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Abstract—Intraoperative dosimetry in prostate brachyther-
apy requires localization of the implanted radioactive seeds.
A tomosynthesis-based seed reconstruction method is proposed.
A three-dimensional volume is reconstructed from Gaussian-
blurred projection images and candidate seed locations are
computed from the reconstructed volume. A false positive seed
removal process, formulated as an optimal coverage problem,
iteratively removes “ghost” seeds that are created by tomosyn-
thesis reconstruction. In an effort to minimize pose errorsthat are
common in conventional C-arms, initial pose parameter estimates
are iteratively corrected by using the detected candidate seeds as
fiducials, which automatically “focuses” the collected images and
improves successive reconstructed volumes. Simulation results
imply that the implanted seed locations can be estimated with
a detection rate of > 97.9% and > 99.3% from three and four
images, respectively, when the C-arm is calibrated and the pose
of the C-arm is known. The algorithm was also validated on
phantom data sets successfully localizing the implanted seeds
from four or five images. In a Phase-1 clinical trial, we were
able to localize the implanted seeds from five intraoperative
fluoroscopy images with98.8% (STD=1.6) overall detection rate.

Index Terms—Tomosynthesis, prostate cancer, brachytherapy,
Gaussian blurring, C-arm auto-focusing, optimal coveragecost.

I. I NTRODUCTION

Prostate cancer is one of the most common cancers in North
America with 186,320 estimated new cases comprising about
25% of all new cancers found in men and 28,660 estimated
deaths in 2008 in the United States alone [1]. On the positive
side, prostate cancer can be very effectively treated if detected
early; in fact, about 91% of new cases are expected to be
diagnosed early enough in order to yield a near 100% 5-year
relative survival rate [1]. Brachytherapy is a definitive treat-
ment for low risk prostate cancer; it achieves outcomes that
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are comparable to radical prostatectomy and external-beam
radiation therapy [2]–[4]. Brachytherapy involves permanent
implantation of radioactive seeds into the prostate. Its success
mainly depends on the ability to deliver a sufficient amount
of therapeutic dose to the target gland while sparing adjacent
healthy organs and structures, e.g. rectum, urethra, and nerve
bundles, from excessive radiation. Typically, an implantation
plan is made preoperatively based on an ultrasound volume
study with a set of axial image slices of the prostate and
idealistic seed implant patterns. Transrectal ultrasound(TRUS)
is widely used during the procedure to guide the surgeon
to insert the needle and deliver the seeds to the preplanned
location in the target gland [5]. However, implanting the
seeds at the exact planned locations is difficult because of
procedural variations such as patient motion, needle deviation,
and soft tissue deformation including edema [5]–[7]. Also,
although TRUS images can be readily used to localize the
prostate boundary, they do not visualize the locations of the
seeds very well. Therefore, systems that use ultrasound and
X-ray fluoroscopy have been developed to overcome these
limitations as depicted in Fig. 1(a) [8], [9]. These systems
can thereby permit both monitoring of the implant process
and reconstruction of the implanted seeds for intraoperative
treatment optimization purposes. X-ray projection imagesare
usually acquired using conventional mobile C-arms, and the
reconstruction problem is to estimate the 3-D locations of the
implanted seeds from two or more projection images.

In order to successfully reconstruct and localize the im-
planted seeds using a mobile C-arm, the following problems
should be considered. (1) Since most mobile C-arms fre-
quently utilized for surgery in most hospitals do not have
encoded joints and may not be isocentric, the pose and the
perspective geometry of the C-arm where each projection
image is acquired is unknown. The C-arm wheels may also
move (usually accidentally) during change of pose between
acquiring images. (2) The images taken by the C-arm show
nonlinear geometric distortion due to the nature of the X-
ray image intensifier (XRII) which is the detector used in
most mobile C-arms. (3) The angular separation of the source
positions where the projection images are acquired is limited
due to the limited space in the operating room near the patient.
In a clinical setting, usually the C-arm can have rotational
mobility of source angle separation less than25◦ around the
anterior-posterior (AP) axis (see Fig. 1(a)) [10]. (4) There is
inconsistency in the number of actually implanted seeds and
the seeds shown in each projection image, and also the number
of seeds shown at different projection images may be different
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(a) (b)

Fig. 1. (a) A schematic describing prostate brachytherapy procedure. C-arm has limited mobility due to the limited space near the patient. (b) An example
anterior-posterior fluoroscope image with 84 implanted103Pd seeds. White circles indicate overlapping seeds and a shadow of pelvis is shown in the
background.

due to the overlapping or clustered seeds. (5) The number of
projection images acquired during the procedure should be
minimized in order to avoid unnecessary radiation and to save
processing time.

Reconstruction of the implanted brachytherapy seed lo-
cations from a limited number of X-ray images, like that
shown in Fig. 1(b), is a well studied problem. In the methods
reported in [10]–[22], 2-D coordinates of all the seeds in all
the projection images are first identified and then a seed-
matching problem between the seeds found in different images
is solved. Three-dimensional coordinates of the seeds are
calculated using the seed correspondences and the projection
geometry of the X-ray system (essentially by triangulation).
A significant problem with these approaches arises from the
fact that overlapping seeds are common [21], and reliable
automatic identification and localization of every seed in every
image is difficult. Because of this, manual interaction is almost
always needed, and even then some seeds cannot be reliably
identified because one seed completely hides another.

There has been some research on solving the 3-D seed
reconstruction problem in cases where seeds cannot be reliably
identified and localized on the 2-D projection images—this
scenario is called theincomplete data problem. Narayanan
et al. [23] proposed a pseudo-seed-matching strategy coupled
with an epipolar geometry-based reconstruction. This method
requires at least one of the three images to be complete (2-D
coordinates of all the seeds have to be identified), however,or
it may or may not reliably reconstruct the 3-D seed positions
of the hidden seeds. Suet al. [24] proposed an adaptive
grouping technique which divides the seed images into groups
for efficient seed reconstruction and is capable of handling

the incomplete data problem. However, it may fail to detect
overlapping seeds when the projection with the largest number
of seed images among the divided groups is incomplete. Also,
incorrect division of triplets, referred to as “overdividing” may
cause false positive seeds. Lamet al. [25] proposed a Hough
trajectory method which uses the fact that there is a unique
trajectory in Hough feature space for each seed coordinate in
3-D. This algorithm requires an impractically large number
of projections (> 10) and a large source angle separation,
which may not be practical. Murphy and Todor [26] proposed
a forward iterative method and reported preliminary simulation
results to offer a proof of feasibility. Further demonstrations of
this approach on real data, however, have not been presented.

There are also tomosynthesis-based algorithms that are able
to automatically solve the incomplete data problem. Messaris
et al. [27] used classical tomosynthesis to localize objects
such as radioactive seeds and proposed an approach to maxi-
mization of localization accuracy and efficiency by correlating
tomographic and projectional images. Their method, unfor-
tunately, requires extensive user interaction in all phases of
the process which is clinically impractical. Tutaret al. [28]
proposed a selective backprojection method which is a mod-
ified tomosynthesis technique. Their seed detection and false
positive (FP) seed removal process is very sensitive to C-arm
pose estimation errors, and it also requires a relatively large
number of images (> 7) and wide image acquisition angles
(> 30◦) not achievable in most OR settings.

This paper describes an improved tomosynthesis-based seed
localization method. Tomosynthesis is a method to recon-
struct a 3-D volume from multiple projection images acquired
within a limited angle [29], [30]. A decisive advantage of
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using tomosynthesis-based approach for reconstructing the
implanted brachytherapy seeds is that all the seeds (including
overlapping ones) can be completely reconstructed withoutex-
plicit prior identification of the 2-D coordinates of the seeds in
the projection images. We compute Gaussian-blurred images
that we reconstruct into a 3-D volume. Then, we calculate
candidate seed positions from the reconstructed volume. We
formulate an FP seed removal process as an optimal coverage
problem, and it allows us to remove FP seeds from the
candidate seeds and to reduce the number of required images.
Also, a C-arm auto-focus process enables us to use images of
which corresponding poses are not well estimated.

The remainder of this paper is organized as follows. In
Section II, the imaging system including geometric distortion
correction, calibration, and tracking of the C-arm is described.
In Section III, we describe the key idea of our method using
a simple example followed by a detailed description of the
proposed method which consists of (1) binary seed-only image
computation and seed region labeling, (2) Gaussian blurring,
(3) volume reconstruction and candidate seed detection, (4) C-
arm auto-focusing, (5) false positive seed removal. Numerical
results based on simulations, five phantom data sets, and
eighteen clinical data sets are presented in Section IV. Finally,
the paper concludes in Section V.

II. A PPARATUS

X-ray fluoroscopy images of the implanted seeds are ac-
quired using a mobile C-arm with XRII detector. Most XRII-
based C-arm images show a significant amount of nonlinear
geometric distortion and nonuniform intensity distortionthat
vary with pose, time, and location. As we explain later in
Section III-B, we pre-process the fluoroscopy images into
binary seed-only images, and thus non-uniform intensity
distortions do not affect our tomosynthesis reconstruction.
However, nonlinear geometric distortion in the image causes
errors in the reconstruction by shifting the location of the
2-D projected seeds. Thus prior to reconstruction, geometric
distortion correction of the image is necessary. At the same
time, calibration and pose tracking are necessary to reconstruct
a volume from images taken at arbitrary positions of the C-
arm. In the calibration process, we need to determine intrinsic
camera parameters of the C-arm (image pixel size and focal
spot, i.e. the 3-D location of the X-ray source with respect
to each image plane). Since the pixel size of the detector
remains the same throughout the life of the C-arm, the C-arm
calibration problem reduces to estimation of the focal spot.
However, since the location of the focal spot varies as the
pose of the C-arm changes, it should be computed from pose
to pose at which each image is taken. In order to save time
in the operating room, we perform the distortion parameter
computation and calibration process only once. We mount a
calibration fixture developed earlier by Jainet al. [31] on
the intensifier tube, and take a representative image within
an expected range of the C-arm movement. Since we acquire
images within a small angle variation range, the estimation
errors do not critically affect the reconstruction result [32].
The intrinsic camera parameters and the geometric dewarp

Fig. 2. Example tomosynthesis geometry with three true seeds (black
circles), one false positive seed (white circle). In the middle image, two
seeds are overlapped (shaded circle). There are three coordinate systems:
global reference coordinates (F ), X-ray source coordinates (S), and image
coordinates (I).

parameters of the C-arm are estimated based on this image
prior to the surgery.

Although the intrinsic camera parameters of the C-arm
can be determined before the surgery, the pose parameters
(3 parameters for rotation and 3 parameters for translation)
of the C-arm must be computed at each image acquisition
pose. Although external tracking devices can be used for this
purpose, they are very expensive and add to the physical
limitations and complexity in the operating room—e.g., line
of sight requirements and metal object distortions. Instead, in
our experiments, the pose of the C-arm was computed using a
fluoroscope tracking radiographic fiducial structure (FTRAC)
that provides an estimation accuracy of 0.56 mm in translation
and0.33◦ in orientation [33]. These accuracies are comparable
to those of external tracking devices. In our system, FTRAC
is mounted to the seed insertion template with a connector,
and its relative position with respect to the template is known.
Since the seed insertion template is registered to TRUS in the
calibration process of the commercial brachytherapy treatment
planning system, the seed positions computed from X-ray
fluoroscopy images can be transformed to the TRUS frame
by known transformation. Therefore, dose distribution canbe
computed from the seed positions and overlaid to the prostate
volume without requiring an additional registration process
between TRUS and fluoroscopy.

III. M ETHODS

A. Key Idea

Fig. 2 shows a simple example that can be encountered
when reconstructing seeds from a limited number of projec-
tion images. Three projection images of three seeds (black
circles) are acquired at three different cone beam X-ray source
positions. All three seeds are detected in two projections,
but only two seeds are visible in the middle image due to
the overlapping seeds. Our goal is to find the 3-D locations
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of the true seeds using these three projection images. What
most of the previously proposed algorithms try to do is
to (1) identify all three seeds in all projection images and
find their 2-D coordinates, (2) find the correspondence of
the seeds between projection images, and (3) find the 3-D
locations of the seeds by computing symbolic intersections
of the backprojection lines of corresponding seeds. When
there are overlapping seeds as in this example (shaded circle),
establishing the correct correspondence is challenging. When
it is wrong, then seeds are positioned in entirely incorrect
positions—e.g., at one of the other intersection points of the
dotted backprojection lines.

The tomosynthesis approach backprojects and sums the seed
locations on the 2-D X-ray images into 3-D space, which
has the effect of growing “bright spots” where the true seeds
actually exist. This is done without requiring seed correspon-
dences or trying to identify overlapping seeds. However, as
can be seen from the figure, false positive (FP) seeds (white
circle) can be introduced in the reconstructed volume because
these locations are also consistent with the projected seed
locations. To address this situation, our strategy is to treat
all initially reconstructed seeds as “candidate seeds” andto
try to iteratively remove the FP seeds. In this simple example,
four candidate seeds are identified in the initial reconstruction
and they appear to be legitimate in every projection image.
But, in fact, the FP seed can be identified by successively
removing each seed and examining the consistency of the
remaining seed constellation relative to the acquired projection
images. In particular, it can be seen that if any one of the
true seeds is removed, then it is impossible for the three
projection images to have been generated by the remaining
candidates; if the FP seed is removed, however, the projection
images are reproduced perfectly. Following this observation,
the condition that each seed in every projection image must
be “covered” by at least one of the candidate seeds has
become our core principle for FP seed removal. In reality,
however, seeds are crowded within a small space and a real
seed may occupy the FP seed location, where every seed
in every projection image is covered without this true seed,
although the probability of such a situation could be small.
This necessitates a more sophisticated FP seed elimination
process based on our core principle. Starting from this intuition
and considering this possible situation, we have developeda
theoretical framework for removing FP seeds and localizing
the implanted brachytherapy seeds based on tomosynthesis
reconstruction. We now describe the algorithm in detail.

B. Binary Seed-only Image Computation and Seed Region
Labeling

We assume that the seed regions in each image are extracted
and binary seed-only images are computed from geometric
distortion-corrected images as Tutaret al. did in [28]. Since
there are various seed segmentation algorithms [8], [34]–[37],
we do not address segmentation methods in this paper.

Our method is more robust to additional spurious seeds that
can be mistakenly introduced to the binary seed-only images
than seed-matching-based methods. In the seed-matching-
based approach, 2-D seed coordinates computed from the

spurious seeds in the seed-only images will affect the seed-
matching process, resulting in erroneous matching. In our
method, additional spurious seeds in the 2-D seed-only images
will not create false positive seeds in the 3-D reconstruction
unless there are supporting seeds that correspond to these seeds
on the other images (it is almost impossible that a spurious
seed introduced in an image has corresponding seeds in all the
other 4-5 images). What is more important is to guarantee that
the binary seed-only images include all the seeds because any
missing seed in a seed-only image may result in missing a seed
in the reconstruction. Considering these possible scenarios and
the fact that seed-only images are the basis of our method,
it is important to take an effort to ensure that the seed-
only images are accurate. On the positive side, brachytherapy
seeds look very dark in the fluoroscopy images compared to
other structures, so it can be detected with sufficient accuracy
by using various available segmentation algorithms. Fig. 3(a)
shows an example binary seed-only image.

Once the binary seed-only images are computed, seed
regions are clustered and labeled using connected component
labeling [38], [39]. We use these labels during the FP seed
removal process that we describe in Section III-F. Since
exact identification of the 2-D coordinates of all seeds is not
necessary, different labels are assigned to isolated seed regions
even though they may correspond to more than one projected
seed. An example of a labeled binary seed-only image is
shown in Fig. 3(b). In this figure, regions 1 and 8 have at
least two seeds, but only one label is assigned to each region.

C. Gaussian Blurring

Since the size of a brachytherapy seed is very small, only
a small number of pixels contribute to the image of a seed.
As a consequence, even minor calibration and pose estimation
errors may result in missing seeds in the tomosynthesis recon-
struction. The possible shifts of the projected points caused by
calibration and pose estimation errors are more than just 1-2
pixels in general (see Section IV-D). Therefore, it is obvious
that there will be missing seeds in the reconstruction if the
size of the seed region is small. We may increase the size
of the seed region by simple dilation to solve this problem,
but then the size of the seed region will be too big, making
neighboring seed regions connected to one another, which is
equivalent to creating overlapping seeds in the images. Also,
by increasing the size of the seed region too much, there will
be many merged seeds each of which appear to be one big
seed but actually contain multiple seeds in the reconstructed
volume.

In order to overcome these limitations, we use Gaussian-
blurred images for our reconstruction. From the binary seed-
only images, we first compute distance maps using a distance
transform. The distance transform assigns the Euclidean dis-
tance between each pixel and its nearest seed region to the
image [40]. In the distance map, pixels inside a 2-D seed
region take a value of zero and the label of the nearest 2-D seed
region becomes the label value of the pixel. Fig. 3(b) shows
an example of a binary seed-only image with 9 labeled seed
regions. In this figure,d(P1) = 0 becauseP1 is inside seed
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Fig. 3. (a) Binary seed-only image of the patient fluoroscopyimage shown in Fig. 1(b). Red circles indicate example overlapping seeds which are indicated
as white circles in Fig. 1(b). (b) Example seed region labeling of the seeds inside the green-dashed box in (a). (c) Gaussian-blurred image of (a).

region 8, and d(P2) and d(P3) are the Euclidean distances
from the pointsP2 andP3 to the nearest boundaries of seed
regions8 and 1, respectively whered(·) is the distance map
of the image. Also, the pixels associated with pointsP1, P2,
andP3 have label values of8, 8, and1, respectively.

We then blur the binary seed-only images based on the
distance maps by unit-height Gaussian function defined as

Ig(x) = exp

[

−d(x)2

2σ2

]

, (1)

whereIg(·) is the Gaussian-blurred image andσ2 controls the
width of the blur. The pixel value inside the seed regions is
1 and the pixel value tapers down as the distance between
the pixel and the nearest seed region increases. The insight
behind this approach is that a pixel closer to a seed region
has a higher probability that it belongs to a true seed region.
Likewise, a pixel farther from seed regions has a lower
probability of belonging to a true seed region. Note that our
Gaussian blurring is different from general Gaussian blurring
that usually convolves a Gaussian kernel with the image. Since
we use a distance map for blurring, the blurred image takes
values between 0 and 1, which is not the case in general
Gaussian blurring. Also, we cluster the pixels based on the
computed labels and blurring is computed within each cluster
so that it can be utilized for subsequent FP seed removal
described in Section III-F. Fig. 3(c) shows an example of a
Gaussian-blurred image.

D. Volume Reconstruction and Candidate Seed Detection

The geometry of a C-arm imaging system, depicted in
Fig. 2, has three related coordinate systems: the global refer-
ence coordinatesF , the source coordinatesS, and the image
coordinatesI. By using a tracking system, the location and
orientation of the source coordinate system can be determined
relative to the laboratory frame. Specifically, the tracking
system estimates a3 × 3 rotation matrixS

RF and a3 × 1
translation vectorStF that together take a vector inF into one
in S. We note that the C-arm is not necessarily isocentric, so
the relationship between the two frames cannot be further con-
strained. Through prior calibration, the C-arm’s focal length
f can be determined and an image origin(ox, oy) in I can

be specified. Putting all this together, we can specify a3 × 4
projection matrixI

FF that projects a point in homogeneous
global reference coordinatesF to a point in homogeneous
image coordinatesI, as follows

I
FF =







− f

Sx
0 ox 0

0 − f

Sy
oy 0

0 0 1 0







[

S
RF

S
tF

0
T 1

]

(2)

whereSx and Sy are the pixel sampling intervals along the
xI andyI axes of the image, respectively.

Given a projection matrix for each image, we reconstruct a
3-D volumeV (x) using backprojection, which is equivalent to
a generalized form of tomosynthesis for arbitrary orientations.
Specifically, a voxel value atx is computed by

V (x) =
1

Np

Np
∑

i=1

Ii
g

(

I
F

i
F xh

)

(3)

where I
F

i
F is a projection matrix corresponding to theith

image, Np is the number of projection images,xh is a
homogeneous coordinate representation ofx, and Ii

g(·) is
the ith Gaussian-blurred image computed by (1). Since the
reconstructed voxels take values between 0 to 1 (due to the
nature of the Gaussian-blurred images), we can extract the
candidate seed regions by thresholding. In our simulation,
phantom, and clinical studies, the threshold varied withina
small range, e.g. 0.9–1.0, thus making the automatic thresh-
olding possible. We then label the extracted seed regions
using connected component labeling [38], [39]. We consider
each labeled seed region as a candidate seed and compute its
centroid. When adjacent seeds are physically touching to each
other or are placed very close to each other, these seeds may
end up being connected and appear to be one larger seed in
the reconstruction due to its blurred nature (note that the 3-
D volume is reconstructed from blurred 2-D images) and the
C-arm pose estimation errors, a situation that can be detected
by the size of each reconstructed seed volume. In such a case,
we select a seed with median size among candidate seeds, use
it as a template to match filter the connected seed region in
order to separate the connected seeds. Then, we compute the
centroid of each separated seed.
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E. C-arm Auto-focusing Using Detected Candidate Seeds

Gaussian blurring allows the algorithm to avoid missing
seeds in the presence of errors in C-arm calibration and
pose estimation. In practice, however, it is often necessary to
correct the estimated C-arm camera parameters. In our clinical
workflow, C-arm calibration is performed prior to the surgery
at one representative pose. But, since the intrinsic camera
parameters of the C-arm vary with its pose, using one set
of fixed intrinsic camera parameters may cause errors in the
pose estimation. Also, we use a tracking fiducial (FTRAC)
that relies on features pre-segmented in the image for the
C-arm pose estimation. Therefore, errors in image distortion
correction, calibration, and feature segmentation propagate to
tracking results. However, the main advantage of using a
tracking fiducial is that a residual error of the C-arm pose
estimation can be computed. Specifically, we compare the
features projected from the model onto each image using
the estimated pose with the features shown in the image.
The computed residual error provides quantitative measureof
the accuracy of calibration and pose estimation. Thus, if the
residual error is relatively large, it is desirable to correct the
C-arm camera parameters to improve on the reconstruction.
Incorrectly estimated camera parameters can be automatically
adjusted by using candidate seeds as fiducials. We call this a
“C-arm auto-focus” procedure. We first compute a reconstruc-
tion using images whose corresponding residual pose errors
are small among the acquired images, and detect candidate
seeds. Then, we use the Gaussian-blurred images as cost
functions and adjust the camera parameters of the remaining
images so that these images are focused to the candidate seeds
by solving following optimization problem.

ê = argmin
e



−

Nc
∑

j=1

Ii
g

(

I
F

i
F (e)xj

)



 (4)

where Nc is the number of candidate seeds,xj is the ho-
mogeneous coordinates of thejth candidate seed,IFi

F is
the projection matrix in theith image computed by (2),
Ii
g(·) is the ith Gaussian-blurred image computed by (1), and

e = (θ, t, f, ox, oy) is a nuisance parameter which includes
rotationθ, translationt, focal lengthf , and the image origin
ox, oy. Since we already have initial estimates ofe and the
estimation errors are not huge, we can constrain the range
of each parameter. Starting from the initial estimation of the
calibration and pose parameters, we solve this constrained
optimization problem using sequential quadratic programming
(SQP) [41]–[43]. The Hessian of the Lagrangian is updated by
the BFGS formula [43]–[48]. The optimization is implemented
using the MATLAB 7.1 command ‘fmincon’ [49]. The
automatically focused images (note that these images are not
used for the initial reconstruction) are incorporated intothe
initial reconstruction to obtain the final reconstruction.

F. False Positive Seed Removal

Initially detected candidate seeds include a significant
amount of FP seeds since only a limited number of projection
images are used for 3-D reconstruction. Therefore, an FP

seed elimination process is critical for the success of the
tomosynthesis-based approach. We formulate this process as
an optimal coverage problem. Optimal coverage problems
arise in various applications such as wireless sensor networks
or so called art gallery problem [50], [51]. The objective in
these problems is to select a minimum subset that covers
a given set of “client” points from a given set of “server”
points. Local cost functions are first defined on all the selected
server points, and a global cost function is determined as a
summation of the local cost functions. The problem can be
solved by optimizing a global cost function. Similarly, the
goal of the FP seed removal process is to findNt true seeds
from Nc candidate seeds such that all 2-D seed regions are
covered in all projection images. However, since the optimal
coverage problem is NP-hard [50], [51] and its computational
complexity is O(CNc

Nt
), where CNc

Nt
meansNc chooseNt,

it is practically impossible to find the global optimum for
a large number of implanted seeds. Instead of solving the
global optimization problem using the global cost, we find
an approximate optimal solution by a greedy search using the
local cost. We also reduce the size of the problem by using
clustered binary seed-only images for regularization. We now
describe the FP seed removal process in detail.

Let xn ∈ R
3 be a 3-D coordinate of thenth candidate seed,

P i be a projection operator which projects a 3-D point onto the
ith image plane, andxi

n = P i
xn be a 2-D coordinate of the

projection ofxn in the ith image. For eachxi
n, let di(xi

n) be
a Euclidean distance to the nearest seed region fromx

i
n which

is calculated from the distance map described in Section III-C,
andLi(xi

n) be a label which is assigned to the candidate seed
based on the labeling results described in Sections III-B and
III-C. Note thatdi(xi

n) = 0 if x
i
n is inside a seed region. If

there areN i
L seed regions in theith seed-only image and they

are labeled as1, 2, · · ·N i
L, the projections of theNc candidate

seeds on theith image are clustered intoN i
L setsΩi

l , such
that in theith image, the following holds true:

Li(x1) = Li(x2), for ∀x1,x2 ∈ Ωi
l, l = 1, 2, · · · , N i

L. (5)

A seed region with labell is covered by‖Ωi
l‖ seeds, where

‖Ωi
l‖ is the cardinality of the setΩi

l and ‖Ωi
l‖ > 1. Since

overlapping seed regions are considered as one seed region in
the seed-only image, thenN i

L 6 Nc.
The size of our optimization problem can be reduced by

clustering seeds in each image. If a seed region in an image
is covered only by one seed, then this seed must be classified
as true, otherwise this seed region cannot be covered. LetG

be a set of such seeds, i.e.,

G = ∪
i=Np

i=1
{x|Li(P i

x)= l and‖Ωi
l‖=1, l = 1, 2, · · · , N i

L}
(6)

where Np is the number of projection images. OnceG
is determined, then the optimization problem is reduced to
choose(Nt − ‖G‖) seeds from(Nc −‖G‖) candidate seeds.

In order to create a proper cost function, we use the
following observation: An FP seed is projected either 1) close
to some true seeds if the image contributes to create this
particular FP seed or 2) far away from the seed regions if
the image does not contribute to create that FP seed. In either
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Fig. 4. A flowchart explaining the FP seed removal process.

case, true seeds are not always projected close to other true
seeds; they are projected close together when their actual 3-D
locations are close or when they are hidden in a 2-D projection.
But, importantly, we have never encountered a case where a
true seed is hidden in all images. Thus, a cost function for a
given seed can be defined as a function of the closest distances
between the projections of a seed and the projections of all
other true seeds, and the distance between the projection of
the seed and the nearest seed region in all images. Based on
this idea, we define a local cost function as:

C(xn) = −

Np
∑

i=1

1 + Di(xn)

1 + di(xn)
, for all xn ∈ S \ G (7)

whereS is a set of candidate seeds,di(xn) is the distance
between the projected point ofxn and the nearest seed region
in the ith image, and

Di(xn) = min
m 6=n

‖P i
xn − P i

xm‖, for xm ∈ S.

We iteratively remove FP seeds by greedy search. During each
iteration, fromS we remove one seed with the largest cost
computed by (7). We also updateG if there are additional
seeds that cover some seed regions alone having removed the
FP seed. Iteration continues untilNt seeds are left inS. A
flowchart explaining the FP seed removal process is shown in
Fig. 4.

IV. N UMERICAL RESULTS

A. Simulations

We performed simulation studies using synthetic projection
images. We considered a nominal 50 cc prostate, with six
different seed densities from 1.0 to 2.25 seeds/cc with a step

(a) (b)

Fig. 5. (a) Synthetic projection image with 112 seeds. (b) Estimated seed
centroids projected onto (a). Red circles indicate exampleoverlapping seeds.

size of 0.25 seeds/cc resulting inNt = {54, 60, 72, 84, 96,
112} implanted seeds, respectively. Each seed was represented
by a cylinder with diameter of 0.8 mm and length of 1.45 mm
which are similar to the X-ray visible diameter and length of
an 103Pd seed. Multiple seeds could be placed next to one
another as happens in real implantation, but they could not
share the same position due to their physical size. The focal
length of the C-arm and the pixel size of the image were
1000 mm and 0.44×0.44 mm2, respectively. The voxel size
of the reconstruction was 0.5×0.5×0.5 mm3.

Due to the limited mobility of the C-arm in the operating
room, we can only rotate the C-arm within a very narrow cone
about the AP axis. When the source angle separation between
image acquisition poses is small, the uncertainty in depth
information is proportionately magnified. As a consequence,
the reconstruction may fail to detect true seeds and generate
FP seeds at incorrect positions. Therefore, it is necessaryto
evaluate the accuracy and robustness of our method to small
source angle separations. In our clinical setting, the C-arm
can have mobility inside a25◦ cone centered on the AP axis
(see Fig. 1(a)). We consider five different X-ray source angle
separations from5◦ to 25◦ with a step size of5◦ to test the
algorithm for various angle separations.

Ideal simulations: We first evaluate the proposed method
on simulation data sets created under the assumption that the
C-arm is calibrated and the pose of the C-arm is known
without error. For each case (combination of seed density
and the source angle separation), we generated ten data sets,
and created six projection images in each data set. From six
available images in each data set, three and four images were
selected to compute the reconstructions. A total of 1000 (= C6

3

combinations×10 data sets×5 angle separations) simulations
were performed using three images and 750 (= C6

4 combina-
tions ×10 data sets×5 angle separations) simulations were
performed using four images. Since there was no calibration
and pose estimation error, we used smallσ, e.g., 1.0 pixel=
0.44 mm. The estimated seed positions were compared to the
ground truth. Fig. 5 shows a typical synthetic image and the
estimated seed centroids projected onto the image.

Figs. 6(a), (c), and (e) show the seed detection rate and
reconstruction error, respectively, as functions of the source
angle separation. The results show that the proposed algorithm
can almost perfectly localize the implanted seeds with a
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Fig. 6. Plots showing the relationship between reconstruction quality and source angle separation when (a, c, e) there is no C-arm calibration and pose error
and (b, d, f) there are realistic calibration and pose estimation errors. (a, b) Seed detection rate. Three and four images are used. (c, d) Reconstruction errors
when three images are used. (e, f) Reconstruction errors when four images are used.

detection rate of> 99.0% on average using either 3 or 4
images when the image acquisition angle is> 10◦. Even when
the image acquisition angle separation is5◦, the algorithm is
still able to localize the seeds with a detection rate of> 96.5%
and> 97.5% using 3 and 4 images, respectively. It is observed
that the larger source angle separation allows the algorithm
to recover the seed locations more accurately (smaller mean
reconstruction errors). Reconstruction results for each seed
density averaged over the source angle separations of10◦−25◦

are also shown in Table I.

Realistic simulations:We introduced C-arm calibration and
pose estimation errors to the same data sets described in the
ideal simulations. We added truncated additive white Gaussian
noise (AWGN) to the known C-arm pose parameters. Here
we considered the pose recovery results of prior phantom
experiments using the FTRAC fiducial in [33, Section 7-B].
For rotation, AWGN with mean0.33◦ and standard deviation
(STD) 0.21◦ was added to the known rotation at each pose
around a random rotation axis. And for translation, AWGN
with means(µx, µy, µz) = (0.07, 0.04, 0.55) mm and STD’s

TABLE I
SIMULATION RESULTS WHEN THE C-ARM IS CALIBRATED AND THE POSE

OF THE C-ARM IS KNOWN WITHOUT ERROR. THE RESULTS FOR EACH

SEED DENSITY ARE AVERAGED OVER THE SOURCE ANGLE SEPARATIONS
VARYING FROM 10

◦ TO 25
◦ WITH A STEP SIZE OF5◦ (TOTAL 800

SIMULATIONS). THE AVERAGED RESULTS ARE ROUNDED UP TO ONE DIGIT

AFTER THE DECIMAL POINT WHICH WOULD BE ENOUGH FOR CLINICALLY
MEANINGFUL DATA ANALYSIS .

Num of Num of Number of seeds Mean± STD
seeds images candidate correctly detected error (mm)

54 3 55.1 53.9 (99.8%) 0.6 ± 0.2
4 54.0 54.0 (100.0%) 0.6 ± 0.1

60 3 61.6 59.8 (99.7%) 0.6 ± 0.3
4 60.1 60.0 (100.0%) 0.6 ± 0.1

72 3 74.8 71.8 (99.7%) 0.6 ± 0.3
4 72.1 72.0 (100.0%) 0.6 ± 0.1

84 3 87.7 83.4 (99.3%) 0.6 ± 0.3
4 84.0 83.8 (99.8%) 0.6 ± 0.1

96 3 104.9 94.6 (98.5%) 0.7 ± 0.4
4 96.7 95.7 (99.7%) 0.6 ± 0.1

112 3 124.3 109.6 (97.9%) 0.7 ± 0.5
4 112.6 111.2 (99.3%) 0.6 ± 0.2
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TABLE II
SIMULATION RESULTS WHEN RANDOM C-ARM CALIBRATION AND POSE

ESTIMATION ERRORS ARE INTRODUCED. THE RESULTS FOR EACH SEED
DENSITY ARE AVERAGED OVER THE SOURCE ANGLE SEPARATIONS

VARYING FROM 10
◦ TO 25

◦ WITH A STEP SIZE OF5◦ (TOTAL 800
SIMULATIONS). THE AVERAGED RESULTS ARE ROUNDED UP TO ONE DIGIT

AFTER THE DECIMAL POINT WHICH WOULD BE ENOUGH FOR CLINICALLY
MEANINGFUL DATA ANALYSIS .

Num of Num of Number of seeds Mean± STD
seeds images candidate correctly detected error (mm)

54 3 57.6 53.7 (99.4%) 0.8 ± 0.5
4 54.3 54.0 (100.0%) 0.8 ± 0.3

60 3 65.4 59.7 (99.5%) 0.8 ± 0.4
4 60.5 59.9 (99.8%) 0.8 ± 0.2

72 3 80.5 71.3 (99.0%) 0.9 ± 0.6
4 72.9 71.9 (99.9%) 0.8 ± 0.3

84 3 96.4 82.7 (98.5%) 0.9 ± 0.5
4 85.5 83.7 (99.6%) 0.8 ± 0.3

96 3 108.3 93.9 (97.8%) 0.9 ± 0.6
4 100.8 95.3 (99.3%) 0.8 ± 0.3

112 3 128.8 108.3 (96.7%) 0.9 ± 0.7
4 118.9 110.6 (98.8%) 0.8 ± 0.4

(σx, σy, σz) = (0.05, 0.03, 0.32) mm was added to each
known translation. Also, we added zero mean AWGN with
STD’s 2 mm and0.44 mm to the known focal length of the
C-arm and the image origin, respectively. The added noise
was truncated at3×STD from the mean. We used the same
combinations of seed densities and source angle separations
as previous simulations. The voxel size of the reconstruction
was also the same, but theσ was chosen to be larger than
the previous simulations, e.g.σ = 2.0 pixel = 0.88 mm orσ
= 3.0 pixel = 1.32 mm, depending on the number of images
used and the source angle separation.

Figs. 6(b), (d), and (f) show the seed detection rate and
the mean reconstruction errors, respectively, as functions of
the angular separation. The results show that the algorithm
can successfully localize the seeds even when the image
acquisition angle separation is5◦, but the performance is more
reliable when the angle separation is> 10◦. Also, note that
the reconstruction error decreases as the image acquisition
angle separation increases. The simulation results averaged
over the source angle separations of10◦ − 25◦ are shown in
Table II. The results show that the detection rate is> 96.7%
and> 98.8% with three and four images, respectively, under
the realistic conditions when the angle separation is> 10◦.

Effects of C-arm auto-focusing: In this simulation exper-
iment, we added noise to each C-arm camera parameter and
reconstructed the seeds with and without the auto-focusing. As
described in Sec. III-E, we considered rotation (3 parameters),
translation (3 parameters) and focal spot (3 parameters, com-
prising the focal length and the image origin). We generated
150 data sets with 84 implanted seeds in a50 cc prostate with
a seed density of 1.75 seeds/cc. For each data set, four images
were synthetically generated in a20◦ cone centered on the
AP axis. In each data set, we assumed that the calibration and
the pose estimation errors of one image (the “bad” image)
is relatively large and must be corrected while the remaining
images are accurate (the “good” images). In order to create
bad images, we separately added rotation, translation, and
calibration errors to the known parameters. Rotation errors
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Fig. 7. Performance of the C-arm auto-focus process for (a) rotation error
in the C-arm pose, (b) translation error in the C-arm pose, and (c) focal spot
error in the C-arm calibration.

varied from 0◦ to 5◦ in increments of0.5◦ and translation
errors varied from 0 mm to 10 mm in increments of 1 mm. We
incorporated the fact that translation errors in depth are always
significantly greater than those parallel to the plane [33].The
error in knowing the focal spot varied from 0 mm to 20 mm
with a step size of 2 mm; the fact that focal length errors
are always larger than image origin errors was incorporatedin
error generation.

A total of 1650 (150 data sets× 11 noise levels) simulations
for each error type were generated. Given a simulated data set,
we first computed a reconstruction using all four images with-
out auto-focus. We then computed a reconstruction using auto-
focus assuming the bad image was known to the algorithm.
An initial reconstruction based on three good images was first
computed and then the bad image was automatically focused
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using candidate seeds detected from the initial reconstruction.
The bad image was then added to the initial reconstruction
with corrected camera parameters to compute the final recon-
struction.

The reconstruction results with and without the auto-focus
process are shown in Fig. 7. The results show that our
tomosynthesis-based algorithm with Gaussian blurring is ro-
bust to calibration and pose estimation errors, and also that
the overall reconstruction can be improved by adjusting the
erroneous calibration and pose parameters. Previous idealand
realistic simulations imply that three good images are enough
to get reasonably good initial reconstruction.

B. Phantom Experiments

We evaluated our method on five phantom data sets. The
precisely fabricated phantom consists of twelve 5 mm thick
acetol slabs, each having at least a hundred holes with 5 mm
spacing where seeds can be positioned (see Fig. 8(a)). The
FTRAC was precisely attached to the phantom in a known
position so that the seed positions were known, thus estab-
lishing a ground truth [10, Section III-C]. Radio-opaque seeds
each with a length of 4.9 mm and a diameter of 0.8 mm
(similar in size to that of125I seeds) were inserted into the
slabs keeping seed density constant at about 1.56 seeds/cc.
Five data sets were generated with 42, 57, 72, 87, and 102
inserted seeds. For each data set, we collected six images
within a 20◦ cone around the AP axis using aPhilips Integris
V3000 fluoroscope. We selected four, five, and six images
from the acquired images in each data set, based on residual
errors provided by the FTRAC software, and used them for
3-D reconstructions. The voxel size of the 3-D reconstructions
was 0.5×0.5×0.5 mm3, and σ = 3 pixels = 1.32 mm, was
used. For images with large pose estimation residual errors, we
performed the C-arm auto-focus process to adjust the camera
parameters. A typical phantom image with an FTRAC and 102
seeds is shown in Fig. 8(b). Fig. 8(c) shows the estimated seed
centroids projected onto one of the projection images (notethe
significant number of overlapping or clustered seeds in this
view). We computed the reconstruction errors by comparing
positions of the detected seeds and the ground truth, as shown
in Table III. We were able to localize the implanted seeds
with a detection rate of> 96.1%, > 98.3% and > 98.6%
from four, five, and six projection images, respectively. The
mean reconstruction errors were slightly larger than thosein
the simulations since the radio-opaque size of the implanted
seeds is bigger. The results imply that we are able to localize
the seeds from four or more images with clinically acceptable
seed detection rate.

C. Clinical Experiments

The proposed method was validated on clinical data ac-
quired from six patients during actual brachytherapy surgeries.
All procedures followed IRB approved protocols and patient
consent was obtained. For each patient, we acquired two sets
of images during the procedure and one set of images at the
end of the procedure so that there are different number of
implanted seeds in each set. The C-arm was calibrated prior

TABLE III
PHANTOM EXPERIMENT RESULTS.

Num of Num of Number of seeds Mean± STD
seeds images candidate correctly detected error (mm)

4 43 42 (100%) 1.7 ± 0.6
42 5 42 42 (100%) 1.3 ± 0.5

6 42 42 (100%) 1.1 ± 0.4
4 60 56 (98.3%) 0.8 ± 0.7

57 5 58 56 (98.3%) 0.8 ± 0.7
6 57 57 (100%) 0.8 ± 1.0
4 77 72 (100%) 1.2 ± 0.9

72 5 74 72 (100%) 1.0 ± 0.4
6 72 72 (100%) 1.0 ± 0.4
4 94 84 (96.6%) 0.7 ± 0.7

87 5 96 86 (98.6%) 0.7 ± 0.5
6 91 86 (98.6%) 0.7 ± 0.4
4 119 98 (96.1%) 2.0 ± 0.9

102 5 107 102 (100%) 1.1 ± 0.5
6 104 102 (100%) 1.1 ± 0.5

to each surgery and X-ray images of the implants were taken
within a 20◦ cone centered on the AP axis using anOEC
9800 fluoroscope. We corrected the geometric distortion of
each image and computed the corresponding C-arm pose using
the FTRAC that was precisely attached to the needle insertion
template in a known position. Various numbers of103Pd seeds
with a length of 4.5 mm and a diameter of 0.8 mm (radio-
opaque size of the x-ray marker is about three times shorter
than the size of the outside capsule) were implanted. Based on
the residual pose estimation errors computed by the FTRAC
software, we selected five images with the smallest errors
for reconstruction. The C-arm auto-focus process adjustedthe
camera parameters of the images with large residual pose
errors.

The reconstruction voxel size was 0.5×0.5×0.5 mm3, and
the value ofσ was slightly bigger than the value used in
the phantom studies, e.g.σ = 5 pixels = 2.2 mm, due to
the relatively small radio-opaque size of the103Pd seeds.
Fig. 9 shows a typical patient image and reconstruction results.
Out-of-focus images such as Fig. 9(b) were automatically
focused by the auto-focus process, and overlapping seeds
were automatically detected by the algorithm as shown in
Fig. 9(c). In Fig. 9(c), one might observe that the estimated
seed centroids in the lower right corner seem to show a
systematic shift from the shadow of real seeds. When we
reproject the reconstructed seed centroids onto the imagesused
for the reconstruction, shifts of the reprojected seeds from the
seeds observed in the image look random. A systematic shift
happens when the estimated poses of the C-arm in one or more
images are incorrect, but it is global rather than local. Although
shifts are usually random, this kind of local shift, which
looks like systematic, may happen due to incorrect geometric
image distortion correction even when all the C-arm poses
are good. Since we compute the geometric distortion pattern
of the C-arm fluoroscopy image prior to the implantation
at one representative pose as described in Section II and
use computed dewarp parameters for geometric distortion
correction for all images, geometric distortion correction of
each image is incorrect even though it is reasonably good and
does not critically affect the reconstruction result. In a region
where actual geometric distortion is slightly different from
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(a) (b) (c)

Fig. 8. (a) Phantom with FTRAC attached. (b) Phantom image with 102 implanted seeds. (c) Estimated seed centroids projected onto (b).

(a) (b) (c)

Fig. 9. (a) Patient image showing 77 seeds and the FTRAC. (b) Estimated seed centroids projected onto (a) before (red dots) and after the C-arm auto-focus
(white dots). (c) Estimated seed centroids projected onto (a). Red circles indicate example overlapping seeds.

the computed distortion pattern, such distortion may not be
accurately corrected and reconstructed seeds from that region
may show a slight systematic shift when reprojected onto the
image.

Since the exact locations of the seeds were unknown, we
visually assessed the correspondences between the projection
of the estimated seeds and the actual seeds in the images.
For a quantitative measure, we compared the estimated seed
locations with those computed by an existing algorithm, MAR-
SHAL [10]. MARSHAL is a correspondence-based algorithm
that requires an exact identification of the seeds in all 2-D
projection images. The number of visually matched seeds for
each case and the differences between two reconstructions
were shown in Table IV. The results show that our method can
successfully localize the implanted seeds with overall detection
rate of 98.8% (STD=1.6) which is clinically adequate. The
reconstructed seed locations computed by the proposed algo-
rithm agreed to those computed by MARSHAL with overall
mean difference of 0.8 mm.

D. Determination of σ

The size ofσ determines the width of the blur, therefore
should be determined considering the size of the seeds, and the
C-arm calibration and pose errors. Since various factors cause
shift in the projection, it is hard to analytically determine the
value of σ. In order to have information about the possible

TABLE IV
CLINICAL EXPERIMENT RESULTS. NUMBER OF MATCHED SEEDS ARE

COUNTED BY VISUAL ASSESSMENT AND THE RECONSTRUCTION

DIFFERENCES ARE COMPUTED BY COMPARING THE ESTIMATED SEED

LOCATIONS COMPUTED BY THE PROPOSED ALGORITHM WITH THOSE
COMPUTED BY THEMARSHAL ALGORITHM .

Patient Number of seeds Mean± STD
number implanted candidate matched difference (mm)

22 22 21 (95.5%) 0.6 ± 0.2
1 44 46 43 (97.7%) 0.7 ± 0.5

66 75 66 (100%) 0.7 ± 0.6
39 39 39 (100%) 0.6 ± 0.4

2 82 84 82 (100%) 0.6 ± 0.6
84 85 83 (98.8%) 1.0 ± 0.8
33 33 33 (100%) 0.4 ± 0.3

3 67 67 65 (97.0%) 0.9 ± 0.8
70 68 68 (97.1%) 1.2 ± 1.4
35 35 35 (100%) 0.4 ± 0.3

4 68 70 68 (100%) 0.6 ± 0.6
77 82 76 (98.7%) 1.4 ± 0.8
24 24 24 (100%) 0.8 ± 1.2

5 48 50 46 (95.8%) 1.1 ± 1.2
53 56 52 (98.1%) 1.4 ± 1.4
33 33 33 (100%) 0.7 ± 0.6

6 61 63 61 (100%) 0.6 ± 0.3
66 70 66 (100%) 0.8 ± 0.6

shift in the projection images due to C-arm calibration and
pose estimation errors, we analyzed the phantom data sets.
For five phantom data sets each of which has six projection
images, we compared the 2-D seed positions obtained from
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(a) (b)

Fig. 10. (a) Reconstruction of a voxel from five images. C-armcalibration and pose estimation of image 5 is not accurate. (b) Cross-sectional plot of a
Gaussian-blurred seed region.

projection images with the projection of the ground truth 3-D
seeds, and observed that the projected points are shifted less
than about 7 pixels (there will be no shift when the C-arm
pose is exactly known).

Let us consider an extreme case as shown in Fig. 10(a)
where a voxel is reconstructed from five images and thresh-
olded at 0.9 (note that our threshold varies between 0.9 and
1.0), and also this voxel corresponds to a seed mark in every
image except for one. In order for this voxel to be recon-
structed as a part of a seed after thresholding, the Gaussian-
blurred pixel value in image 5 associated with this voxel hasto
be over 0.5 (note thatV = (1+1+1+1+0.5)/5 = 0.9 by (3)).
Whenσ = 5 pixels, the Gaussian-blurred image hasIg = 0.5
at d = 5.9 pixels (3.5 pixels forσ = 3) from the boundary
of the binary seed mark as in Fig. 10(b) (see (1) for the
computation ofIg andd). For our phantom and103Pd seeds,
the widths (length of the short axis) of the projected seeds
are about 7 and 3 pixels, respectively. Withσ = 3 and5, total
about(7/2+3.5) = 7 pixels and(3/2+5.9) = 7.4 pixels may
contribute to the reconstruction, which cover the expectedshift
(< 7 pixels) in our system. Too smallσ may result in missing
seeds in the reconstruction if the C-arm calibration and pose
estimation errors are relatively large (even though the error is
within allowable range). By increasing theσ, the effective (or
relevant) area of each seed mark is increased, which is helpful
for detecting seeds under large C-arm calibration and pose
errors. However, too bigσ will result in too many connected
(or merged) seed regions in the reconstructed volume, each of
which appears to be one big seed but actually contains multiple
seeds.

E. Computation Time

In actual clinical use, the entire seed reconstruction process
from image acquisition to seed localization must be completed
within a limited time, so computation time must also be

minimized. The proposed algorithm was implemented using
MATLAB 7.1 [49] and tested on a Pentium4 2.92 GHz PC
(current code is not optimized for best performance). On a
typical clinical data set of 5 images, computation time of the
complete workflow, from binary seed-only image computation
to 3-D seed localization, was about 100 seconds. Furthermore,
an experienced technician can acquire 5 fluoroscopy images
less than a minute and each C-arm pose can be recovered by
the FTRAC software within seconds [33]. This implies that
seed reconstruction process takes less than 3 minutes, which
would be acceptable for intraoperative use. Computation time
can be further reduced by using optimized C/C++ implemen-
tation.

V. CONCLUSION

We proposed a novel tomosynthesis-based prostate
brachytherapy seed reconstruction method. The attractive
feature of the proposed method is that it can automatically
recover all the seeds, including overlapping or clustered
seeds, without involving explicit identification of the 2-D
coordinates of the seeds in the fluoroscopy images. Gaussian
blurring combined with distance map enables the algorithm
to reconstruct seeds under realistic calibration and pose
estimation errors of the C-arm. In addition, a C-arm auto-
focus process enables the algorithm to utilize out-of-focus
images after automatic adjustment of the C-arm camera
parameters. A false positive seed removal process based
on an optimal coverage cost successfully extract the true
seeds from the candidate seeds and allows us to reduce the
number of required projection images compared to the other
tomosynthesis-based algorithms [27], [28].

Simulation studies show that the proposed algorithm re-
quires only three or four images to detect the implanted seeds
with a detection accuracy of> 97.9% when the C-arm is
accurately calibrated and the pose of the C-arm is accurately
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estimated with angle separation> 10◦. Simulation results
with the calibration and pose estimation errors also show that
the implanted seeds can be localized from three and four
images with a detection rate of> 96.7% and > 98.8%,
respectively, when the angle separation is> 10◦. In case the
image acquisition angles are very small, it is natural for the
algorithm to have difficulty in detecting all true seeds correctly.
However, simulations with varying angular separation show
that the algorithm is robust to angle separation up to5◦ cone
angle centered on the AP-axis. The proposed algorithm was
also evaluated on various phantom data sets showing that
> 96.1%, > 98.3%, and> 98.6% of the implanted seeds can
be correctly reconstructed from four, five, and six projection
images, respectively.

We also validated the algorithm using eighteen clinical data
sets and showed that it can successfully localize the implanted
seeds with clinically adequate accuracy and seed detection
rate of 98.8% on average. In our clinical trial, three data
sets were acquired: two times during the procedure and one
after all seeds were inserted. It is anticipated that, in normal
clinical practice, either one or two dosimetry reconstructions
will be performed. If a single reconstruction is performed,it
will be at the end after all seeds are inserted. If two dosimetry
assessments are performed, one would most likely occur after
placement of approximately half the number planned seeds
to be implanted, with the second dosimetry reconstruction
performed after all seeds are implanted. The case of a single
dosimetry reconstruction will be most likely. In the case
of a mid-procedure reconstruction, it might be beneficial
to utilize previously identified seed positions as a prior to
help reconstructing the remaining seeds. However, if only
one reconstruction is performed upon exit, then this prior
information may not be available in general. More significantly
still, there is often significant edema and seed migration during
the procedure, which precludes a reconstruction to serve asa
prior for subsequent reconstructions. As Jainet al. reported
in [52], seeds may migrate as much as 15 mm between the
first and last reconstruction.

One might consider using preoperative or intraoeratively up-
dated implant plan as prior information. The prior information
of seed positions can be used for C-arm tracking as well as the
seed reconstruction. Murphy and Todor [26] proposed to use
such prior information for simultaneously estimating C-arm
calibration, C-arm pose, and the seed positions. They were
successful in simulations, but this far no follow-up results
have been published on actual patient or even phantom data.
In all, extensive studies would be necessary to achieve a
clinically viable implant reconstruction method that makes use
of statistically unreliable prior information.

Our objective in this paper was to use a non-isocentric
average common C-arm, the kind of device that the majority
of practitioners have in their brachytherapy procedues. There
are several brachytherapy implant reconstruction methodsthat
consider only isocentric source-detector geometry, e.g. [19],
[23], [28]. (Actually, in these works, the fluoroscopy images
were acquired with radiation therapy simulators, which have
been rapidly disappearing from the radiation oncology clinic
in contemporary practice.) When source-detector motion is

confied to isocentric in-planar rotation, the reconstruction
problem is much simpler than our problem because pose of the
imaging device can be determined by an angle and the recon-
struction can be computed by simple isocentric tomosynthesis
equations [28]. Therefore, our method can be used with more
sophisticated fluoroscopy device such as isocentric flat-panel
C-arm by straightforward modification (6 degree of freedom
pose parameters are replaced by an angle and modification
of the reconstruction algorithm for isocentric tomosynthesis is
trivial). We must also note that the main reason why isocentric
C-arms are very slow to spread into brachytherapy is that the
currently used patient stirrups, OR table, and brachytherapy
mount all preclude using the C-arm in cone-beam tomography
mode, thus rendering the most expensive features of the C-
arm (flat panel, isocentric geometry, and motorized rotation)
unusable. In all, we expect that in the foreseeable future,
quantitative coupling of conventional TRUS and conventional
manual non-isocentric C-arm will function as a very effective
guidance and dosimetry tool.

In contrast to seed-matching-based algorithms such as
MARSHAL [10] that use triangulation and compute sym-
bolic intersections to reconstruct the seed positions, our
tomosynthesis-based algorithm reconstructs the entire volume
of interest and therefore requires somewhat longer computa-
tion time. Our method is fully automatic, and thus will save
time in the operating room by obviating manual intervention
typically required in seed segmentation and fixing apparently
erroneous seed matches. Also, our current MATLAB prototype
has not been optimized for speed and memory efficiency. Tutar
et al. [28], for example, demonstrated that a tomosynthesis-
based method can be adequately optimized for practical ap-
plication in surgery, and we note that our algorithm requires
even fewer images than Tutar’s.

Intraoperative seed localization is critical because it allows
the surgeon to monitor the implant procedure and achieve
optimal dose distribution to eradicate cancer and minimize
unnecessary toxicity to the adjacent tissues. The proposed
seed reconstruction method appears to be sufficiently accurate,
robust, and computationally fast for intraoperative dosimetry
in prostate brachytherapy procedures.
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