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Abstract. In this paper we present several numerical algorithms for
registering fiducials in planar CT or MRI images to their corresponding
three-dimensional locations. The unique strength of these methods is
their ability to robustly handle incomplete fiducials patterns, even in
extreme cases when as much as one third of the fiducial data is missing
from the images. We compare the effectiveness of these algorithms in
terms of flops and robustness on actual CT data sets.

1 Introduction

Our primary objective in this paper is to present robust numerical methods for
registration of rigid-body fiducials to the CT/MRI image space with the use
of a single image slice. A key feature of our methods is that they guarantee
reliable registration in situations when conventional methods commonly fail.
Our secondary objective is to make these methods applicable to a plurality of
conceivable fiducial patterns, without the need for algorithmic refinement or
modification.

The primary cause of a failure to register an image slice is a situation when
only part of the rigid body fiducial shows up in the resulting image, thus not pro-
viding sufficient input data for the registration algorithm. This problem occurs
quite frequently during frame-based radiosurgery and neurosurgical planning,
when an image slice does not cut across the entire headframe. Thus, only some,
but not all, of the fiducial rods are visible in the image. In robotically assisted
surgery the end-effector of a robot can be registered to the scanner from a sin-
gle image slice using a small rigid body fiducial. Most intuitively, a miniature
version of a stereotactic head frame is used [§]. Incomplete data tend to be a
chronic problem in these systems because it is common for the robot to acci-
dentally move the fiducial frame out of the field of view, causing the image slice
to become incomplete for registration. Traditional methods cannot handle this
problem without taking extra images, which is not an acceptable solution.

Image guided robots must often work in tight spaces like inside the gantry of
a CT or even inside the patient’s body, where there is no room for a conventional
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fiducial device composed from a triplet of V-or N-shaped planar motifs. Worse
yet, every time when a new fiducial design is introduced, a new registration
algorithm and new image processing software has to be developed. Our goal
was to devise a method that can cope with an arbitrary pattern of fiducial
lines. In this generic scenario, conventional fiducial devices like the BRW [I] or
Kelly [2] headframes are uniformly handled, and incomplete scans also fit in the
framework. As a byproduct of our robustness analysis, we obtained practical
limits for the incompleteness of images (see Section 4).

Stereotactic head frames have been in use for over two decades. Initial appli-
cations were intra-cranial neurosurgery and radiosurgery [Il 2] [3]. The method-
ology has been further extended for extra-cranial radiotherapy applications [4, ]
6l [7], and then recently for robotically assisted surgery [§]. Popular registration
algorithms follow the theme described by Brown [I] and many years later by
Susil [8]. Those authors calculate one corresponding point of the image plane
from each of the three N-shaped motifs, and reconstruct the image plane from
those three calculated points. The main weaknesses of this approach are (1) the
inability to handle incomplete patterns when not all fiducial rods leave marks
in the image and (2) the inconvenience that the computer software has to be
"reinvented” every time the geometry and/or shape of fiducial motifs are mod-
ified. Zylka et al. [9] assumed all the image slices have been computed without
motion of the head frame between image slices (all slices were parallel), and
they registered the lines from the 3D chunk of image data to the head-frame.
They, however, did not solve the problem of registering planar point patterns to
lines in space, therefore their approach is not applicable to single sliced based
registration.

The mathematical problem in this paper is basically to register a planar
image in space, given a set of n known lines in space, given a pattern of n
points in a plane, and given a correspondence between the lines and points.
The geometrical configuration of lines and image plane is displayed in Figure 1.

Figure 1: Intersection of image plane. Figure 2: Parameters of a line.
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While the problem of registering one set of points to another has received a lot
of attention (see [10] and references therein), the general problem of registering
points to lines has not been studied as extensively.

There are two variants on this problem that are addressed here. In the first,
we are interested in finding the equation of the plane. If we know this, then the
planar registration of one planar set of points to the other can be performed
afterwards. In the second formulation of the problem, a frame of reference is
attached to the intersecting plane, and we solve for the position and orientation
of this frame in three-dimensional space. Hence, in the first approach two three-
parameter problems are solved sequentially, while in the second approach one six-
parameter problem is solved. We refer to these as the 3 x 2 and 6 x 1 approaches,
respectively. We present several algorithms for each of these approaches.

2 Algorithms for the 3 X 2 Approach

2.1 Algorithm 1: Solving a System of Polynomials

The problem can be solved by simultaneously satisfying n(n — 1)/2 constraint
equations (n is the number of lines) of the form in (D)

Ixi(si) —x;(s;)|I> = df;. (1)

In general, this problem is overdetermined, so only an approximate solution is
possible. As shown in Figure 2, x;(s;) is a position vector of a point on the i-th
line which is defined by the position p; and unit direction of v;. s; is the arc
length from p; to x;(s;) and d;; is the Euclidean distance between x;(s;) and
x;(s5)-

This set of equations will in general be a second-order polynomial in s; and
s; of the form:

2 2 2
S; — QSiSj cos Hij + 55 + ai;s; + biij = dij + ¢ij5-

The constants a;;, b;j, 05, and c;; all come from the geometry of the problem
and cosf;; = vj - vj.

The approach we take to solve the system of polynomials is to iteratively solve
the system by assuming that each of the parameters can vary with ”artificial”
time. We make an initial guess s;(0) (in practice this guess corresponds to the
plane whose normal is the axis of the head frame with value of ¢;; that causes
this plane to cut the head frame in half).

Then we take the time derivative to get

QSZSZ — 2(SZS] =+ Siéj) COS 92-]- =+ 28]'3]' + aijéi + bijéj = QdZ]d” (2)

The right-hand-side follows from the fact that c;; is a constant.
We can assemble the n(n — 1)/2 equations of the form in @) as

J(s)s =w. (3)
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The problem does not dictate the behavior of dw in the mathematical model.
However, if we specify )
dij = (dij)measured - dij7
where (d;j)measured denotes the Euclidean distance between the i-th and j-th
fiducial points on image plane, then iterating (B) with the simple update rule

s(t 4+ At) = s(t) + At(JTT) LT w(t),

converges to the solution as long as det(J?.J) # 0 for all values of s encountered
during the iterations. Since s; values determine x;(s;), we can establish the
equation of the plane.

2.2 Algorithm 2: Look Up Table

Of course in practice, there is no need to perform the computations described in
Algorithm 1 in real time. This algorithm can be used off line to define a look-up
table. Given a table of s; values defined on equally spaced values of d;;, the
corresponding values of s; can be interpolated from the look-up table and the
measured values of d;;.

3 Algorithms for the 6 X 1 Approach

3.1 Algorithm 1: Rate-Linearization of Position and Orientation

Given the line defined by the position p; and unit direction vector vj, and a point
in space x;, we calculate the Euclidean distance between the line and point by
minimizing the cost function

c(s) = [[(p+sv) = x||> = [p —x|* +2sv - (p — x) + 5.
Setting dc/ds = 0, we see that the minimizing value of s is Sy = =V - (p — %),
and so the vector pointing from x to the closest point on the line is

h=(p-x)-[v-(p—x)v,

which we can write as h = (p — x) — vv'(p —x) = [1 — vwT](p — x).
We can formulate the problem as finding the rigid-body trajectory (R(t), b(t))
such that x;(t) = R(t)y; + b(t) drives each of the vectors

[ vivi'](pi —xi(t)) = &(t) (4)

to zero, where y; denotes the coordinates of i-th fiducial in the image plane.
If this can be accomplished, it means that each of the fiducials is driven to its
corresponding element of the three-dimensional cage.

Note that the matrix [I — vv?] is not invertible since ||v|| = 1 implies that
the matrix vv’ has an eigenvalue equal to one corresponding to eigenvector v.
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Making the substitution x;(t) = R(t)y; + b(t) in (@) and rearranging terms we
see that
[ = vivi]pi — [1 - vivi'](Ry; + b) = &(t).

We now take the derivative of both sides with respect to artificial time, and
observe that p; and v; are constant vectors. If in addition we observe that

Ry; = RRTRy; = wx (Ry;) = —(Ry;) x w
where w= vect(RR”), then we can write
[T — vivi][matr(Ry;), — ][, bT]" = 4. (5)

Here matr( ) denotes that for a vector z, matr(z) is the skew symmetric matrix
such that matr(z)x = (z) x x. In other words, vect(matr(z)) = (z).
If we force 6§ to zero by defining

& =—ad

for some positive constant «, then w and b can be solved for at each value
of time along the way by inverting the over constrained system resulting from
concatenating (&) for ¢« = 1,2,...,n. Once this is done, the values of b(t) and
R(t) can be updated using the rules

b(t + At) = b(t) + Atb(t)

and
R(t + At) = [T+ At matr(w)(t))]R(t).

Since the rotational updates have the potential to cause R(t) to stray from
being a rotation matrix, the occasional renormalization

R(t) — R(&)(RT (H)R(t)) ™"

may be required. This step could be replaced by finding the Euler angles or Cay-
ley parameters that best approximate R(t), then replace R(¢) with the resulting
rotation matrix.

We note that if the actual rotation matrix is close to being the identity matrix
(as will be the case when the image plane is close to cutting the cage straight
on), then only one iteration may be required.

3.2 Algorithm 2: Minimization over Position, Orientation, and Arc
Lengths

Given the coordinates {y;} of fiducials in the image plane, we can simultaneously
solve for the position and orientation of a reference frame attached to the image
plane and the arc lengths {s;} as follows.

We observe that
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Let us assume that we have an initial guess of the orientation of the frame
attached to the image plane, and that the actual orientation is not very different
than this initial guess. Then we write

R =Ry(I+9Q).
Here 2 = —27 has entries that are small. The vector wis defined such that
wX X = 2%
for any x € IR?, This means we can rewrite () as
pi = —siv; + Royi — Ro(y: X w) + b.

By defining Y; to be the matrix such that Y;x = y; x x for every x € IR?, it
follows that we can write the following linear equation:

S
Pi — ROYi = [0, ceey 0, —Vi, 0, ceey 07 —R()Y;*, ]I] w
b

where
s=10,...,0,s;,0,..,0]7.

Stacking these equations on top of each other for i = 1,...,n results in a system
of (3n) x (n + 6) scalar equations in n + 6 parameters (n arc lengths and 6 rigid-
body motion parameters). This can be solved in the least-squares sense using a
pseudo-inverse.

4 Numerical Results and Experimental Data

The algorithms that are described in the previous sections are applied to real CT
data. Among commonly used stereotactic devices, the BRW and Kelly frames
are used. The comparison of the algorithms is made in terms of the number of
flops and the robustness. We use 44 and 9 image slices which are acquired from
the BRW frame and the Kelly frame, respectively.

It is observed that the application of algorithm 1 for the 3 x 2 approach
generates convergent s; values. Figure 3 demonstrates the convergence of s;
values for an image slice from the Kelly frame. It is also observed that the error
converges to zero as the number of iterations increases in algorithm 1 for the
3 x 2 approach and algorithms 1 and 2 for the 6 x 1 approach. Figure 4 displays
the convergence of error to zero for an image slice from the BRW frame in the
application of the algorithm 1 for the 6 x 1 approach.

The numbers in Table 1 are the average value of the results for all the tested
image slices. It is observed that algorithm 1 for the 3 x 2 approach is superior to
the other algorithms in terms of flops. Table 1 also demonstrates the comparison
of algorithms 1 and 2 for the 3 x 2 approach. Three-dimensional linear interpo-
lation is used in the look-up table algorithm. Interestingly, 1mm and 0.1mm
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Figure 3: s; values vs. No. of iterations. Figure 4: error vs No. of iterations.

Table 1. Comparison of algorithms in terms of flops end error

comparison to 9 rod case (100 %)
8 rods 7rods 6rods 5 rods

algorithm 1 for 3 x 2| 24126 {99.8617 99.7742 99.5636 99.0888
algorithm 2 for 3 x 2| 61504
algorithm 1 for 6 x 1332113(99.8997 99.8963 99.3482 98.4203
algorithm 2 for 6 x 1{455384(99.8640 99.8529 99.6326 98.6278

algorithms flops

increments in d;; result nearly the same accuracy. Due to limited disk space and
time for the generation of the table, a 50 x 50 x 50 table is used. The look-up
table algorithm does not show advantage in flops despite a small size of table,
thus we omitted this method from further testing.

We tested the robustness of three algorithms to missing fiducial marks. The-
oretically, as few as 3 slanted rods for the Kelly frame and 4 rods for the BRW
frame are necessary to reach convergence. However, in real surgical cases we
have never observed less than 6 marks when using such frames. All those three
algorithms are found stable with 8,7,6 and even 5 markers. Table 1 shows that
less than 1.6 % difference in parameter values is found between cases where all
9 markers are used and only 5 markers are used. The best performing method
in this aspect too was algorithm 1 for the 3 x 2 approach.

5 Summary and Conclusions

In this paper we have presented a number of different techniques for determining
the spatial location of fiducial features in planar images. The two broad cate-
gories of algorithms that we developed are classified according to (1) whether
they first seek the parameters describing the image plane, and then register
within that plane or (2) whether they register the planar points to the three di-
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mensional fiducials directly. The strengths of our methods are (1) the ability to
handle incomplete fiducial patterns and (2) the applicability to a plurality of con-
ceivable fiducial patterns without algorithmic modification. The algorithms are
sufficiently robust to handle as few as 6 fiducials (out of 9) and are applicable in
all current robotically assisted percutaneous applications (prostate, kidney, liver,
spine) under development at the Johns Hopkins University. These algorithms are
expected to be useful in clinical applications where robot end-effectors or con-
ventional surgical devices need to be registered to CT or MRI images. Ongoing
research focuses on two additional aspects: (1) statistical analysis of robustness
of the algorithms to noise possibly occurring in the acquisition of image; and
(2) analysis of adaptability of the algorithms to headframes composed of curves,
e.g. helices.
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