.6 

Power 0 

Frame rate High (11 fps) 

Map 4 

Persist 0 

3. Results 

In total, 240 sequences were tested with no failed tests and an 
average computation time of 7.9 seconds per sequence (recall 
that the average sequence length was 47.2 seconds). The 
computed temporal offsets from the experiments are 
summarized in the following two sections. All acquired data are 
available upon request. 

The mean temporal offset and corresponding standard 
deviation are listed in Table 2. Mean temporal offsets as a 
function of gain, depth, frequency, frame rate, persist, and focus 
are shown in Tables 3-8, respectively; corresponding standard 
deviations are also listed. Again, only one imaging parameter 
was varied at a time with the remaining parameters set to their 
baseline values (specified in Table 1). 

Table 2.  Baseline study 

Tested sequences Mean tracker lead (ms) 

20 59.8 (± 3.0) 

Table 3.  Gain perturbations 

Gain (dB) Tested sequences Mean tracker lead 

(ms) 

35 10 60.5 (± 3.8) 

45 10 62.6 (± 3.4) 

55 10 63.1 (± 2.8) 

65 10 64.2 (± 3.2) 

Table 4.  Depth perturbations 

Depth (cm) Tested sequences Mean tracker lead 

(ms) 

3.5 10 44.3 (± 2.9) 

4.0 10 45.7 (± 4.4) 

4.5 10 48.0 (± 4.1) 

5.0 10 50.0 (± 1.8) 

6.0 10 64.3 (± 3.6) 

6.5 10 64.8 (± 2.5) 

7.0 10 68.2 (± 3.4) 

Table 5.  Frequency perturbations 

Frequency (MHz) Tested sequences Mean tracker 

lead (ms) 

5.0 10 91.8 (± 10.8) 

10.0 10 61.1 (± 1.4) 

Table 6.  Frame rate perturbations 

Frame rate Tested sequences Mean tracker 

lead (ms) 

Medium (9 fps) 10 74.3 (± 5.3) 

Maximum (32 fps) 10 20.8 (± 3.4) 

Table 7.  Persists perturbations 

Persist Tested sequences Mean tracker lead 

(ms) 

2 10 55.8 (± 2.4) 

4 10 55.2 (± 5.3) 

6 10 159.1 (± 14.9) 

Table 8.  Focus perturbations 

Number of focus 

points 

Tested sequences Mean tracker 

lead (ms) 

6 10 71.1 (± 5.0) 

7 10 89.3 (± 8.5) 

8 10 110.9 (± 11.8) 

9 10 126.3 (± 9.3) 

4. Discussions 

The COG line detection method properly functioned over all of 
the tested imaging parameters, a testament to its robustness. It is 
worth remarking that prior to adopting the COG approach we 
extracted lines using the Hough transform in a manner similar 
to that discussed in Rousseau et al.. We found, however, that the 
Hough transform was not well suited because the line motif 
usually appears as a thick band instead of a thin line. While the 
thick band could be reduced to a thin line through pre-
processing steps, such as edge detection or thinning, such pre-
processing discards much of the signal, can introduce artifacts 
and add additional complexity. There exist modified Hough 
transform algorithms that have been specifically adapted for 
thick line motifs, for example [13], but we did not pursue them, 
primarily because we felt that for a single line extraction the 
Hough transform approach was unnecessarily complicated. 

In addition to the SSD metric, we tested two other 
alignment metrics: sum of absolute differences (SAD), and 
normalized cross-correlation. SAD was undesirable because it 
tended to produce correlation values that were relatively 
constant in the neighborhood of the optimal temporal offset—
that is, flat shaped peaks on the SAD versus temporal offset plot. 
This characteristic made SAD alignment less reliable than 
alignment by cross correlation or SSD. Furthermore, through 
experimentation we found that in certain cases alignment using 
cross-correlation produced alignments that were visibly worse 
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than those produced with the SSD. For these reasons we opted 
to use SSD as the alignment metric. 

From the results it is clear that changes in imaging 
parameters produced markedly different temporal offsets. For 
example, examining temporal offset as a function of imaging 
depth, the difference in temporal offset between a depth of 3.5 
cm and a depth of 7 cm is nearly 25 ms. From tables 5-8, it is 
clear that similar, or more pronounced, variations in temporal 
offsets exist over perturbations in the frequency, frame rate, 
persist, and focus parameters. Because the variation is highly 
dependent on the implementation of the image processing chain 
of the specific ultrasound system, we will not discuss here the 
reasons for the changes in temporal offsets. 

The range of temporal offsets suggests that different 
calibration parameters are needed for different US imaging 
parameters. A corollary of this is that a practical temporal 
calibration algorithm should be able to adequately function over 
a range of imaging parameters. We suggest performing temporal 
calibration under the range of US parameters to be used. If the 
variation in temporal offsets is determined to cause spatial errors 
exceeding those allowable for the given application, then 
appropriate steps can be taken to mitigate these errors. One 
mitigation strategy is to determine a maximum allowable hand 
motion speed and discard frames, and alert the user, when the 
hand motion speed exceeds this limit. Another solution is to 
store different temporal calibration offsets for different imaging 
parameters and vary which offset is used as the imaging 
parameters are varied. Alternatively, in settings where imaging 
parameters are frequently tuned, volume reconstruction-based 
calibration techniques may be useful because, as mentioned 
previously, adaptation to parameter changes is implicit. 

We also examined how the temporal offset does depend on 
the imaging parameters, on machine of different vendors.  We 
performed 10 temporal calibrations with the same Ascension 
TrackStar EM tracker, sensors, and computer with both 
Ultrasonix and Telemed ultrasound.  The time offsets were 
slightly different at a depth of 50 mm, for Ultrasonix it was 50 
+/- 1.8 ms and for Telemed 32 +/- 1.9 ms.  We note that the 
delay of the imaging system is dependent on many parameters 
in the image processing pipeline, and some of the image 
processing parameters are not accessible for the user to set. 
Therefore, different ultrasound machines take a different 
amount of time to process the same image from the raw signal 
of the ultrasound transducer to the B-mode ultrasound image. In 
addition, Tables 2-8 show how the temporal offset depends on 
the imaging parameters for a given ultrasound machine. 

To examine how probe orientation affects the results, we 
ran 10 calibration sequences with an Ultrasonix linear 
transducer at a focal depth of 50 mm, in each orientation of +30, 
0, -30 degrees. The change in the temporal offset results was 
negligible, consistently less than 0.1 ms. The explanation is that 
a tilt angle may make some noticeable difference if there is a 
large and variable beam width. But if the bottom of the flat water 
tank is kept around the focus point of the image, then a tilted 
orientation should make no difference in the temporal 
calibration, just as our experiment showed. 

A notable feature of this work is that all source code is 
available under a BSD license as part of PLUS; the code is freely 
usable for any purpose, without any limitation, even 
commercially. By including our work as a part of PLUS, we 
hope to not only facilitate the usage of our algorithm with other 
tracked US functionalities, but also to promote extension and/or 
modification of our work to suit custom applications. PLUS also 
generalizes the presented algorithm by allowing it to be used for 
temporal calibration of any number of imaging and tracking 
devices (e.g., temporal calibration of optical tracker data, 
electromagnetic tracker data, and US data) by pairwise 
computation of the temporal offset; PLUS also allows the 
temporal calibration of arbitrary tracking devices, including 
those not related to US systems. Combined, these factors greatly 
increase the practicality of our work. 

The ease-of-use, extensibility, and effectiveness of our 
temporal calibration are attested to by its usage on devices by 
many groups on a variety of devices, including the Ultrasonix, 
BK, Hitachi, and Fraunhofer DiPhAS ultrasound systems 
(through research interface, framegrabber, and OpenIGTLink 
interfaces), the Ascension trakSTAR, and NDI Aurora 
electromagnetic trackers, and the Claron MicronTracker, and 
NDI Polaris optical trackers (see, for example, [14-20]). 

Finally, regarding whether a “ground truth” is available, we 
note that the exact value of temporal offset depends on the both 
hardware and software of the ultrasound machine and transducer 
and the position tracker and sensors used. Keeping these the 
same but with using different constrained motion patterns one 
should receive the same temporal offset. Still, this still would 
not be “ground truth”, only a somewhat different way to 
estimate the temporal offset. Our approach of uniaxial motion in 
a flat water tank at the image’s focal depth is perhaps the 
simplest and most robust way to measure the temporal offset. A 
more complex constrained motion pattern would be subject to 
potential errors in enforcing the constraints and in processing 
the ultrasound images. Instead, we are content with the high 
level of consistency and precision indicated by low standard 
deviations found throughout our experiments. 

5. Conclusions 

This work presents a temporal calibration algorithm equipped 
with a robust line detection scheme. The precision of the 
algorithm was systematically evaluated over a range of imaging 
parameters, with normal imaging parameters resulting in 
standard deviations under 5 ms and extreme imaging parameters 
resulting in standard deviations up to 15 ms. By providing the 
algorithm as part of the Public Library for Ultrasound research 
(PLUS) this work aims to make a practical contribution to 
ultrasound research. 
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