Enhance medical software applications with immersive virtual reality experience

Andras Lasso, PhD
Csaba Pinter, Sal Choueib, Tamas Ungi, Gabor Fichtinger, et al.

Laboratory for Percutaneous Surgery, School of Computing,
Queen’s University, Kingston, Canada
Virtual Reality – Key Features

- **Immersive display**: large field of view, stereoscopic visualization
- **Natural 3D interaction**: position-tracked headset and handheld controllers, with buttons, touchpad, joystick, etc.
Virtual Reality – Now Accessible

• “VR-ready” computers (with discrete graphics card) from $1000 +
 – HTC Vive $650
 – Oculus Rift $550
 – Windows MR $400

• Standalone VR systems
 – Oculus Quest $550

https://www.bestbuy.ca
https://www.displaydaily.com/article/display-daily/what-you-call-vr-i-call-a-cave
How to develop VR software?

Use a game engine?

- Fully immersive standalone applications, mobile devices
- Real-time photorealistic rendering, physics engine
- Huge community, lots of resources

“made by game developers, for game developers”

How to integrate it into existing workflow and software?

How to upload patient-specific data?

Should we redevelop common medical imaging software features?

How to get support?

How to develop VR software?

Use a game engine

- Fully immersive standalone applications, mobile devices
- Real-time photorealistic rendering, physics engine
- Huge community, lots of resources

Use medical application platform

- Hybrid desktop/immersive workflows, hospital information system integration
- Medical image processing, analysis, and visualization tools
- Community focused on medical applications
Open-source software platform for medical image visualization, analysis, treatment planning, and real-time guidance. Completely free, no restrictions (BSD-type license).
3D Slicer – Existing Tools

- Core features: multi-modality 2D/3D/4D visualization, DICOM, segmentation, registration, etc.
- Extensible using Python scripting, Jupyter notebooks, any Python packages (tensorflow, opencv, ...)
- 150+ extensions available in the app store: radiation therapy, deep learning, radiomics, medical training, image guided surgery...
3D Slicer - Statistics

- $50+ million of funding, 5 generations since 1997
- 570k+ downloads to date, 25-30% growth per year
- 248 contributors to core + many more to extensions
Goals of SlicerVR

1. Quick prototyping of medical VR applications for research and product development
2. Use existing software modules
3. Simultaneous desktop + virtual reality experience
4. Open, customizable, extensible
SlicerVR - Features

• Support all OpenVR compatible systems (HTC Vive, Oculus Rift, Windows MR headsets)
• Dynamic rendering quality: maximum quality without motion sickness
• Controller interactions
 – Fly
 – World manipulation: “pinch 3D” to pan, rotate, zoom
 – Object manipulation: grab and position objects, lock or link transforms
Method 1 of 3: Volume rendering + dynamic slice view
SlicerVR – Collaborative VR
How to try

Hardware requirements:
 VR-ready PC + OpenVR-compatible headset

Setup:
 1. Install 3D Slicer from www.slicer.org
 2. Install SlicerVirtualReality extension from built-in app store (Extension Manager)

Usage:
 1. Load any data (import DICOM, STL files, ...)
 2. Press the Start VR button
Thank You!

Queen’s University, Kingston, Canada

3D Slicer: http://www.slicer.org
SlicerVR: http://www.slicervr.org
Perk Lab: http://perk.cs.queensu.ca