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Abstract. In prostate brachytherapy, x-ray fluoroscopy has been used
for intra-operative dosimetry to provide qualitative assessment of implant
quality. More recent developments have made possible 3D localization of
the implanted radioactive seeds. This is usually modeled as an assign-
ment problem and solved by resolving the correspondence of seeds. It is,
however, NP-hard, and the problem is even harder in practice due to the
significant number of hidden seeds. In this paper, we propose an algo-
rithm that can find an optimal solution from multiple projection images
with hidden seeds. It solves an equivalent problem with reduced dimen-
sional complexity, thus allowing us to find an optimal solution in poly-
nomial time. Simulation results show the robustness of the algorithm. It
was validated on 5 phantom and 18 patient datasets, successfully local-
izing the seeds with detection rate of > 97.6 % and reconstruction error
of < 1.2 mm. This is considered to be clinically excellent performance.

1 Introduction

Low dose rate permanent brachytherapy is widely utilized for low risk prostate
cancer, the success of which mainly depends on the ability to place an ade-
quate number (50-120) of radioactive seeds to deliver a sufficient therapeutic
dose distribution to the target gland while sparing adjacent organs from ex-
cessive radiation. During the procedure, the surgeon implants radioactive seeds
based on a pre-operative implantation plan under transrectal ultrasound image
guidance. However, it is not possible to accurately implant the seeds to the pre-
planned positions due to various reasons, e.g., patient motion, needle deflection
within prostate, and edema. In order to improve outcomes and reduce com-
plications, intra-operative localization of the seeds using x-ray fluoroscopy and
intra-operative dosimetry modifications have been previously proposed [TI2/3].
The seed localization problem from multiple fluoroscopy images are usually
modeled as an assignment problem [3]. This approach resolves which segmented
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seeds in each projection image correspond to the same physical seed. The 3D
locations of the seeds are determined by computing so-called symbolic intersec-
tion of the lines connecting the segmented seeds to the x-ray source positions
based on the revealed seed correspondence. However, this assignment problem
is NP-hard [3]. In addition, there exist a significant number of hidden seeds in
every image, thus making explicit segmentation of seeds in every image hard.
Such so-called hidden seeds are usually determined manually, and it is sometimes
impossible to recover them when one seed completely hides another. Therefore,
an algorithm that is computationally efficient and is able to solve the hidden
seed problem is essential to a clinically feasible system.

There has been some research on solving the hidden seed problem. Su et
al. [ extended Fast-CARS [2], but the new algorithm was prone to reconstruct
a greater number of seeds than were actually present, an effect called “false
positive” seeds. Narayanan et al. [5] proposed a pseudo-seed-matching strategy
coupled with an epipolar geometry-based reconstruction. This method requires
at least one of the three images to be complete, however, or it may or may
not reliably reconstruct the 3-D seed positions of the hidden seeds. Su et al. [6]
proposed an adaptive grouping technique which divides the seed images into
groups for efficient seed reconstruction and solving the hidden seed problem.
Unfortunately, it may fail to detect overlapping seeds when the projection with
the largest number of seed images among the divided groups is incomplete. Also,
incorrect division of triplets may result in false positive seeds. Tomosynthesis [7]
and Hough trajectory [8] methods have also been proposed, but they require
unfeasibly large numbers of images in order to guarantee stable reconstruction.

We have previously proposed a dimension reduction approach for solving seed
matching problem [9]. However, it did not solve the hidden seed problem and
was not computationally efficient. In this paper, we present an algorithm that is
able to solve the hidden seed problem using dimensionality reduction to achieve
efficient cost computation. We also propose a pruning algorithm that yields a
dramatic reduction in computation time.

2 Method

2.1 Extended Assignment Problem

When at least three projection images are used and all the 2D seed locations are
identified in every x-ray image, the correspondence problem can be formulated as
a 3D assignment problem (3DAP) [3]. In reality, however, there are a significant
number of hidden seeds, resulting in a varying number of segmented seeds in
each image. Here, we describe an extended assignment problem (EAP) that is
able to reconstruct seed positions including hidden seeds.

In contrast to the 3DAP where exactly N implanted seeds are identified in
every image, we consider a different number NN, of identified seeds in each image

i with N; < N. For I(> 3) x-ray images, the EAP is defined as:
N1 N2 N3
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where ¢;,45i5...i, 1 the cost of matching point p}l to points {pi,pi, e 7piII} and
Tiyisis..i; 1S a binary variable deciding the correctness of the match (i1, io, ..., ).
Since we use inequalities in the constraints () to handle the occurrence of hidden
seeds, a point can be chosen more than once in an image. The last equality forces
the total number of seeds to be N.

Let N = NiN5...N;,and x,c € RN’ be vector forms of % 4,4, and Ciyiy. iy,
respectively. Let M be a matrix form of (2] except for the last equation. Then
the EAP [[)-(@) can be formulated as the following integer program:

P: mincla, (3)
xeC
with the constraint set C={@ : Ma > [1,...,1]%, 2t[1,...,1]' = N, z, € {0,1}},
where x, is the fth element of x. Since the value of x; is either 0 or 1 and there
must be N 1’s, an optimal solution of ([B)) can be considered as choosing N cost
coefficients such that the cost is minimized while the constraint C is satisfied.

2.2 Dimensionality Reduction of EAP

Since the EAP has more feasible solutions than the 3DAP, it is not currently
possible to solve ([]) within a clinically acceptable time. In this paper, we use the
same dimensionality reduction approach to the previous work [9], utilizing the
following observation: the optimal solution has a near-zero cost when the c-arm
pose error is low (it is zero when the pose is exactly known). This feature and
Lemma 1 in [9] yield a following equivalent problem of reduced dimensionality
(for proof, see [9, Sec. 2.2]): 5. ot

: mine
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where ,¢é € RX (K < N') and € = {& : M& > [1,...,1]% 2%1,..., 1]t =
N,z; € {0,1}} with M = MR and where R is the dimensionality reduction

matriz of size N’ x K such that [:Eil 0z 0... xiK]t =R [i"l To ... :EK]t

z, (4)

Given a solution Z* to the reduced problem P, the optimal solution to the
original problem P is simply given by * = Rx*.

2.3 Cost Coefficients and Seed Reconstruction

To compute C, we need to compute the 3D intersection of the corresponding
lines in space. Due to various errors (e.g., c-arm pose error, seed segmentation
error, etc.), these straight lines never intersect, forcing us to compute a symbolic
3D intersection point. This point is typically defined as the global minimum of
an error function. In this paper, we use reconstruction accuracy (RA) based on
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the Lo norm of Euclidean distance from the intersection point to the lines as a
cost function. By using the RA cost, we can analytically compute a symbolic
intersection point using a few summations followed by a 3 x 3 matrix inversion [3].
Once the EAP is solved, 3D locations of the N implanted seeds can be determined
by the symbolic intersection points used to compute the N chosen RA costs in
the solution (those that correspond to 1’s in x).

The dimensionality reduction approach described in Section requires only
the computation of K cost coefficients that are lower than a threshold. This
implies that the exact value of most of the cost coefficients is not required. An
efficient way to tell if a cost coefficient is higher than the dimensionality reduction
threshold would allow us to skip its exact computation. This unnecessary cost
computation can be avoided by utilizing the following Lemma.

Lemma 1. Let I be the total number of 3D lines, and l; and p; be the unit
direction vector of line i and a point on the line i, respectively. Every RA cost
coefficient has the following lower bound:

2I(I —1)RA > Z d(liy,1i,)? (5)

i1,i0€{1,2,...,1}, ia>i1

where RA is defined as RA £ 1)1 2{21 |(Pr — pi) x Li]* and d(l;,,1;,) is the
Euclidean distance of line i1 to line io and with I images.
Proof. Due to the lack of space, the proof is not detailed.

Based on Lemma [Tl we propose the following pruning algorithm.

Pruning algorithm for efficient computation of RA costs:

1: Compute every possible d(l;,,1;,)? for I images.

2: For the first ¢ images, we have ¢&;, , . ;, = Zil,ize{l,z,...,i}, iy>iy d(li,,1;,)? =
Ciy,ooig1 + Z;—:ll d(l3,,1;)?. Thus, &;, i,...i, increases as the number of image
i increases. When ¢&;, 4,.... i, > 7, the computation of &, ;,,... i, is not required
and a large family of cost coefficients can be pruned. This favorable property
allows for a recursive algorithm where images are virtually added one at a
time and where a list of coefficients lower than 7 is updated.

3: Compute the RAs for indexes (i1,142,..., ¢;) remaining from step 2.

More RA cost coefficients are actually computed from the indexes of coefficients
C1,2,...,1 lower than the dimensionality reduction threshold 7, than are strictly re-
quired because () is only an inequality. The performance of the pruning algorithm
directly depends on the ratio of the number of RA cost coefficients computed and
the number of those actually lower than 7. In practice, we observed that this ratio
is in the range of 3 to 15, which is very compelling, due to its low cost.

2.4 Linear Programming

Based on the proposed dimensionality reduction, we solve our reduced integer
program () using linear programming. We have implemented the linear program
for the EAP using MATLAB command linprog followed by a test to confirm
that its solution is binary (up to numerical errors).
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3 Numerical Results

The algorithm was implemented using MATLAB 7.1 on a Pentium4 2.92 GHz
PC with 3.8GB RAM. For simulations, we assumed that the camera parameters
of the c-arm were known. For phantom and clinical datasets, we calibrated the c-
arm prior to the procedure and computed the c-arm pose using a tracking fiducial
that provides accuracy of 0.33° in rotation and 0.56 mm in translation [10].

3.1 Simulations

We performed simulation studies using synthetic projection images. We consid-
ered four cases with clinically realistic seed density of 2 and 2.5 seeds/cc and
prostate size of 35 and 45 cc, resulting in 72, 84, 96, and 112 seeds. For each case,
we generated three datasets. We generated six projection images on a 10° cone
along the AP-axis in each dataset. In each image, there were 1.7% on average
and up to 5.6% hidden seeds. We added random error to the pose, uniformly
distributed on [—h, h] (reported as h error). Rotation errors varied from 0° to
4°, with 1° steps and translation errors varied from 0 mm to 10 mm, with 2 mm
steps. We exploited the fact that translation errors in depth are always signif-
icantly greater than those parallel to the x-ray image plane [3]. For each error
type, 240 (4 cases x 3 datasets xCS) and 180 (4 cases x 3 datasets xCY) recon-
structions were computed using three and four images, respectively. Shown in
Fig.[I our results imply that the EAP algorithm reliably finds the correct match
and reconstruct the seeds with > 95% accuracy with up to 2° rotation error and
4 mm translation error even when only 3 images were used. When the c-arm pose
is exactly known, the algorithm can localize the seeds with detection accuracy
of > 99% and reconstruction error < 0.35 mm. We also conducted robustness
tests on calibration errors varying from 0 to 10 mm and angular capture range
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Fig.1. Matching rates and reconstruction errors as functions of (a, ¢) rotation and
(b, d) translation pose errors



64 J. Lee et al.

Table 1. Phantom experiment results

Number Mean match Mean + STD Mean computation
of seeds rate (%) reconstruction error (mm) time (s)

40 97.9 0.9 £ 0.7 1.1

55 100.0 0.6 + 0.3 2.6

70 99.3 0.8 £ 0.3 3.9

85 97.6 1.1 + 0.6 6.2

100 99.9 1.2 +£ 0.5 10.8

varying from 5 to 25 degrees. Due to the limited space, we do not include the
resulting plots, but our method is very robust to the calibration errors and small
image acquisition angles achieving seed detection rate of > 99%.

3.2 Phantom Experiments

We evaluated the EAP algorithm on a precisely fabricated seed phantom assuring
ground-truth. There were five datasets with 40, 55, 70, 85, and 100 implanted
seeds (length of 4.9 mm and diameter of 0.8 mm, similar size to ?°I seeds)
keeping seed density constant at 1.56 seeds/cc. For each dataset, we acquired six
images within a 20° cone around the AP-axis using a Philips Integris V3000. On
average, 5.5% and up to 22.5% of the seeds were hidden in each image. The EAP
algorithm used 20 combinations of three images from the six available images in
each dataset. It successfully localized the seeds with mean accuracy of > 97.6%
and the mean reconstruction error of < 1.2 mm within about 10 seconds or less
depending on the number of seeds. Table[I] summarizes the results and Fig. 2Ja)
shows a phantom image example with re-projection of the detected seeds.

3.3 Clinical Experiments

We validated the EAP algorithm on six patient datasets. For each patient, we
acquired two sets of images during the procedure, and one set of images at the
end of the procedure using an OEC 9800 fluoroscope. The image acquisition
angle was about 20° around the AP-axis. Various number of 1%3Pd seeds with
length of 4.5 mm and radius of 0.8 mm were implanted (radio-opaque size of the
x-ray marker is about three times smaller than the seed size). There were 0.9% on
average and up to 7.8% hidden seeds in each image. Since we did not know the
exact locations of the seeds, we visually assessed the correspondence between
the projection of the estimated seeds and the actual seeds in the images and
computed projection errors. The EAP algorithm almost perfectly localized the
seeds using 3 images in all cases with mean projection error less than 1 mm within
10 seconds. We conservatively classified two seeds as mismatched, because the
projection of them look matched in some images but look ambiguous in others.
Thus, the true detection rate is between 98.1 % and 100 % - in either case, it
is a clinically excellent performance. The reconstruction results are shown in
Table 2] and Fig. 2(b) shows a fluoroscopy image example with re-projection of
the detected seeds.
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Table 2. Clinical experiment results

Patient Number Match Mean + STD Computation

ID  of seeds rate (%) projection error (mm)  time (s)
22 100 0.5+ 0.3 1.1

1 44 100 0.7+ 0.4 2.2
66 100 0.4+ 0.2 4.8
39 100 0.3+ 0.2 2.5

2 82 100 0.3+ 0.3 7.4
84 100 0.9 + 0.5 8.7
33 100 0.2 + 0.1 1.4

3 67 100 0.6 + 0.5 3.5
70 100 0.6 + 0.6 4.7
35 100 0.9 + 0.5 1.5

4 68 100 0.2 + 0.1 5.8
s 98.7 0.5 £ 0.3 7.3
24 100 0.6 + 0.6 1.0

5 48 100 0.8 + 0.6 2.4
53 98.1 0.6 + 0.5 2.7
33 100 0.3+ 0.4 1.6

6 61 100 0.1 + 0.1 3.4
66 100 0.1 £ 0.1 7.9

(a) (b)

Fig. 2. Fluoroscopy images with the re-projection of the estimated seed centroids
(green dots). Red circles indicate overlapping seeds. (a) Phantom image with 100 seeds.
(b) Patient image with 70 seeds.

4 Conclusion

We developed a computationally efficient and clinically feasible seed-matching
algorithm for prostate brachytherapy seed localization. It automatically resolves
the correspondence of seeds from multiple projection images with hidden seeds.

Simulation results imply that the EAP algorithm is robust to realistic c-
arm pose errors with clinically acceptable accuracy. Especially in the phantom
study, we used seeds that have similar radio-opaque size to 2°I seeds (about
three times larger than that of '°3Pd seeds), thus creating more hidden seeds
(up to 22.5%). On average, the EAP algorithm was able to correctly find the
correspondence with matching rate of > 97.6%. Even in the worst case where
22.5%, 7.5%, and 10.0% of the seeds are hidden in three images, it still achieved
92% correct matching rate. For clinical datasets, only '°*Pd seeds were used,
thus having smaller number of hidden seeds than the phantom (12°I seeds).
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The performance was almost perfect for all 18 datasets, and only two seeds were
mismatched in two cases. Small projection errors (< 1.0 mm) imply the accuracy
of our reconstruction. Note that a performance better than 97% detection rate
and 2 mm reconstruction accuracy is considered to be clinically excellent.

The computation time was significantly reduced by adopting a new pruning
method for efficient computation of the RA cost. Compared to the previously
developed dimensionality-reduction-based algorithm [9] which solves the 3DAP
in about 100 seconds, the EAP algorithm is more than 10 times faster and can
solve the hidden seed problem within about 10 seconds. This is comparable to
MARSHAL [3], one of the fastest seed-matching algorithms in the literature (and
it solves an approximate formulation leading to a suboptimal solution).

Finally, we note that although the EAP algorithm is formulated for any num-
ber of images, simulation, phantom, and clinical experiment results show that
three images are sufficient to achieve clinically adequate outcome in terms of
accuracy, robustness, and computation time.
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