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Abstract—Intraoperative dosimetry in prostate brachyther- are comparable to radical prostatectomy and external-beam
apy requires localization of the implanted radioactive see@s. radiation therapy [2]-[4]. Brachytherapy involves perman
A tomosynthesis-based seed reconstruction method is proped. i 5jantation of radioactive seeds into the prostate. ltcess

A three-dimensional volume is reconstructed from Gaussian inlv d d the ability to deli ficient ¢
blurred projection images and candidate seed locations are mainly depends on the ability 1o deliver a suflicient amoun

computed from the reconstructed volume. A false positive i Of therapeutic dose to the target gland while sparing adjace
removal process, formulated as an optimal coverage problem healthy organs and structures, e.g. rectum, urethra, ane ne

iteratively removes “ghost” seeds that are created by tomog-  pundles, from excessive radiation. Typically, an impléota
thesis reconstruction. In an effort to minimize pose errorsthat are plan is made preoperatively based on an ultrasound volume

common in conventional C-arms, initial pose parameter estates tud ith t of axial i i f th tat d
are iteratively corrected by using the detected candidateeeds as Study with a set or axial image Slices o € prostate an

fiducials, which automatically “focuses” the collected imges and idealistic seed implant patterns. Transrectal ultrasdiiRUS)
improves successive reconstructed volumes. Simulation selts is widely used during the procedure to guide the surgeon
imply that the implanted seed locations can be estimated wit to insert the needle and deliver the seeds to the preplanned
a detection rate of > 97.9% and > 99.3% from three and four  |5-5tion in the target gland [5]. However, implanting the
images, respectively, when the C-arm is calibrated and thegse . L
of the C-arm is known. The algorithm was also validated on seeds at the gxgct planned Iocgtlons 'S_ difficult becaqse of
phantom data sets successfully localizing the implanted eds Procedural variations such as patient motion, needle temia
from four or five images. In a Phase-1 clinical trial, we were and soft tissue deformation including edema [5]-[7]. Also,
able to localize the implanted seeds from five intraoperatie although TRUS images can be readily used to localize the
fluoroscopy images with98.8% (STD=1.6) overall detection rate. prostate boundary, they do not visualize the locations ef th
Index Terms—Tomosynthesis, prostate cancer, brachytherapy, seeds very well. Therefore, systems that use ultrasound and
Gaussian blurring, C-arm auto-focusing, optimal coveragecost.  X-ray fluoroscopy have been developed to overcome these
limitations as depicted in Fig. 1(a) [8], [9]. These systems
. INTRODUCTION can thereby permit both monitoring of the implant process

Prostate cancer is one of the most common cancers in No# reconstruction of the implanted seeds for intraoperati
America with 186,320 estimated new cases comprising abdtfatment optimization purposes. X-ray projection imagees
25% of all new cancers found in men and 28,660 estimatggually acquired using conventional mobile C-arms, and the
deaths in 2008 in the United States alone [1]. On the positif@construction problem is to estimate the 3-D locationshef t
side, prostate cancer can be very effectively treated daleti implanted seeds from two or more projection images.
early; in fact, about 91% of new cases are expected to pbdn order to successfully reconstruct and localize the im-
diagnosed early enough in order to yield a near 100% 5-yddanted seeds using a mobile C-arm, the following problems
relative survival rate [1]. Brachytherapy is a definitiveat- should be considered. (1) Since most mobile C-arms fre-

ment for low risk prostate cancer; it achieves outcomes tHggently utilized for surgery in most hospitals do not have
encoded joints and may not be isocentric, the pose and the
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Fig. 1. (a) A schematic describing prostate brachytherapgeqaure. C-arm has limited mobility due to the limited spaear the patient. (b) An example
anterior-posterior fluoroscope image with 84 implantédPd seeds. White circles indicate overlapping seeds and dowhaf pelvis is shown in the
background.

due to the overlapping or clustered seeds. (5) The numbertioé incomplete data problem. However, it may fail to detect
projection images acquired during the procedure should beerlapping seeds when the projection with the largest mrmb
minimized in order to avoid unnecessary radiation and t@ saof seed images among the divided groups is incomplete. Also,
processing time. incorrect division of triplets, referred to as “overdividi” may

Reconstruction of the implanted brachytherapy seed I62Use false positive seeds. Lainal. [25] proposed a Hough
cations from a limited number of X-ray images, like thatrajectory method which uses the fact that there is a unique

shown in Fig. 1(b), is a well studied problem. In the method&iectory in Hough feature space for each seed coordinate i

reported in [L0]-[22], 2-D coordinates of all the seeds in ap-D- This algorithm requires an impractically large number

the projection images are first identified and then a seddf- Projections & 10) and a large source angle separation,
matching problem between the seeds found in different imaghich may not be practical. Murphy and Todor [26] proposed
is solved. Three-dimensional coordinates of the seeds &rfPrward iterative method and reported preliminary sirtiofa

calculated using the seed correspondences and the ptmjecrﬁasults to offer a proof of feasibility. Further demonstras of

geometry of the X-ray system (essentially by triangula)tionthis approach on real data, however, have not been presented

A significant problem with these approaches arises from theThere are also tomosynthesis-based algorithms that age abl
fact that overlapping seeds are common [21], and relialile automatically solve the incomplete data problem. Méssar
automatic identification and localization of every seedvierg et al. [27] used classical tomosynthesis to localize objects
image is difficult. Because of this, manual interaction lm@ét such as radioactive seeds and proposed an approach to maxi-
always needed, and even then some seeds cannot be reliabiation of localization accuracy and efficiency by cortieig
identified because one seed completely hides another. tomographic and projectional images. Their method, unfor-

There has been some research on solving the 3-D sddpately, requires extensive user interaction in all phase

reconstruction problem in cases where seeds cannot bilyelid"€ Process which is clinically impractical. Tuterr al. [28]
identified and localized on the 2-D projection images—thf¥©Posed a selective backprojection method which is a mod-

scenario is called théncomplete data problem. Narayanan ified_ _tomosynthesis technique. Their_ seed detec_ti_on arse fal

et al. [23] proposed a pseudo-seed-matching strategy coupFéQ:F't'VG (_FP) _seed removal process is very sensmvg tonC-ar
with an epipolar geometry-based reconstruction. This prethPOS€ estimation errors, and it also requires a relativetyela
requires at least one of the three images to be complete (JMyMPer of images% 7) and wide image acquisition angles
coordinates of all the seeds have to be identified), however,(> 30°) not achievable in most OR settings.

it may or may not reliably reconstruct the 3-D seed positions This paper describes an improved tomosynthesis-based seed
of the hidden seeds. Set al. [24] proposed an adaptivelocalization method. Tomosynthesis is a method to recon-
grouping technique which divides the seed images into grougtruct a 3-D volume from multiple projection images acadire

for efficient seed reconstruction and is capable of handlimgthin a limited angle [29], [30]. A decisive advantage of
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using tomosynthesis-based approach for reconstructieg th
implanted brachytherapy seeds is that all the seeds (imgud
overlapping ones) can be completely reconstructed witbout
plicit prior identification of the 2-D coordinates of the ggan

the projection images. We compute Gaussian-blurred images
that we reconstruct into a 3-D volume. Then, we calculate
candidate seed positions from the reconstructed volume. We
formulate an FP seed removal process as an optimal coverage
problem, and it allows us to remove FP seeds from the
candidate seeds and to reduce the number of required images.
Also, a C-arm auto-focus process enables us to use images of
which corresponding poses are not well estimated.

The remainder of this paper is organized as follows. In
Section Il, the imaging system including geometric distort
correction, calibration, and tracking of the C-arm is dixmt.

In Section Ill, we describe the key idea of our method using

a simple example followed by a detailed description of the

proposed method which consists of (1) binary seed-only imagig- 2. Example tomosynthesis geometry with three true sefetck
. . . . . Circles), one false positive seed (white circle). In the diedimage, two

computation and seed region Iabellng, (2) Gaussian bmm@eeds are overlapped (shaded circle). There are threeimaterdsystems:

(3) volume reconstruction and candidate seed detectidiG{4 global reference coordinatesF}, X-ray source coordinatesS], and image

arm auto-focusing, (5) false positive seed removal. Nucagri coordinates ).

results based on simulations, five phantom data sets, and

eighteen clinical data sets are presented in Section N\allyjin

the paper concludes in Section V.

X-ray source .

parameters of the C-arm are estimated based on this image
prior to the surgery.

Although the intrinsic camera parameters of the C-arm
1. APPARATUS can be determined before the surgery, the pose parameters

. , 3 parameters for rotation and 3 parameters for translation
X-ray fluoroscopy images of the implanted seeds are & the C-arm must be computed at each image acquisition
quired using a mobile C-arm with XRII detector. Most XRII- b 9 q

based C-arm images show a significant amount of nonlind9se: Although external tracking devices can be used fer thi

geometric distortion and nonuniform intensity distortitivat purpose, they are Very expensive and_ add to the phy_3|cal
Jimitations and complexity in the operating room—e.g.glin

vary_W|th pose, time, and location. As we expl_aln Iater_ 'pf sight requirements and metal object distortions. Irstéa
Section 1lI-B, we pre-process the fluoroscopy images into

binary seed-only images, and thus non-uniform intensi ur experiments, the pose of the C-arm was computed using a

distortions do not affect our tomosynthesis reconstractio Mjoroscope tracking radiographic fiducial structure (FTRA

. . S ; that provides an estimation accuracy of 0.56 mm in trarmsiati
However, nonlinear geometric distortion in the image cause o . )
) . s X and0.33¢ in orientation [33]. These accuracies are comparable
errors in the reconstruction by shifting the location of th . )
. . . . 0 those of external tracking devices. In our system, FTRAC
2-D projected seeds. Thus prior to reconstruction, geametr

. : . . . Is mounted to the seed insertion template with a connector,
distortion correction of the image is necessary. At the same

. Lo . and its relative position with respect to the template isviimo
time, calibration and pose tracking are necessary to récmts . . . ; . )

. ; " ince the seed insertion template is registered to TRUSein th
a volume from images taken at arbitrary positions of the

arm. In the calibration process, we need to determine Bitrin calibration process of the commercial brachytherapy meat

camera parameters of the C-arm (image pixel size and foﬁéﬁmmng system, the seed positions computed from X-ray

spot, i.e. the 3-D location of the X-ray source with respe (loroscopy Images can be transformed to the TRUS frame

. . . . g)(% known transformation. Therefore, dose distribution ban
to each image plane). Since the pixel size of the detec o .
computed from the seed positions and overlaid to the pmstat

remains the same throughout the life of the C-arm, the C-arm . - - ) :

oo o volume without requiring an additional registration prese
calibration problem reduces to estimation of the focal Sp%t

) . . etween TRUS and fluoroscopy.

However, since the location of the focal spot varies as the
pose of the C-arm changes, it should be computed from pose
to pose at which each image is taken. In order to save time
in the operating room, we perform the distortion paramet@Y Key Idea
computation and calibration process only once. We mount aFig. 2 shows a simple example that can be encountered
calibration fixture developed earlier by Jaéh al. [31] on when reconstructing seeds from a limited number of projec-
the intensifier tube, and take a representative image withion images. Three projection images of three seeds (black
an expected range of the C-arm movement. Since we acquiieles) are acquired at three different cone beam X-raycsou
images within a small angle variation range, the estimatigositions. All three seeds are detected in two projections,
errors do not critically affect the reconstruction resB2]. but only two seeds are visible in the middle image due to

The intrinsic camera parameters and the geometric dewd#np overlapping seeds. Our goal is to find the 3-D locations

IIl. METHODS
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of the true seeds using these three projection images. Whptirious seeds in the seed-only images will affect the seed-
most of the previously proposed algorithms try to do imatching process, resulting in erroneous matching. In our
to (1) identify all three seeds in all projection images anghethod, additional spurious seeds in the 2-D seed-onlyésag
find their 2-D coordinates, (2) find the correspondence wfill not create false positive seeds in the 3-D reconstoncti
the seeds between projection images, and (3) find the 3uDless there are supporting seeds that correspond to these s
locations of the seeds by computing symbolic intersections the other images (it is almost impossible that a spurious
of the backprojection lines of corresponding seeds. Whered introduced in an image has corresponding seeds ireall th
there are overlapping seeds as in this example (shaded)cirabther 4-5 images). What is more important is to guarantete tha
establishing the correct correspondence is challengirfterv the binary seed-only images include all the seeds becayse an
it is wrong, then seeds are positioned in entirely incorreptissing seed in a seed-only image may result in missing a seed
positions—e.g., at one of the other intersection pointshef tin the reconstruction. Considering these possible scesand
dotted backprojection lines. the fact that seed-only images are the basis of our method,
The tomosynthesis approach backprojects and sums the sedd important to take an effort to ensure that the seed-
locations on the 2-D X-ray images into 3-D space, whicbnly images are accurate. On the positive side, brachyiiera
has the effect of growing “bright spots” where the true seedeeds look very dark in the fluoroscopy images compared to
actually exist. This is done without requiring seed coroasp other structures, so it can be detected with sufficient agur
dences or trying to identify overlapping seeds. However, &y using various available segmentation algorithms. Fg) 3
can be seen from the figure, false positive (FP) seeds (whiteows an example binary seed-only image.
circle) can be introduced in the reconstructed volume b®eau Once the binary seed-only images are computed, seed
these locations are also consistent with the projected seedions are clustered and labeled using connected componen
locations. To address this situation, our strategy is tattrdabeling [38], [39]. We use these labels during the FP seed
all initially reconstructed seeds as “candidate seeds” tandremoval process that we describe in Section IlI-F. Since
try to iteratively remove the FP seeds. In this simple examplexact identification of the 2-D coordinates of all seeds is no
four candidate seeds are identified in the initial recoms$ibn  necessary, different labels are assigned to isolated sgézhs
and they appear to be legitimate in every projection imageven though they may correspond to more than one projected
But, in fact, the FP seed can be identified by successivelged. An example of a labeled binary seed-only image is
removing each seed and examining the consistency of #&tgown in Fig. 3(b). In this figure, regions 1 and 8 have at
remaining seed constellation relative to the acquiredggt@mn |east two seeds, but only one label is assigned to each region
images. In particular, it can be seen that if any one of the
true seeds is removed, then it is impossible for the three
projection images to have been generated by the remainﬁzlg
candidates; if the FP seed is removed, however, the projecti Since the size of a brachytherapy seed is very small, only
images are reproduced perfectly. Following this obsemwmati a small number of pixels contribute to the image of a seed.
the condition that each seed in every projection image muss a consequence, even minor calibration and pose estimatio
be “covered” by at least one of the candidate seeds hersors may result in missing seeds in the tomosynthesisireco
become our core principle for FP seed removal. In realitgtruction. The possible shifts of the projected points edusy
however, seeds are crowded within a small space and a reaibration and pose estimation errors are more than just 1-
seed may occupy the FP seed location, where every s@cls in general (see Section IV-D). Therefore, it is olngo
in every projection image is covered without this true seethat there will be missing seeds in the reconstruction if the
although the probability of such a situation could be smabize of the seed region is small. We may increase the size
This necessitates a more sophisticated FP seed eliminatidrthe seed region by simple dilation to solve this problem,
process based on our core principle. Starting from thistiotu but then the size of the seed region will be too big, making
and considering this possible situation, we have devel@pedheighboring seed regions connected to one another, which is
theoretical framework for removing FP seeds and localizirejuivalent to creating overlapping seeds in the image®,Als
the implanted brachytherapy seeds based on tomosynthésisncreasing the size of the seed region too much, there will
reconstruction. We now describe the algorithm in detail. be many merged seeds each of which appear to be one big
seed but actually contain multiple seeds in the recongduct
B. Binary Seed-only Image Computation and Seed Region yglume.

Labeling In order to overcome these limitations, we use Gaussian-
We assume that the seed regions in each image are extrabledred images for our reconstruction. From the binary seed
and binary seed-only images are computed from geometoicly images, we first compute distance maps using a distance

distortion-corrected images as Tugral. did in [28]. Since transform. The distance transform assigns the Euclidesin di
there are various seed segmentation algorithms [8], [34} tance between each pixel and its nearest seed region to the
we do not address segmentation methods in this paper. image [40]. In the distance map, pixels inside a 2-D seed
Our method is more robust to additional spurious seeds thmagion take a value of zero and the label of the nearest 2-® see
can be mistakenly introduced to the binary seed-only imagesgjion becomes the label value of the pixel. Fig. 3(b) shows
than seed-matching-based methods. In the seed-matchisg-example of a binary seed-only image with 9 labeled seed
based approach, 2-D seed coordinates computed from thgions. In this figured(P1) = 0 becauseP1 is inside seed

Gaussian Blurring
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(b)

Fig. 3. (a) Binary seed-only image of the patient fluoroscopgge shown in Fig. 1(b). Red circles indicate example apgrihg seeds which are indicated
as white circles in Fig. 1(b). (b) Example seed region lalgebf the seeds inside the green-dashed box in (a). (c) GawbRirred image of (a).

region 8, and d(P2) and d(P3) are the Euclidean distancesbe specified. Putting all this together, we can specify>a4
from the pointsP2 and P3 to the nearest boundaries of seegrojection matrix/F that projects a point in homogeneous
regions8 and 1, respectively wherel(-) is the distance map global reference coordinateg to a point in homogeneous
of the image. Also, the pixels associated with poiffts P2, image coordinateg, as follows

and P3 have label values o, 8, and 1, respectively. f 0 0
_ 0n

We then blur the binary seed-only images based on the Sa SR~ St
_ b . . . Ip, — 0o -4 0 @
distance maps by unit-height Gaussian function defined as F 5, O o” 1
2 0 0 1
1,(x) = exp | —2%) o)
X)=¢€X
g P | 7952 ’ where S, and S, are the pixel sampling intervals along the

wherel,(-) is the Gaussian-blurred image amtl controls the 2y andy; axes of the image, respectively.

width of the blur. The pixel value inside the seed regions is Given a projection matrix for each image, we reconstruct a

1 and the pixel value tapers down as the distance betw@éP volumev(x) using backprojectilon,which I equi_vglent o

the pixel and the nearest seed region increases. The ins% q?rallllzed form IOf t(ljmosynthess for Zrtt))ltrary oriente.

behind this approach is that a pixel closer to a seed regi Recifically, a voxel value at is computed by

has a higher probability that it belongs to a true seed region L

Likewis_e_, a pixel fa_rther from seed regipns has a lower V(x) = FZI; (IF}xh) A3)

probability of belonging to a true seed region. Note that our P =1

Gaussian blurring is different from general Gaussian bigrr Teai S . . .
where “F. is a projection matrix corresponding to thith

that usually convolves a Gaussian kernel with the imageeSin

we use a distance map for blurring, the blurred image ta [iage, Ny is the nu_mber of prOJectlpn mages:,z IS a
values between 0 and 1, which is not the case in gene Jmogeneous coordlnate_ representationxofand Ig('? IS
Gaussian blurring. Also, we cluster the pixels based on t ¢ ith Gaussian-blurred image computed by (1). Since the

computed labels and blurring is computed within each Ctustreeconstructed voxels take values between 0 to 1 (due 1o the

so that it can be utilized for subsequent FP seed remoV4lure of the Gausgan-blurred |maggs), we can extract the
ndidate seed regions by thresholding. In our simulation,

. . . . al
described in Section III-F. Fig. 3(c) shows an example of aﬁantom, and clinical studies, the threshold varied within

Gaussian-blurred image. small range, e.g. 0.9-1.0, thus making the automatic thresh
_ _ ) olding possible. We then label the extracted seed regions

D. Volume Reconstruction and Candidate Seed Detection using connected component labeling [38], [39]. We consider

The geometry of a C-arm imaging system, depicted iach labeled seed region as a candidate seed and compute its
Fig. 2, has three related coordinate systems: the globat-reftentroid. When adjacent seeds are physically touchingdb ea
ence coordinate$’, the source coordinate$, and the image other or are placed very close to each other, these seeds may
coordinatesZ. By using a tracking system, the location anénd up being connected and appear to be one larger seed in
orientation of the source coordinate system can be deternirthe reconstruction due to its blurred nature (note that the 3
relative to the laboratory frame. Specifically, the trackinD volume is reconstructed from blurred 2-D images) and the
system estimates @& x 3 rotation matrix°>R and a3 x 1 C-arm pose estimation errors, a situation that can be aetect
translation vectof't » that together take a vector jA into one by the size of each reconstructed seed volume. In such a case,
in S. We note that the C-arm is not necessarily isocentric, see select a seed with median size among candidate seeds, use
the relationship between the two frames cannot be further cat as a template to match filter the connected seed region in
strained. Through prior calibration, the C-arm’s focaldén order to separate the connected seeds. Then, we compute the
f can be determined and an image origin., 0,) in Z can centroid of each separated seed.
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E. C-arm Auto-focusing Using Detected Candidate Seeds seed elimination process is critical for the success of the

Gaussian blurring allows the algorithm to avoid missinfPmosynthesis-based approach. We formulate this process a
seeds in the presence of errors in C-arm calibration aflj OPtimal coverage problem. Optimal coverage problems
pose estimation. In practice, however, it is often necgsgar 211Se in various applications such as wireless sensor mieswo

correct the estimated C-arm camera parameters. In oucalinio” SO called art gallery problem [50], [51]. The objective in
workflow, C-arm calibration is performed prior to the susgeriN€seé problems is to select a minimum subset that covers
at one representative pose. But, since the intrinsic camé&dJiven set of “client” points from a given set of “server
parameters of the C-arm vary with its pose, using one fRints. Local cost functions are first defined on all the geltic

of fixed intrinsic camera parameters may cause errors in h@/Ver points, and a global cost function is determined as a
pose estimation. Also, we use a tracking fiducial (FTRACSUMmation of.th.ellocal cost functions. The pro_blgm can be
that relies on features pre-segmented in the image for ved by optimizing a global cost function. Similarly, the
C-arm pose estimation. Therefore, errors in image distorti902! Of the FP seed removal process is to fiMdtrue seeds
correction, calibration, and feature segmentation pramgp 0m N. candidate seeds such that all 2-D seed regions are
tracking results. However, the main advantage of usingCQvered in all projection images. However, since the optima
tracking fiducial is that a residual error of the C-arm pogePVeérage Prf?b'em]'vs NP-hard [52], [51] and its computationa
estimation can be computed. Specifically, we compare tR@MPlexity is O(Cys), where Cy: meansN. chooseN:,
features projected from the model onto each image usiligS Practically impossible to find the global optimum for
the estimated pose with the features shown in the ima@e_large number of implanted seeds. Instead of solving the

The computed residual error provides quantitative measfre9loPal optimization problem using the global cost, we find
the accuracy of calibration and pose estimation. Thus,df t" @Pproximate optimal solution by a greedy search using the

residual error is relatively large, it is desirable to catrthe local cost. We also reduce the size of the problem by using

C-arm camera parameters to improve on the reconstructiGliStered binary seed-only images for regularization. \We n
Incorrectly estimated camera parameters can be autorhaticdeScribe the FP seed removal process in detail.

adjusted by using candidate seeds as fiducials. We call this &€tX» € R? be a 3-D coordinate of theth candidate seed,
“C-arm auto-focus” procedure. We first compute a reconstru€” P€ @ projection operator which projects a 3-D point onto the
tion using images whose corresponding residual pose erréfsimage plane, ane;, = P'x,, be a 2-D coordinate of the
are small among the acquired images, and detect candiddf@giection ofx,, in theith image. For eack;,, let d'(x;,) be
seeds. Then, we use the Gaussian-blurred images as @dsticlidean distance to the nearest seed region ffpmhich
functions and adjust the camera parameters of the remainfag@lculated from the distance map described in Sectie@ ||

images so that these images are focused to the candidate s8BdL'(x;,) be a label which is assigned to the candidate seed
by solving following optimization problem. based on the labeling results described in Sections IlI-8 an

lI-C. Note thatdi(x?) = 0 if x¢, is inside a seed region. If
Ne , there areN} seed regions in thith seed-only image and they
¢ = argmin |- > 1 (IFHG)XJ‘) (4)  are labeled as, 2, - -- N, the projections of theV, candidate
J=1 seeds on theth image are clustered int&/! setsQ, such
where N, is the number of candidate seeds;, isd}he ho- thatin theith image, the following holds true:
mogeneous coordinates of thgh candidate seed,F%. is i _ 7 iy N
the projection matrix in theith image computed bP;/ (), L) = L'(xa), for vy, xz € 9, 1=1,2,---, Np.. (5)
I!(-) is theith Gaussian-blurred image computed by (1), andl seed region with label is covered by||Q}|| seeds, where
e = (0,t, f,0.,0,) is a nuisance parameter which include§Q;| is the cardinality of the sef and ||2}| > 1. Since
rotation @, translationt, focal lengthf, and the image origin overlapping seed regions are considered as one seed ragion i
o0z, 0y4. Since we already have initial estimates cofind the the seed-only image, theNz < Ne.
estimation errors are not huge, we can constrain the rang&he size of our optimization problem can be reduced by
of each parameter. Starting from the initial estimationlw t clustering seeds in each image. If a seed region in an image
calibration and pose parameters, we solve this constrairigdovered only by one seed, then this seed must be classified
optimization problem using sequential quadratic programgm as true, otherwise this seed region cannot be coveredGLet
(SQP) [41]-[43]. The Hessian of the Lagrangian is updated by a set of such seeds, i.e.,
the BFGS formula [43]—[48]. The optimization is implemeshte =N P ; ;
using the MATLAB 7.1 commandf'mi ncon’ [49]. The G =Uimi "{X|L(P'x)=land||Qif|=1, I=1,2,--- N}
automatically focused images (note that these images dre no (6)

used for the initial reconstruction) are incorporated itie Where IV, is the number of projection images. Ondg
initial reconstruction to obtain the final reconstruction. is determined, then the optimization problem is reduced to

choose(N; — ||G||) seeds from{ N, — ||G||) candidate seeds.
. In order to create a proper cost function, we use the

F. False Positive Seed Removal following observation: An FP seed is projected either 13elo
Initially detected candidate seeds include a significatd some true seeds if the image contributes to create this
amount of FP seeds since only a limited number of projectigrarticular FP seed or 2) far away from the seed regions if
images are used for 3-D reconstruction. Therefore, an Eie image does not contribute to create that FP seed. Irr eithe

Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o

Authorized licensed use limited to: Queens University. Downloaded on August 10, 2009 at 14:52 from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. XX, MONTH YEAR 7
™ & o Y
Initialize set of I I S
candidate seeds el e s @# s @
i " @
S L B - @
ot - L &g
ot ", e i’
1] 1] Lo
» L
Vuds . . > a
FP removal LT Tt P @ ® . o
e oy . >
completed No et ., o -
. L
Yes :
(@) (b)

Update G

'

Compute local

)_COStand find size of 0.25 seeds/cc resulting M, = {54, 60, 72, 84, 96,
x f;rE;?TE‘EXY( SC\(c\-;S) 112} implanted seeds, respectively. Each seed was represented
by a cylinder with diameter of 0.8 mm and length of 1.45 mm
which are similar to the X-ray visible diameter and length of
Update S an 193Pd seed. Multiple seeds could be placed next to one
S=8\{x"} another as happens in real implantation, but they could not
share the same position due to their physical size. The focal
length of the C-arm and the pixel size of the image were
Fig. 4. A flowchart explaining the FP seed removal process. 1000 mm and 0.440.44 mn?, respectively. The voxel size
of the reconstruction was 0:®.5x0.5 mn?.

Due to the limited mobility of the C-arm in the operating
case, true seeds are not always projected close to other {ai§n, we can only rotate the C-arm within a very narrow cone
seeds; they are projected close together when their actDal 3,0yt the AP axis. When the source angle separation between
Iocati_ons are close or when they are hiddenin a 2-D projm:tiqmage acquisition poses is small, the uncertainty in depth
But, importantly, we have never encountered a case wherg,fyrmation is proportionately magnified. As a consequence
true seed is hidden in all images. Thus, a cost function foryge reconstruction may fail to detect true seeds and gemerat
given seed can be defined as a function of the closest distanep seeds at incorrect positions. Therefore, it is necessary
between the projections of a seed and the projections of @llajyate the accuracy and robustness of our method to small
other true seeds, and the distance between the projectionygfirce angle separations. In our clinical setting, the rG-ar
the seed and the nearest seed region in all images. Base¢: g have mobility inside a5° cone centered on the AP axis
this idea, we define a local cost function as: (see Fig. 1(a)). We consider five different X-ray source ang|

No 4 pi separations frond° to 25° with a step size ob° to test the
C(xn) = — Z ;(X") for all x, € S\ G (7) algorithm for various angle separations.
" |+ d(xp) . . :
i=1 " Ideal simulations: We first evaluate the proposed method
where S is a set of candidate seed#,(x,,) is the distance ON simulation data sets created under the assumption that th
between the projected point &f, and the nearest seed regio--arm is calibrated and the pose of the C-arm is known

Fig. 5. (a) Synthetic projection image with 112 seeds. (Kjnfzted seed
centroids projected onto (a). Red circles indicate exarop&lapping seeds.

in the ith image, and without error. For each case (combination of seed density
; ) ; ; and the source angle separation), we generated ten data sets
D (xn) = o 1P*%p — P'Xp |, for x,, € S. and created six projection images in each data set. From six

. . . ilable i i h data set, th d four i
We iteratively remove FP seeds by greedy search. During e%a%iﬁu able Images In each cata set, [ree and four images were

iteration. fromS 4 with the | { COSt ected to compute the reconstructions. A total of 1600°¢
leration, froms we remove on€ seed wi € largest CoY,mpinations<10 data sets<5 angle separations) simulations
computed by (7). We also updatg if there are additional

. . were performed using three images and 7500 combina-
seeds that cover some seed regions alone having removedti P g 9

. . : . S x10 data setsx5 angle separations) simulations were
FP seed. Itera’qo_n continues unfil; seeds are left _|rS. A performed using four images. Sliance ther; was no calibration
fl(_)wchart explaining the FP seed removal process is shownalﬂd pose estimation error, we used smalk.g., 1.0 pixel
Fig. 4. 0.44 mm. The estimated seed positions were compared to the
ground truth. Fig. 5 shows a typical synthetic image and the
estimated seed centroids projected onto the image.
A. Smulations Figs. 6(a), (c), and (e) show the seed detection rate and

We performed simulation studies using synthetic projectideconstruction error, respectively, as functions of tharse

images. We considered a nominal 50 cc prostate, with sixgle separation. The results show that the proposed gigori

different seed densities from 1.0 to 2.25 seeds/cc with @ stean almost perfectly localize the implanted seeds with a

IV. NUMERICAL RESULTS
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Fig. 6. Plots showing the relationship between reconstmajuality and source angle separation when (a, c, ) tiseme iIC-arm calibration and pose error
and (b, d, f) there are realistic calibration and pose esiimaerrors. (a, b) Seed detection rate. Three and four image used. (c, d) Reconstruction errors
when three images are used. (e, f) Reconstruction errors feche images are used.

detection rate of> 99.0% on average using either 3 or 4
images when the image acquisition anglezid0°. Even when TABLE |

. o : : : SIMULATION RESULTS WHEN THE C-ARM IS CALIBRATED AND THE POSE
the Image vaUISItlon angle Separatlom?s the algorlthm IS OF THE C-ARM IS KNOWN WITHOUT ERROR THE RESULTS FOR EACH

still able to localize the seeds with a detection rate-8f6.5%  seep DENSITY ARE AVERAGED OVER THE SOURCE ANGLE SEPARATIONS
and> 97.5% using 3 and 4 images, respectively. It is observed VARYING FROM 10° TO 25° WITH A STEP SIZE OF5° (TOTAL 800

: :1SIMULATIONS). THE AVERAGED RESULTS ARE ROUNDED UP TO ONE DIGIT
that the |arger source angle Separatlon allows the alg-IjnrltliFTER THE DECIMAL POINT WHICH WOULD BE ENOUGH FOR CLINICALLY

to recover the seed locations more accurately (smaller mean MEANINGFUL DATA ANALYSIS .
reconstruction errors). Reconstruction results for easbds
density averaged over the source angle separatiorgef2s5° | Num of | Num of Number of seeds Mean+ STD
. seeds | images | candidate| correctly detected error (mm)
are also shown in Table I. 54 3 551 53.9 (99.8%) 06E02
S _ _ o Z 54.0 54.0(100.0%) 06F 0.1
Realistic simulations:We introduced C-arm calibration and|[ 60 3 61.6 59.8(99.7%) 06+03
pose estimation errors to the same data sets described in|the 4 60.1 60.0(100.0%) 06+ 01
Heal simulat We added t red additi hite G 72 3 74.8 71.8(99.7%) 0.6F 0.3
ideal simulations. We added truncated additive white Gaoss a YR 72.0(100.0%) 06X 0T
noise (AWGN) to the known C-arm pose parameters. Hefe 8a 3 87.7 83.4 (99.3%) 0.6+ 0.3
we considered the pose recovery results of prior phantam 4 84.0 83.8 (99.8%) 0.6+ 01
i ts using the FTRAC fiducial in [33, Section 7-B] % 3 104.9 94.6 (98.5%) 0.7+ 04
expenmen g the , n /-B} Z 96.7 95.7(99.7%) 0601
For rotation, AWGN with mear®).33° and standard deviation | 112 3 1243 109.6(97.9%) 07X 05
(STD) 0.21° was added to the known rotation at each pose 4 112.6 111.2(99.3%) 06+02

around a random rotation axis. And for translation, AWGN
with means(i., fiy, 1) = (0.07,0.04,0.55) mm and STD’s
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TABLE I
SIMULATION RESULTS WHEN RANDOM C-ARM CALIBRATION AND POSE 10 =% ‘
ESTIMATION ERRORS ARE INTRODUCED THE RESULTS FOR EACH SEED S ﬁy\e}\@\@\ﬁ
DENSITY ARE AVERAGED OVER THE SOURCE ANGLE SEPARATIONS 95r R 7
VARYING FROM 10° TO 25° WITH A STEP SIZE OF5° (TOTAL 800
SIMULATIONS). THE AVERAGED RESULTS ARE ROUNDED UP TO ONE DIGIT

AFTER THE DECIMAL POINT WHICH WOULD BE ENOUGH FOR CLINICALLY
MEANINGFUL DATA ANALYSIS .

85 X~

Num of | Num of Number of seeds Mean+ STD
seeds | images | candidate| correctly detected error (mm) —©&— With correction
54 57.6 53.7(99.4%) 08+ 05 751 | =<~ No correction
54.3 54.0(100.0%) 0.8+ 0.3
65.4 59.7 (99.5%) 0.8L£04 704 1 2 3 4 5

60.5 59.9(99.8%) 0.8+ 0.2 Rotation Error in C-arm Pose (degrees)

805 71.3(99.0%) 09+ 06
72.9 71.9(99.9%) 08F03 (a)

96.4 82.7(98.5%) 09+ 05 0

85.5 83.7(99.6%) 0.8+ 0.3 i TR =X
1083 93.9(97.8%) 00L06 osl .
100.8 95.3(99.3%) 0.8+ 0.3

178.8 108.3(96.7%) 09+ 07
118.9 110.6(98.8%) 0.8+ 04

Seed Detection Rate (%)

60

72

84

96

112

B[ B W B W B WA w| B w

851 \

—O— With correction

Seed Detection Rate (%)

(0g,04,0,) = (0.05,0.03,0.32) mm was added to each - _
known translation. Also, we added zero mean AWGN with X No correction
STD’s 2 mm and0.44 mm to the known focal length of the 70, 5 . 5 s 0
C-arm and the image origin, respectively. The added nois: Translation Error in C-arm Pose (mm)

was truncated aBxSTD from the mean. We used the same (b)

combinations of seed densities and source angle sepaatio

as previous simulations. The voxel size of the reconswucti 10 =X ;

was also the same, but the was chosen to be larger than 5] ﬁ\@\@’@\
the previous simulations, e.g. = 2.0 pixel = 0.88 mm ow

= 3.0 pixel = 1.32 mm, depending on the number of images
used and the source angle separation.

Figs. 6(b), (d), and (f) show the seed detection rate ant
the mean reconstruction errors, respectively, as funstmh
the angular separation. The results show that the algorithr 750
can successfully localize the seeds even when the imag
acquisition angle separationis, but the performance is more % 5 10 15 20
reliable when the angle separations10°. Also, note that C-arm Calibration Error (mm)
the reconstruction error decreases as the image acqgnisitio (c)
angle separation increases. The simulation results w-éralgig 7. Performance of the C-arm auto-focus process fordgtion error
over the source angle separationslof — 2_50 are ShOWI’] N inthe c-arm pose, (b) translation error in the C-arm posd, (ahfocal spot
Table Il. The results show that the detection rate=i96.7% error in the C-arm calibration.
and > 98.8% with three and four images, respectively, under
the realistic conditions when the angle separatiok i50°.

Effects of C-arm auto-focusing:In this simulation exper- varied from0° to 5° in increments 0f0.5° and translation
iment, we added noise to each C-arm camera parameter @n@rs varied from 0 mm to 10 mm in increments of 1 mm. We
reconstructed the seeds with and without the auto-focugisg incorporated the fact that translation errors in depth hvays
described in Sec. IlI-E, we considered rotation (3 pararsgte significantly greater than those parallel to the plane [3Bf
translation (3 parameters) and focal spot (3 parametens; ceerror in knowing the focal spot varied from 0 mm to 20 mm
prising the focal length and the image origin). We generat#dth a step size of 2 mm; the fact that focal length errors
150 data sets with 84 implanted seeds H0acc prostate with are always larger than image origin errors was incorporated
a seed density of 1.75 seeds/cc. For each data set, foursmagjeor generation.
were synthetically generated in 20° cone centered on the A total of 1650 (150 data sets 11 noise levels) simulations
AP axis. In each data set, we assumed that the calibration dodeach error type were generated. Given a simulated dgta se
the pose estimation errors of one image (the “bad” imageje first computed a reconstruction using all four images-with
is relatively large and must be corrected while the remainirout auto-focus. We then computed a reconstruction using aut
images are accurate (the “good” images). In order to credteus assuming the bad image was known to the algorithm.
bad images, we separately added rotation, translation, akalinitial reconstruction based on three good images wass firs
calibration errors to the known parameters. Rotation erracomputed and then the bad image was automatically focused

90 X

851 %

801 N
—O— With correction

Seed Detection Rate (%)

—x~=-No correction
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. . I . TABLE Il
using can_d|date seeds detected from the _|n_|t_|al recorngiruc _ PHANTOM EXPERIMENT RESULTS
The bad image was then added to the initial reconstructiefym or T Num of NUmber of seeds Mean £ STD
with corrected camera parameters to compute the final reconseeds | images | candidate| correctly detected | error (mm)
struction. 4 43 42 (100%) 1.7+ 0.6
, . , 42 5 42 42 (100%) I3£05
The reconstruction _resu_lts with and without the auto-focus 5 a7 7 (100%) T1I 07
process are shown in Fig. 7. The results show that opr Z 60 56 (98.3%) 08X 07
tomosynthesis-based algorithm with Gaussian blurringis r| 57 g gg 556; (a%-g;’//o)) 8-2; %
. . . . 0 . .
bust to calibration and_ pose estma‘uon errors, an.d allsb tha 7 - 72 (100%) 15109
the overall reconstruction can be improved by adjusting the 72 5 74 72 (100%) 10+ 04
erroneous calibration and pose parameters. Previousadeal 6 72 72((100%)) 10+£04
P ; ; ; 4 94 84 (96.6% 0.7F 0.7
realistic simulations |mpl_y _that three good_ images are ghou a7 5 - 86(98-6%) 0TI 05
to get reasonably good initial reconstruction. 5 o1 86 (98.6%) 07104
4 119 98 (96.1%) 20+ 09
. 102 5 107 102 (100%) I1£05
B. Phantom Experiments 5 104 102 (100%) T1E£05

We evaluated our method on five phantom data sets. The
precisely fabricated phantom consists of twelve 5 mm thick

acetol slabs, each having at least a hundred holes with 5 %r‘neach surgery and X-ray images of the implants were taken
spacing where seeds can be positioned (see Fig. 8(a)).

FTRAC was precisely attached to the phantom in a kno w@gnﬂa 20° cone \c/:\;antered ondthﬁ AP axis l.JS'g.g ®E.C f
position so that the seed positions were known, thus estab-, . uoroscope. We corrected the geometric distortion o
lishing a ground truth [10, Section I1I-C]. Radio-opaqueds each image and computed the corresponding C-arm pose using

each with a length of 4.9 mm and a diameter of 0.8 mrtrr11e FTRAC that was prep!sely attf’;\ched to the needle insertio
template in a known position. Various numbers &fPd seeds

(similar in size to that of'?°| seeds) were inserted into the . : :
. . ith a length of 4.5 mm and a diameter of 0.8 mm (radio-
slabs keeping seed density constant at about 1.56 seeds/cc. . . .
gue size of the x-ray marker is about three times shorter

e e o e o v oo o e sz o e vt capse) wee mplanied.Sased o
within a 20° cor;e around the AP axi’s usingPhilips Integris 5 residual pose estima.ltion. errors co_mputed by the FTRAC
. I~ software, we selected five images with the smallest errors
V3000 fluoroscope. We selected four, five, and six imag dr reconstruction. The C-arm auto-focus process adjutted
from the acquired images in each data set, based on resi cuaarhera parametérs of the images with large residual pose
errors provided by the FTRAC software, and used them fgr

. ) . errors.
3-D reconstructions. The voxel size of the 3-D reconstounsti . .
was 0.50.5x0.5 mn?, ando = 3 pixels = 1.32 mm, was The reconstruction voxel size was €.8.5x0.5 mn¥, and

. : L : the value ofos was slightly bigger than the value used in
used. For images with large pose estimation residual emers . .
. the phantom studies, e.g. = 5 pixels = 2.2 mm, due to
performed the C-arm auto-focus process to adjust the cam@ra

parameters. A typical phantom image with an FTRAC and 1 Ie ;e;itcl)\\llslsyastm?galragl[?égfﬁ;ee?;3 gcctﬁiiﬁ:tii?ﬁgss.u
seeds is shown in Fig. 8(b). Fig. 8(c) shows the estimated s 9: ypicaip 9

centroids projected onto one of the projection images (tiate ‘Gut-of-focus images such as Fig. 9(b) were automat|cally
focused by the auto-focus process, and overlapping seeds

significant number of overlapping or clustered seeds in thv'vsere automatically detected by the algorithm as shown in

view). We computed the reconstruction errors by comparing 9(c). In Fig. 9(c), one might observe that the estimated
positions of the detected seeds and the ground truth, asshowe: oI ' .
eed centroids in the lower right corner seem to show a

in Table 1ll. We were able to localize the implanted seedd . ;
with a detection rate of 96.1%, > 98.3% and > 98.6% Systematic shift from the shadow of real seeds. When we

. . ez : reproject the reconstructed seed centroids onto the imespeb
from four, five, and six projection images, respectivelyeTh : . .
. ) .~ __for the reconstruction, shifts of the reprojected seeds fiioe
mean reconstruction errors were slightly larger than thinse ; : : .
. : . : . . seeds observed in the image look random. A systematic shift
the simulations since the radio-opaque size of the |mpdhntﬁ : ;
- : Nappens when the estimated poses of the C-arm in one or more
seeds is bigger. The results imply that we are able to lazaliz . o
. i - images are incorrect, but it is global rather than localhéitgh
the seeds from four or more images with clinically accepabl, . S X .
) shifts are usually random, this kind of local shift, which
seed detection rate. ; . . .
looks like systematic, may happen due to incorrect geometri
o ) image distortion correction even when all the C-arm poses
C. Clinical Experiments are good. Since we compute the geometric distortion pattern
The proposed method was validated on clinical data aof the C-arm fluoroscopy image prior to the implantation
quired from six patients during actual brachytherapy stuege at one representative pose as described in Section Il and
All procedures followed IRB approved protocols and patientse computed dewarp parameters for geometric distortion
consent was obtained. For each patient, we acquired two smgrection for all images, geometric distortion corretiof
of images during the procedure and one set of images at #aeh image is incorrect even though it is reasonably good and
end of the procedure so that there are different number addes not critically affect the reconstruction result. Inegion

implanted seeds in each set. The C-arm was calibrated pridrere actual geometric distortion is slightly differenorn
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(b) (c)

Fig. 8. (a) Phantom with FTRAC attached. (b) Phantom imagl W02 implanted seeds. (c) Estimated seed centroids pedjemto (b).

(b)

Fig. 9. (a) Patient image showing 77 seeds and the FTRAC. gtinBted seed centroids projected onto (a) before (red dat$ after the C-arm auto-focus
(white dots). (c) Estimated seed centroids projected oatoRed circles indicate example overlapping seeds.

. . . . TABLE IV
the computed distortion pattern, such distortion may not becyicaL experIMENT RESULTS. NUMBER OF MATCHED SEEDS ARE

accurately corrected and reconstructed seeds from thiireg  COUNTED BY VISUAL ASSESSMENT AND THE RECONSTRUCTION

may show a Sl|ght Systematic shift when reprOjeCted onto theDIFFERENCES ARE COMPUTED BY COMPARING THE ESTIMATED SEED
LOCATIONS COMPUTED BY THE PROPOSED ALGORITHM WITH THOSE

image- _ COMPUTED BY THEMARSHAL ALGORITHM.
Since the exact locations of the seeds were unkngwq, We Baiient NUmber of seeds Mean £ STD
visually assessed the correspondences between the fnject| number | implanted | candidate] matched | difference (mm)
of the estimated seeds and the actual seeds in the images. 22 22 21 (95.5%) 06+0.2
F titative measure, we compared the estimated seed ol 20 43 (97. 77%) 0.7£05
or a quan , pare , q 66 75 66 (100%) 07106
locations with those computed by an existing algorithm, MAR 39 39 39 (100%) 0.6+ 0.4
SHAL [10]. MARSHAL is a correspondence-based algorithm| 2 82 84 82 (100%) 06+0.6
that requires an exact identification of the seeds in all 2- & & 83 (98.8%) 10£08
L requir ) 33 33 33 (100%) 04103
projection images. The number of visually matched seeds for 3 57 57 65 (97.0%) 09Lf038
each case and the differences between two reconstructions 70 68 68 ((97-1%)) 12114
: 35 35 35 (100% 04103
were shown in Taple \VA The results show that our method can 5 - 58 (100%) G L 06
successfully localize the implanted seeds with overabctain 77 37 76 (98.7%) 14EX08
rate of 98.8% (STD=1.6) which is clinically adequate. The 24 24 24 (100%) 08£12
reconstructed seed locations computed by the proposed algp ° gg gg gg Egg-?;‘g Hi ii
rithm agreed to those computed by MARSHAL with overall 33 33 33 (100%) 071086
mean difference of 0.8 mm. 6 61 63 61 (100%) 06X03
66 70 66 (100%) 08X06

D. Determination of o

The size ofo determines the width of the blur, therefore
should be determined considering the size of the seedshandshift in the projection images due to C-arm calibration and
C-arm calibration and pose errors. Since various factaiseca pose estimation errors, we analyzed the phantom data sets.
shift in the projection, it is hard to analytically deterraithe For five phantom data sets each of which has six projection
value of o. In order to have information about the possiblenages, we compared the 2-D seed positions obtained from
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Fig. 10. (a) Reconstruction of a voxel from five images. C-aatibration and pose estimation of image 5 is not accurdfe C¢oss-sectional plot of a
Gaussian-blurred seed region.

projection images with the projection of the ground trut® 3- minimized. The proposed algorithm was implemented using
seeds, and observed that the projected points are shiied MATLAB 7.1 [49] and tested on a Pentium4 2.92 GHz PC
than about 7 pixels (there will be no shift when the C-arrfturrent code is not optimized for best performance). On a
pose is exactly known). typical clinical data set of 5 images, computation time a th
Let us consider an extreme case as shown in Fig. 10mplete workflow, from binary seed-only image computation
where a voxel is reconstructed from five images and thredb-3-D seed localization, was about 100 seconds. Furthesmor
olded at 0.9 (note that our threshold varies between 0.9 asnl experienced technician can acquire 5 fluoroscopy images
1.0), and also this voxel corresponds to a seed mark in evéggs than a minute and each C-arm pose can be recovered by
image except for one. In order for this voxel to be reconthe FTRAC software within seconds [33]. This implies that
structed as a part of a seed after thresholding, the Gaussis#ed reconstruction process takes less than 3 minutesh whic
blurred pixel value in image 5 associated with this voxeltoas would be acceptable for intraoperative use. Computatioe ti
be over 0.5 (note that = (1+1+1+1+0.5)/5 = 0.9 by (3)). can be further reduced by using optimized C/C++ implemen-
Wheno =5 pixels, the Gaussian-blurred image hgs= 0.5 tation.
atd = 5.9 pixels (3.5 pixels forc = 3) from the boundary
of the binary seed mark as in Fig. 10(b) (see (1) for the
computation ofl, andd). For our phantom an’*Pd seeds, )
the widths (length of the short axis) of the projected seedsWWe proposed a novel tomosynthesis-based prostate
are about 7 and 3 pixels, respectively. With= 3 and5, total brachytherapy seed reconstruction method. The attractive
about(7/2+43.5) = 7 pixels and(3/2+5.9) = 7.4 pixels may feature of the proposed method is that it can automatically
contribute to the reconstruction, which cover the expestefi recover all the seeds, including overlapping or clustered
(< 7 pixels) in our system. Too sma# may result in missing seeds, without involving explicit identification of the 2-D
seeds in the reconstruction if the C-arm calibration andepogoordinates of the seeds in the fluoroscopy images. Gaussian
estimation errors are relatively large (even though therasr blurring combined with distance map enables the algorithm
within allowable range). By increasing the the effective (or 0 reconstruct seeds under realistic calibration and pose
relevant) area of each seed mark is increased, which isthelgistimation errors of the C-arm. In addition, a C-arm auto-
for detecting seeds under large C-arm calibration and pd86us process enables the algorithm to utilize out-of-focu
errors. However, too big will result in too many connected images after automatic adjustment of the C-arm camera
(or merged) seed regions in the reconstructed volume, daciPgrameters. A false positive seed removal process based

which appears to be one big seed but actually contains rfeulti@n an optimal coverage cost successfully extract the true
seeds. seeds from the candidate seeds and allows us to reduce the

number of required projection images compared to the other
tomosynthesis-based algorithms [27], [28].
Simulation studies show that the proposed algorithm re-
In actual clinical use, the entire seed reconstructiongssc quires only three or four images to detect the implantedseed
from image acquisition to seed localization must be conegletwith a detection accuracy of 97.9% when the C-arm is
within a limited time, so computation time must also baccurately calibrated and the pose of the C-arm is accyratel

V. CONCLUSION

E. Computation Time
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estimated with angle separation 10°. Simulation results confied to isocentric in-planar rotation, the reconstarcti
with the calibration and pose estimation errors also shat thproblem is much simpler than our problem because pose of the
the implanted seeds can be localized from three and fdoraging device can be determined by an angle and the recon-
images with a detection rate ot 96.7% and > 98.8%, struction can be computed by simple isocentric tomosyighes
respectively, when the angle separatiorkid 0°. In case the equations [28]. Therefore, our method can be used with more
image acquisition angles are very small, it is natural fa& thsophisticated fluoroscopy device such as isocentric flaépa
algorithm to have difficulty in detecting all true seeds eatly. C-arm by straightforward modification (6 degree of freedom
However, simulations with varying angular separation shopose parameters are replaced by an angle and modification
that the algorithm is robust to angle separation up@one of the reconstruction algorithm for isocentric tomosysikéds
angle centered on the AP-axis. The proposed algorithm waisial). We must also note that the main reason why isoéentr
also evaluated on various phantom data sets showing tlkaarms are very slow to spread into brachytherapy is that the
> 96.1%, > 98.3%, and> 98.6% of the implanted seeds cancurrently used patient stirrups, OR table, and brachythera
be correctly reconstructed from four, five, and six prometi mount all preclude using the C-arm in cone-beam tomography
images, respectively. mode, thus rendering the most expensive features of the C-
We also validated the algorithm using eighteen clinicahdaarm (flat panel, isocentric geometry, and motorized rotgtio
sets and showed that it can successfully localize the ingdanunusable. In all, we expect that in the foreseeable future,
seeds with clinically adequate accuracy and seed detectegprantitative coupling of conventional TRUS and converdion
rate of 98.8% on average. In our clinical trial, three datananual non-isocentric C-arm will function as a very effeeti
sets were acquired: two times during the procedure and ampgdance and dosimetry tool.
after all seeds were inserted. It is anticipated that, immadr  In contrast to seed-matching-based algorithms such as
clinical practice, either one or two dosimetry reconsiared MARSHAL [10] that use triangulation and compute sym-
will be performed. If a single reconstruction is performéd, bolic intersections to reconstruct the seed positions, our
will be at the end after all seeds are inserted. If two dogiynettomosynthesis-based algorithm reconstructs the entitene
assessments are performed, one would most likely occur afdé interest and therefore requires somewhat longer computa
placement of approximately half the number planned seetitsn time. Our method is fully automatic, and thus will save
to be implanted, with the second dosimetry reconstructitime in the operating room by obviating manual intervention
performed after all seeds are implanted. The case of a singpically required in seed segmentation and fixing appérent
dosimetry reconstruction will be most likely. In the caserroneous seed matches. Also, our current MATLAB prototype
of a mid-procedure reconstruction, it might be beneficidas not been optimized for speed and memory efficiency. Tutar
to utilize previously identified seed positions as a prior tet al. [28], for example, demonstrated that a tomosynthesis-
help reconstructing the remaining seeds. However, if onbased method can be adequately optimized for practical ap-
one reconstruction is performed upon exit, then this priplication in surgery, and we note that our algorithm recgiire
information may not be available in general. More signifiban even fewer images than Tutar’s.
still, there is often significant edema and seed migratioingu  Intraoperative seed localization is critical becauseldves
the procedure, which precludes a reconstruction to seng athe surgeon to monitor the implant procedure and achieve
prior for subsequent reconstructions. As Jeiral. reported optimal dose distribution to eradicate cancer and minimize
in [52], seeds may migrate as much as 15 mm between imnecessary toxicity to the adjacent tissues. The proposed
first and last reconstruction. seed reconstruction method appears to be sufficiently atzur
One might consider using preoperative or intraoerativply urobust, and computationally fast for intraoperative datim
dated implant plan as prior information. The prior inforinat in prostate brachytherapy procedures.
of seed positions can be used for C-arm tracking as well as the
seed reconstruction. Murphy and Todor [26] proposed to use ACKNOWLEDGMENT
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