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Abstract. We developed a discrete tomography method for prostate implant 
reconstructions using only a limited number of X-ray projection images. A 3D 
voxel volume is reconstructed by back-projection and using distance maps 
generated from the projection images. The true seed locations are extracted 
from the voxel volume while false positive seeds are eliminated using a novel 
optimal geometry coverage model. The attractive feature of our method is that it 
does not require exact seed segmentation of the X-ray images and it yields near 
100% correct reconstruction from only six images with an average 
reconstruction accuracy of 0.86 mm (std=0.46mm).  

1   Introduction 

Brachytherapy is a definitive treatment for low risk prostate cancer that represents the 
vast majority of new cases diagnosed nowadays. The brachytherapy procedure entails 
permanently implanting small radioactive seeds into the prostate. The main limitation 
of contemporary brachytherapy is faulty seed placement that may result in insufficient 
dose to the cancer and/or inadvertent radiation to the rectum, urethra, and bladder. 
Intra-operative implant optimization promises a major clinical breakthrough, but for 
this technique to succeed the implanted seeds must be reconstructed and registered 
with the anatomy [1]. This work concentrates on the first problem, reconstruction. 

C-arm X-ray fluoroscopy is the gold standard in observing brachytherapy seeds 
and therefore is a natural candidate for implant localization. The 3D coordinates of 
the seeds can be calculated from multiple X-ray images upon solving the corres-
pondence problem [2-6]. These methods uniformly require that seeds are accurately 
segmented in the X-ray images. Significant research has been dedicated to this 
problem, still without clinically robust and practical solution. To make the problem 
worse, typically 7%, but often as much as 43% of the seeds can be hidden in the X-
ray images [7], and the recovery of these seeds is an exigent task that often leaves 
seeds undetected. Su et al. [7] proposed a solution to the hidden seed problem by 
resolving seed clusters and extending previously published approach [3], but it still 
required perfectly localizing all visible seeds all projection images.  

Classic tomosynthesis might seem a suitable reconstruction, but unfortunately, it is 
impractical in brachytherapy because (1) the swing space of the C-arm is limited due 
to collision hazards and (2) the number of X-ray images is strictly limited in order to 
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save the patient and the OR crew from excessive toxic radiation. Tutar et al. [8] has 
proposed a variant of tomosynthesis denoted as selective back projection. However 
this method demands a large number of images (≥7) and wide C-arm angle (≥25o) to 
succeed.  It is also prone to introducing false positive (FP) seeds, which from a 
dosimetric point of view are more troublesome than hidden seeds, because they act 
toward underdosing the cancer. Tutar et al. use a heuristic rule to recognize FP seeds 
by their sizes, but since C-arm pose estimation and calibration errors affect the size of 
objects, this may result in faulty 
separation of the true and false 
seeds. 

Our approach using discrete 
tomography is different in that 
after generating a 3D volume 
using back-projection we detect 
and remove the false positive 
seeds by solving an optimal 
coverage problem. We achieved 
high reconstruction rate with 
fewer images. 

 

Fig. 1. Two false positive seeds are introduced by three 
legitimate seeds when their projectiles inter-sect the 
same voxels 

2   Method 

In the example in Figure 1, three X-ray images are used. Three seeds project in each 
image and leave a “mark” in the image, typically a dark blotch in fluoroscopy. After 
reconstructing a 3D voxel volume with common back-projection, five candidate seeds 
are found in the volume and all appear to be legitimate seeds in each image. The 
question is how to separate the true seeds from the false positives. In this simplistic 
example, it is very easy to identify the legitimate seeds (solid circles) because any 
other choice will lead to an inconsistency: there will be “seed marks” in one or more 
X-ray images to which no seed in the volume projects. Therefore, the intuition behind 
the reasoning is that each “seed mark” in each image must be “covered” by at least 
one seed in the voxel volume. To support this intuition, we develop a theoretical 
framework based on optimal geometry coverage. 

Tomosynthesis with Distance Map and Seed Localization. Tomosynthesis [10] is 
the technique to reconstruct a 3D volume from multiple 2D projection images within 
a limited angle. The most commonly used approach is the back projection method, 
which was first introduced for CT reconstruction. In this method, each voxel in a 3D 
volume is projected onto all the images. The value assigned to this voxel is calculated 
as the average of the intensity values of its projected locations in the images.  
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A local coordinate system must be defined for the C-arm. For any arbitrary 3D 
point in the space, after C-arm calibration, its projected coordinates on the 2D image 
plane can be calculated by the rules of perspective projection.  

In practice, the C-arm’s pose is estimated with some error. Since the size of the 
seeds is small relative to the focal length, the reconstruction is quite sensitive to pose 
error. To make the reconstruction more robust to pose error, in the reconstruction of 
the 3D voxel volume we use distance maps rather than the projection image itself. 

As preprocessing, in each image we first extract the so called 2D seed regions-- 
areas that contain seeds’ projections--using adaptive thresholding and morphological 
operators and call the resulting images “seed-only” image. Then for each seed-only 
image, a distance map is calculated using a distance transform: the value at each pixel 
is the Euclidean distance to its nearest 2D seed region. (Pixels inside a 2D seed region 
all take a value of zero.) In reconstructing the 3D volume, the value of a voxel is the 
average of the distance values at all of its projected locations.  

After the 3D voxel volume is reconstructed, candidate 3D seed regions are 
extracted by thresholding. The threshold value is based on estimated pose error. For 
example, in case of small pose error of less than 1 degree rotation, such as in Jain et 
al. [6], the threshold is set to ½ pixel. Upon thresholding, connected 3D seed regions 
are considered as candidate seeds. The candidate seeds are then labeled using the 
standard 3D “connected component labeling” method, i.e. any two neighboring voxels 
in the 3D seed regions are assigned the same label and considered as parts of the same 
seed. After that, the centroids of all the candidate seeds are calculated by averaging 
the 3D coordinates of all voxels wearing the same label. Each candidate seed is then 
represented by the location of its centroid, in addition to its label.  

As we mentioned earlier, a decisive advantage of tomosynthesis over the three-film 
technique and its derivatives [6] is that, in addition to not requiring precise seed 
segmentation, it can reconstruct all hidden seeds. But the disadvantage is that 
tomosynthesis introduces false positive seeds, often as much as 20%.  Next, we 
propose a theoretical framework for separating the true seeds from the false ones. 

Theoretical Framework for Separating True Seeds. The problem is formulated as 
an optimal geometric coverage problem [11]. The general optimal coverage problem 
arises, for example, in wireless network design. From a given set of “server” points, 
we must select the minimum subset that can cover a given set of “client” points. The 
goal is formulated as to minimize a total cost function, which is the sum of the cost 
functions defined on all the selected server points. 

In our problem, based on the intuition mentioned earlier, we want to find the M 
true seeds from the set of N candidates, such that all the 2D seed regions are 
“covered” in all projection images, i.e. every 2D seed region must have at least one 
true seed projected in it. In constructing the appropriate cost function, we can use the 
observation that a false positive (FP) seed, owing to its very nature, is projected close 
to some true seed in every image. While a true seed may be projected close to some 
other true seeds in some images, it usually is not the case for every image. (While it is 
common that a true seed can be hidden in some projection images, we have never 
encountered a situation where a true seed was hidden in all images. We also note that 
no existing method can recover such a seed.)  
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Hence for the server model, we define the cost function of a given seed (potential 
server point) as the sum of the closest distances between the projections of this seed 
and the projections of all other true seeds, in all images. We formulate the problem as 
such a general optimal coverage problem: Given the N candidate seeds, we want to 
find M seeds ( 1x , 2x , …, Mx ) from them such that all 2D seed regions in the seed-

only images are covered, and  the below cost function is minimized  
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and jP  is the projection operator that projects a 3D point onto the jth image. 
Unfortunately, the optimal coverage problem is NP-hard [12] and its computational 

complexity is O( N
MC ), where N

MC  means N choose M. Thus for a large set of seeds, it 

is not possible to find its global optimal solution. We, however, managed to reduce 
the size of the problem by using the 2D seed-only images for regularization. To 
further reduce the problem, we also used greedy search to minimize local costs rather 
than the global cost function in Eq. (2).   

Seed Clustering. To ensure that the projections of selected true seeds cover all the 2D 
seed regions in all seed-only images, the candidate seeds are clustered based on their 
projections in each image. For this purpose, we label all 2D seed regions in all seed-only 
images, in the similar way as 3D labeling described, e.g. the separated seed regions are 
assigned different labels and pixels in the same connected region wear the same label. 
The projections of seeds can then be clustered based on these labels. An example is 
shown in Fig. 2. Unlike Su et al. [7], the purpose of seed clustering is not to segment the 
2D seed projections from 2D seed clusters in the images, or to identify the number of 
true seeds in each cluster. Instead, we use the seed clustering as a way to relating the 3D 
seeds, and the relationship is used in the coverage function that is to be minimized. 

    

1

2
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4
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Fig. 2. (Left) X-ray image on phantom data; (Middle) the seed-only image resulted after 
preprocessing; (Right) Example of seed region labeling and seed grouping  

On a projection image, the projections of all candidate seeds are first computed 
using Eq. (1). We denote a 3D candidate seed as xn, and its 2D projection on the jth 
image is n

j xP . For each n
j xP , we find its nearest seed region, which is labeled 

as )( n
jj xPL . The distance from n

j xP  to its closest seed region is also calculated and 

denoted as j
nd  ( j

nd = 0 if n
j xP  is inside a seed region). The seed projections are then 
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clustered based on )( n
jj xPL . Let there be jK seed regions on the jth seed-only image, 

and they are labeled as 1, 2, …, jK . The projections of the N candidate seeds on the jth 

image are then clustered into jK  sets j
kΩ , such that  

j
p

jjj
k , ..., K,  k, ..., N, jpLpLpp 21  ,21         ),()(  ,, 1121 ===Ω∈∀   (4) 

Let || j
kΩ || be the cardinal of set j

kΩ , we say the seed region with label k in jth image is 

covered by || j
kΩ || seeds. 1|||| ≥Ω j

k . The clustering is repeated on all images. 

In the example in Fig. 2(c), the seed regions are labeled from 1 to 5 and red 
asterisks mark the 2D projections of the candidate seeds. The three regions labeled 
with 1, 4 and 5 contain one true seed each. The two regions labeled with 2 and 
3contain two (or more) true seeds each. Since the seeds in region 2 (and 3) are 
connected, it is considered as a single seed region. The candidate seeds include both 
true seeds and a few false seeds. In this example, upon clustering, the sets with label 
from 1 to 5 have 2, 3, 4, 1, and 1 element(s) individually 

Local Coverage and Greedy Search. The seed clustering according to each 
projection can help reduce the size of our optimization problem. If a seed region is 
covered only by one seed, this seed must be a true one, because otherwise this region 
is not covered. The set of such seeds can be expressed as: 

p
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jj
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where Np is the number of projection images. These seeds are always chosen as true 
seeds. Hence the optimization problem is reduced to choose (M-||G||) true seeds from 
(N-||G||) candidate seeds. This can also be seen in the example in Fig. 2(c). The two 
regions labeled with 4 and 5 contain only one seed each. Therefore these two seeds 
are considered as true seeds and are always chosen.  

Besides, instead of finding the global optimization of the cost function in (2), we 
use greedy search to find an approximate optimal solution. We also redefine the local 
coverage cost function as  
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is the minimum distance between the projection of  xn and the projections of other 

seeds in the cluster in the jth image that includes xn, and j

nd is the distance from n
j xP  

to the nearest seed region. j
nd  is added in the cost function to include the effect of 

imperfect X-ray pose estimation. 
The minimization problem in (6) is solved using greedy search iteratively. During 

each cycle of iteration, the seed that has the largest cost value )( nxc  is considered as a 

false seed and is removed from the candidate seed set. G is updated at the beginning 
of each cycle of iteration, for after the removal of one seed, there may be additional 
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seeds that cover some region alone (i.e. no other seed covers this region.) These seeds 
need to be extracted and added to G. The algorithm is summarized as below.  

Algorithm 1.  find M good seeds from N candidate seeds using greedy search 
1. Initialize S be the set of candidate seeds. 
2. For i = 1:N-M 
3. Calculate G using (5). 
4. Calculate local cost function )(xc of all seeds x in S - G using (6). 
5. Find GS −∈kx , such that )(minarg xcx xk = . 

6. Remove kx  from S: }{ kx−= SS . 

3   Experiments and Results 

Simulations. Synthetic C-arm images were used to verify our method. The images 
simulated a 50 cc prostate with a seed density of 2.0 seed/cc.  The C-arm’s focal 
length was 1000 mm, and the pixel size was 0.25 mm. Six images were generated on 
a 20o cone around the AP axis with evenly distributed angles. The seeds were 
represented by cylinders with a radius of 0.4 mm and a length of 1.45 mm. A typical 
synthetic image is shown in Fig. 3(a). No pose estimation error was assumed. 

      

Fig. 3. (Left) Part of a synthetic C-arm image; (Right) One slice of the reconstructed 3D 
volume. The red circles mark the true seeds, and the green squares represent the FP seeds. 

Table 1. Seed reconstruction results using different number of synthetic images 

Number of 
images 
used 

Number of 
true seeds 
implanted 

Number of 
candidate seeds 

before FP removal

Correctly 
reconstructed seeds 

after FP removal (%)

Mean 
reconstruction 

error (mm) 

Reconstructio
n error STD 

(mm) 
3  96 105.6 99.4 0.19 0.19 
4 96 97.7 100 0.12 0.09 

We reconstructed the seeds using 3, 4 and 6 images. For 3 images, 20 experiments 
were performed by using all the 20 combinations of selecting 3 images from the 6 
available images. For 4 images, four experiments were performed using different 
image combinations. The results are shown in Table 1. In each experiment, the 
number of implanted seeds was assumed known. After FP removal, a set of candidate 
seeds that equal to the number of implanted seeds were chose. These chosen seeds 
were then compared with the known 3D locations of implanted seeds. When using 3 
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images, there were about 10% FP seeds reconstructed initially and then almost all 
were successfully removed, indicated by the near 100% correct final reconstruction 
rate. This means that when there is no pose estimation error, the seeds can be 
reconstructed accurately even from as few as 3 images using our method.  

Phantom Studies. Experiments were performed on a seed phantom constructed from 
acetol. The FTRAC fiducial was used to track the C-arm (with accuracy of 0.56 mm 
translation and 0.33o rotation). It was attached to the seed phantom, as shown in  
Fig. 4. The seed phantom is comprised of twelve slabs with 5mm thickness each. 
Each slab has more than 100 holes with 5 mm spacing, into which the seed can be 
inserted.  By precise manufacturing, the seed phantom was attached in a known 
position to a radiographic C-arm tracking fiducial, replicated after Jain et al. [13]. In 
this way, the exact location of each implanted seed was known relative to the tracking 
fiducial, serving as ground truth. Because some rotation error got introduced during 
assembly, the ground absolute seed positions had about 0.5 mm error. (Note that their 
relative positions were precisely known.) The seed density was about 1.56 seed/cc.  
Five data sets were collected with the number of seeds varying from 40 to. For each 
data set, six images within a 20o cone around the AP axis were taken using a Phillips 
integris V3000 fluoroscope and dewarped using the pin-cushion test. We used four, 
five and six images to reconstruct the seeds, by using all the combinations of the six 
available images, i.e. 15 experiments using four images, 6 using five images, and 1 
using six images for each data set. The reconstructed seeds were compared with the 
computed ground truth, and the results were shown in Table 2. 

   

Fig. 4. (Left) An image of the seed phantom attached to the FTRAC fiducial. (Right) A typical 
X-ray image of the combination (with 100 seeds inserted). 

It was shown in [12] that in prostate brachytherapy, 95% of the implanted seeds 
must be recovered in order to obtain clinically accurate estimation of the dose. Our 
results showed that (1) from six images more than 98% seeds can be successfully 
reconstructed, and (2) six images were sufficient for deriving clinically accurate dose 
estimation. Furthermore, the number of required images depends on the number of 
seeds implanted. For a smaller number of seeds (40, 55, 70), only four to five images 
were required. Additionally the performance of our method depends on the ratio 
between the number of FP seeds and the implanted seeds, which in turn depends on 
both the number of images used and the number of implanted seeds. Generally the 
lower is this ratio, the higher is the seed reconstruction ratio we may achieve.  
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Table 2. Seed reconstruction results on phantom data using different number of images 

Number 
of images 

used 

Number of 
seeds 

implanted 

Number of 
candidate seeds 

before FP removal

Correctly 
reconstructed seeds 

after FP removal (%)

Mean 
reconstruction 

error (mm) 

Reconstruction 
error STD 

(mm) 
40 46 100 1.04 0.56 

  55 58 100 0.67 0.39 
70 82 98.6 0.72 0.42 
85 94 100 0.97 0.44 

6 

100 112 98 0.94 0.52 
40 46.3 99.5 1.02 0.53 

  55 68.3 98.8     0.85 0.46 
70 92.3 97.8 0.85 0.46 
85 105.3 97.0 1.00 0.57 

5 

100 121.3 92.5 1.19 0.81 
40 53.7 96.8 1.24 0.76 

  55 82.1 94.7 0.99 0.69 
70 112 94.3 0.91 0.77 
85 135.8 90.1 1.13 0.62 

4 

100 159.7 86.3 1.44 0.91 

In summary, we presented a novel method for prostate brachytherapy seed 
reconstruction using C-arm images. We generate distance maps from the 2D 
projection images, then a 3D volume is then reconstructed using tomosynthesis using 
the distance maps, and finally true seeds are extracted from the voxel volume. The 
attractive feature of our method is that it does not require exact seed segmentation of 
the X-ray images. As a tradeoff, our method requires slightly higher number of 
images than the methods that requires elaborate explicit segmentation. Our method 
yields near 100% correct reconstruction from only six images with an average 
reconstruction accuracy of 0.86 mm (std=0.46mm). The method was robust to pose 
error present in radiographic C-arm tracking.  
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