
  

 

Abstract—Motivation: Needle-based biopsy and local 

therapy of prostate cancer depend multimodal imaging for 

both target planning and needle guidance. The clinical process 

involves selection of target locations in a pre-operative image 

volume and registering these to an intra-operative volume. 

Registration inaccuracies inevitably lead to targeting error, a 

major clinical concern. The analysis of targeting error requires 

a large number of images with known ground truth, which has 

been infeasible even for the largest research centers.  Methods: 

We propose to generate realistic prostate imaging data in a 

controllable way, with known ground truth, by simulation of 

prostate size, shape, motion and deformation typically 

encountered in prostatic needle placement. This data is then 

used to evaluate a given registration algorithm, by testing its 

ability to reproduce ground truth contours, motions and 

deformations. The method builds on statistical shape atlas to 

generate large number of realistic prostate shapes and finite 

element modeling to generate high-fidelity deformations, while 

segmentation error is simulated by warping the ground truth 

data in specific prostate regions. Expected target registration 

error (TRE) is computed as a vector field.  Results: The 

simulator was configured to evaluate the TRE when using a 

surface-based rigid registration algorithm in a typical prostate 

biopsy targeting scenario. Simulator parameters, such as 

segmentation error and deformation, were determined by 

measurements in clinical images. Turnaround time for the full 

simulation of one test case was below 3 minutes. The simulator 

is customizable for testing, comparing, optimizing segmentation 

and registration methods and is independent of the imaging 

modalities used. 

I. INTRODUCTION 

 

rostate cancer continues to be a worldwide health 

problem. The biopsy and localized therapy of prostate 

cancer involves needle placement under image guidance. 

The typical workflow begins with extensive pre-operative 

(pre-op) diagnostic imaging and based on these images the 

biopsy or therapy target locations are identified. During the 

procedure, intra-operative (intra-op) images are acquired to 

determine the current position of the planned targets and 

then to verify the accuracy of needle placement relative to 

the target anatomy. Transforming pre-op targets into intra-op 

imagery is a supremely difficult task, due to incessant organ 

deformation, dislocation, and inherent differences between 

the pre-op and intra-op imaging modalities. A substantial 

arsenal of methods has been developed to register pre-op and 
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intra-op prostate images, involving just about all 

combinations of popular prostate imaging modalities: 

ultrasound, MRI, CT, and cone beam fluoroscopy. 

Validation and quantitative comparison of the competing 

approaches require a large number of images with known 

ground truth for prostate and internal target locations. 

Acquiring lots of high- quality clinical images is 

prohibitively expensive and, more often than not, infeasible 

intra-operatively. In short, despite decades of research in 

image-guided surgery, ground truth target dislocation 

information in clinical imagery is virtually nonexistent. Even 

under the very best of circumstances, information is limited 

to surrogates, such as manually segmented contours and 

anatomical landmarks. The overarching goal of our project is 

to create a simulation environment to generate realistic 

prostate imaging data in a controllable way, with known 

ground truth, with the primary purpose of serving the 

evaluation, comparison, and optimization of target 

registration methods, specifically in image-guided prostate 

interventions. Recent studies of target registration error 

(TRE) in prostate needle placement involved MRI-to-MRI 

[1] and MRI-to-ultrasound [2] registration. Like earlier 

studies, these too were carried out on limited amount and 

loosely controlled clinical data, typically involving a few 

dozen or so patients, owing to difficulties in acquiring 

patient data with trustable reference information regarding 

the planned and achieved target locations. 

Physics-based simulation environments could produce 

large amounts of high-fidelity prostate data with known 

target location ground truth. Misra et al. [3] created Finite 

Element Model (FEM) of the prostate and surrounding 

structures (bladder, pubic bone, rectum, urethra, as well as 

different abdominal tissues). Goksel et al. [4] also used FEM 

for simulating needle-tissue interaction in the prostate. 

Hensel et al. [5] and Courtis et al. [6] reported an FEM-

based method for registering MRI images for radiotherapy 

planning and detecting prostate tissue abnormalities. 

Lee et al. [7] used FEM-based simulation for registration 

validation. They applied a complex set of boundary 

conditions, which may result in a highly realistic 

deformation field simulation. However, for many 

applications a simpler model could be sufficient, and the 

described method requires actual patient images with 

multiple segmented organs, which may be prohibitive if a 

large number of test data sets are needed. 

Our contribution is twofold. We designed and 

implemented a highly customizable simulator for TRE 

evaluation of 3D prostate image registrations.  We employ 

finite element modeling to generate realistic test cases with 

ground truth. Different registration methods can be tested 
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with defining prostate shape variability, deformation, and 

segmentation error. Secondly, as a way of testing, we 

configured the simulator to investigate a pertinent clinical 

question. It was posited that in MR-guided robotic prostate 

biopsy, observed prostate deformations and segmentation 

errors in surface-based target registration usually does not 

manifest in clinically significant target registration error in 

relevant biopsy locations.  

II. METHODS 

The objective of the proposed simulator is to evaluate 

targeting error while using image registration methods 

developed to compensate organ motion and deformation. 

The workflow, shown in Fig. 1, begins with generating a 

ground truth pre-operative prostate shape (pre-op image). 

Deformation of the pre-op image is then simulated by Finite 

Element Analysis (FEA) that provides the ground truth intra-

operative image (intra-op image) and a dense deformation 

field for the whole prostate volume (ground truth 

deformation field). Next, pre-op and intra-op image 

segmentation is simulated by applying typical errors to the 

ground truth segmentation. The segmented contours are then 

aligned using the registration method that is to be evaluated. 

The output of the registration is a dense deformation field 

(reconstructed deformation field), constructed from the 

found optimal transform. Finally, the difference between the 

reconstructed and ground truth deformation fields is 

computed to obtain the TRE for each voxel position in the 

pre-op image. 

 

 
Fig. 1.  Simulation workflow for evaluating TRE on a single dataset. 

A. Generation of 3D prostate contours with a statistical 

shape atlas 

One important requirement of the simulator is the ability 

to generate a large number of test cases given a finite 

number of sample input data. Using the method described by 

Tsai et al. [8], we obtained and aligned a set of 3D prostate 

contours, constructed from stacks of segmented axial slices 

and modeled as voxelized binary volumes. From this set, we 

obtained the mean shape and three eigenshapes, using the 

technique developed by Leventon et al. [9]. We then 

obtained the prostate contour by adding the weighted 

average of the eigenshapes to the mean shape. The weights 

for averaging were randomly generated from within the 

corresponding eigen-value bounds. The contour is then 

converted to a surface mesh and smoothed (by using the 

marching cubes algorithm, and a windowed sinc function 

interpolation kernel, respectively). The resulting surface 

mesh is used as input for the finite element volumetric mesh 

generation.  

 

B. Deformation using Finite Element Analysis 

A realistic and dense deformation field is required for 

accurately computing the dislocation of all potential target 

points in the prostate, which can be achieved by using finite 

element analysis. We built our finite element model from 

two objects: prostate and body (Fig. 2.) The prostate object 

represents the prostate gland, and the body object simulates 

the pelvic soft tissues supporting the prostate. Prostate was 

constructed by filling the atlas-generated surface mesh with 

tetrahedral elements. Body was modeled as an 80 mm 

diameter sphere around the prostate object, and also filled 

with tetrahedral elements. We used the open source Netgen 

library (Johannes Kepler University Linz, available at 

www.hpfem.jku.at/netgen) for the volumetric mesh 

construction, for its ability to rapidly generate a simple, 

smooth, high-quality volumetric mesh suitable for FEA. 

Material model and properties were adapted from [6]; 

both objects are modeled as linear elastic materials, prostate 

with Poisson ratio ν = 0.4 and Young’s modulus E = 21 kPa, 

body with ν = 0.4 and Young’s modulus E = 15 kPa. 

Loads and boundary conditions determine the forces that 

dislocate and deform the objects. We chose to simulate a 

clinically pertinent scenario: the deformation caused by 

patient motion during transrectal robot-assisted biopsy. The 

end-effector of the robot is inserted into the rectum and then 

it is fixed to the table. During the procedure, patients tend to 

move slightly in order to reduce their discomfort, and as a 

result the robot’s end-effector applies strong local pressure 

on the prostate, causing considerable dislocation and 

deformation. We modeled this setup by prescribing force 
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Fig. 2.  Sample geometry of the prostate (solid surface in the middle) 

and the body object (wireframe sphere around the prostate). Force is 
applied on body mesh nodes that lie within the cylindrical shape of 

the endorectal probe. Position of the anterior side of the body object 

(at the top, intersection with the solid sphere part) is fixed. 
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loads (with random perturbations in orientation and 

magnitude) on the mid-posterior surface of the prostate. To 

avoid rigid-body translation we added fixed position 

constraint on the body object mesh nodes on its anterior side. 

The prostate and body meshes are created separately to 

maintain a smooth boundary surface, so we had to add a 

boundary condition to tie the outer surface of the prostate 

with the inner surface of the body. All the prostate models 

are generated by the same atlas, thus they are inherently 

aligned and the same boundary conditions apply to all 

prostate model instances. 

We perform a quasi-static analysis using the open source 

FEBio solver (developed at the Scientific Computing and 

Imaging Institute at the University of Utah, 

www.sci.utah.edu/software) to compute the prostate 

deformation from the above described geometry, material, 

and boundary condition model. 

C. Segmentation simulation 

The goal of this step is to simulate errors of a realistic 

segmentation algorithm. This allows the evaluation of the 

segmentation error effect on the final TRE for surface-based 

registration methods. 

The segmentation simulation inputs are the ground truth 

segmented image and a segmentation error model. The 

segmentation error model describes the segmentation error 

in one or more regions of the prostate, reflecting where and 

what kind of segmentation errors typically occur (e.g., 

under-segmentation in the apex region in case of manual 

segmentation, or leaking of the prostate into the bladder in 

case of a gradient-based automatic segmentation method). 

The inputs of the segmentation error simulator are the 

ground truth image and multiple error regions (each defined 

with the maximum error position, error vector, and 

influenced region size). For each error region a dense 

deformation field is generated by a cubic B-spline 

interpolator, and then these deformations are subsequently 

applied on the input image to produce the simulated 

segmented image. 

D. Registration 

The simulated segmented pre-op and intra-op images are 

registered to compute a transform between positions in the 

two image spaces. The transform is then evaluated for all 

voxels of the intra-op image to get the reconstructed 

deformation field. This deformation field is directly 

comparable to the ground truth deformation field, as they are 

both defined in the intra-op image space. 

A practical goal of the simulation framework was to 

evaluate applicability of rigid registration to estimate target 

displacement resulting from non-rigid prostate deformation. 

Therefore, we used a simple rigid registration method for 

our current tests (with rigid translation with versor rotation 

transform, mean squares metrics, and gradient descent 

optimizer). Other registration algorithms that work with 

segmented images and can produce a dense deformation 

field could be used without any change in the simulator (to 

evaluate the accuracy and robustness of a registration 

method or optimize registration parameters, etc.). Testing 

image-based registration algorithms is also possible, but it 

requires modification of the shape generation step (e.g., to 

accept image contours as input, instead of generating it from 

an atlas). 

E. Target registration error evaluation 

The goal of this step is to analyze the difference of the 

computed vs. ground truth target point positions in the intra-

op image. The simulation framework provides both ground 

truth and computed deformation fields for the full organ 

volume, allowing the expected TRE to be assessed in any 

target region. 

III. RESULTS AND DISCUSSION 

All simulation software components were built by using 

freely available libraries and tools. The Insight Segmentation 

and Registration Toolkit (ITK, www.itk.org) and the 

Visualization Toolkit (VTK, www.vtk.org) were used for 

processing image and mesh data, Netgen for mesh 

generation, and FEBio for FEM solving. We chose widely 

used standard file formats for storing all input data, as well 

as intermediate and final results, in order to be compatible 

with third party software one may want to use for 

visualization and data analysis. 

All the processing steps were implemented as 

independent executables. Wherever it was possible, we 

defined a 3D Slicer (www.slicer.org) compatible command-

line interface, to allow interactive setting of inputs, running 

the processing step, and visualizing results – through a 

graphical user interface. For batch processing mode, to 

generate a large number of simulation results, we wrote a 

TCL (www.tcl.tk) script that calls the executables with 

randomized parameters. 

The full source code is available in a repository at the 

following URL: git://github.com/lassoan/DefRegEval.git 

The average execution time of a complete simulation 

cycle was less than 3 minutes on a regular desktop computer 

(Intel Core2 duo processor running at 2.40GHz). This 

enables running a large number of simulation cases for 

parameter exploration and optimization with moderate 

computing resources. 

The simulator provides detailed ground-truth geometry 

information in surface mesh, volumetric mesh, and 

segmented image format. A typical volumetric mesh and its 

    
Fig. 3.  (Left) Typical mesh deformation output of the simulator. The 

pre-op mesh is represented as wireframe, the intra-op mesh is shown as 

a solid surface. (Right) Visualization of the non-rigid ground truth 
deformation field (arrows) and a matching deformation field computed 

by a rigid registration algorithm (cones) in response to a lateral-anterior 

direction deforming force. 
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deformation field are shown on Fig. 3(Left). Detailed ground 

truth pre-op to intra-op deformation information is also 

available for each node of the mesh and for each voxel of the 

image. The deformation information reconstructed by the 

registration algorithm is stored in the same format as the 

ground truth, making it easy to compare these two pieces of 

information. A typical example is shown in Fig. 3(Right). 

A. Evaluation of using a rigid registration algorithm for 

compensating non-rigid organ deformation 

Speed, robustness, and simplicity make rigid registration 

algorithms a favorable choice for interventional use. 

However, during prostate needle biopsy procedures the 

target organ is often non-rigidly deformed. 

We used the simulation framework to get detailed 

information about how much TRE we expect in response to 

endorectal coil pressure on the prostate. Specifically, what is 

the spatial distribution of the error, what is the registration 

error magnitude in case of moderate (2-4mm) and large (4-

8mm) patient motion, how the error depends on the direction 

of the deforming force. The clinically permissible total error 

is about 3mm (clinically significant size of prostate cancer 

foci), therefore, the maximum permissible TRE is maximum 

3mm (preferably less, because there are other error sources 

that contribute to the total error). 

To get an answer for these questions, we defined 3 

simulation groups: A. moderate deformation in response to 

anterior direction force, B. moderate deformation in 

response to a lateral-anterior direction force (45 degrees 

difference compared to group A), C. large dislocation due to 

anterior direction force. 

We executed 100 simulation cases for each group, by 

setting fixed force parameters while randomly perturbing the 

prostate shape (by varying the weights by ±20%) and 

simulating a random segmentation error (±1mm at near two 

hard-to-segment areas: the prostate apex and base).  We 

composed a max. TRE from all the individual TRE volumes 

with voxel values corresponding to the highest TRE 

magnitude at that position in all the volumes in that group. 

This volume gives the spatial distribution of the maximum 

TRE. Maximum TRE magnitude histogram for each group 

are shown in Fig. 4. 

Similarly to the max. TRE volume, a max. dislocation 

volume is composed that contains the maximum dislocation 

magnitude found at each voxel position over all the 

simulation cases in the group. A comparison of the 

maximum dislocation and TRE for each group is shown in 

Table 1. 

The above results show that rigid registration can 

effectively compensate the motion and non-rigid 

deformation of the prostate, as dislocations up to 12 mm 

result in less than 2 mm TRE and the TRE had a non-

uniform spatial distribution. Near the prostate boundary the 

TRE magnitude was several times bigger than in the central 

region. The direction of the deforming force did not seem to 

affect the resulting TRE, although it almost doubled the 

dislocation. This phenomenon can be explained by studying 

the deformation field (Fig. 3(Right).) During lateral-anterior 

pushing the prostate is more rotated than 

compressed/deformed, which does not lead to large TRE 

because and rigid registration can effectively compensate 

rigid transformations. In all, the simulator functioned as 

designed and provided useful answer in an important clinical 

problem.    
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TABLE I 

RANGE OF MAXIMUM DISLOCATION AND TRE VALUES IN THE WHOLE 

PROSTATE VOLUME 

Group Force direction 
Max. dislocation 

rangea 

Max. TRE 

rangea 

A Anterior 1.9 – 6.9 mm 0.6 – 1.5 mm 

B Lateral+Anterior 3.3 – 11.9 mm 0.5 – 1.6 mm 

C Anterior 2.5 – 7.2 mm 0.6 – 1.9 mm 

a5% to 95% percentile 
 

 

 
Fig. 4.  Maximum TRE distribution for the 3 studied groups. 
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