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Abstract. X-ray C-arm fluoroscopy is a natural choice for intra-operative
seed localization in prostate brachytherapy. Resolving the correspondence
of seeds in the projection images can be modeled as an assignment prob-
lem that is NP-hard. Our approach rests on the practical observation that
the optimal solution has almost zero cost if the pose of the C-arm is known
accurately. This allowed us to to derive an equivalent problem of reduced
dimensionality that, with linear programming, can be solved efficiently in
polynomial time. Additionally, our method demonstrates significantly in-
creased robustness to C-arm pose errors when compared to the prior art.
Because under actual clinical circumstances it is exceedingly difficult to
track the C-arm, easing on this constraint has additional practical utility.

1 Introduction

Intraoperative dosimetric quality assurance in prostate brachytherapy critically
depends on discerning the three-dimensional (3D) locations of implanted seeds.
The ability to reconstruct the implanted seeds intraoperatively will allow us to
make immediate provisions for dosimetric deviations from the optimal implant
plan. A method for seed reconstruction from pre-segmented C-arm fluoroscopy
images has been proposed, among other works, by Jain et al. in [I], where the 3D
coordinates of the implanted seeds are calculated upon resolving the matching
of seeds in multiple X-ray images.

At least three images are necessary to eliminate ambiguities. The resulting
optimization problem is NP-hard. Heuristic approaches, such as of Jain et al. [I],
have been proposed to approximately solve the optimization problem. However,
the use of a heuristics leads to algorithmic error, in addition to physical errors
like the inaccuracy in knowing the relative poses of the C-arm shots (pose error).
To tackle this issue, we propose to consider all the images simultaneously, instead
of suboptimal subsets of two images such as proposed in [IJ.

The optimization problem has a salient feature: since the images represent
a real situation (i.e. an existing object, the set of seeds, is being imaged), the
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optimal solution has a near-zero cost when the pose error is low, and is actu-
ally zero without pose error. We propose to utilize this feature of the problem
to reduce its number of variables, thereby allowing to obtain the optimal solu-
tion at a reasonable computational cost. This exact dimensionality reduction is
only possible when the pose error is sufficiently low. We claim that this is not
restrictive in our framework since a high pose error leads to high error in the
estimation of the 3D coordinates of the implanted seeds, which is not acceptable.
Actually, the idea of dimensionality reduction is not new. For instance, in [T, p.
3480] the original tripartite matching is projected into inspired bipartite match-
ings, while introducing inaccuracy. In contrast, the proposed method performs
dimensionality reduction while ensuring equivalency to the original problem.

The MARSHAL method of Jain et al. has demonstrated solid performance [I]
and we chose this work as the benchmark and basis of comparison for our work.
A comparison between MARSHAL and our method was conducted to evaluate
the sensitivity to pose errors on simulated and phantom data. The proposed
method shows significant increase in robustness to pose errors.

2 Method

Consider a collection of X-ray images of a constellation of implanted seeds. We
assume that the 2D seed locations can be identified on each of the X-ray images,
and we consider the problem of identifying corresponding seeds in all the images.
Given these matched seed locations, a reconstruction of the seed locations in
3D can be achieved provided there are no ambiguities. It is more likely that
such ambiguities are avoided when there are more X-ray images, but this in
turn increases the complexity of the problem. Here we do not consider CT or
limited angle tomosynthesis, as our work focuses on reconstruction from a very
limited number of images. We propose a solution for three images, which is often
sufficient in practice, and which is extendable to more images.

2.1 3D Reconstruction as a Matching Problem

The 3D locations of the implanted seeds, modeled as points, can be reconstructed
through 3D triangulation from the X-ray images upon resolving the correspon-
dence of seeds, which is the focus of this paper. Let n be the number of points
in the clinical work volume. Let s;,,, be the position of I*" point in m'" image.
When three images are used, the matching problem can be formulated as an
axial 3D assignment problem (3DAP) [II:

miniiiczjkmjk, where (1)

IR =1 k=1

Tijk € {0, 1}
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ciji is the the cost of matching point s;; to points sjo and si3. ;1 is a binary
variable deciding the correctness of the match (i, j, k). () force every segmented
point to be chosen once. Thus, = represents any feasible global match, with
the cost of that correspondence given by >~ >~ " ¢;jxxijx. One good choice for
a cost-metric ¢ is projection error (PE) [I]. For any given set of poses and
correspondence, the intersection of the three lines that join each projection to
its respective X-ray source can be computed using a closed form solution that
minimizes the Lo norm of the error. PE can be computed by projecting this
3D point in each image and then measuring the distance between the projected
location and the observed location of the point.

A feasible solution x of the above problem is a 3D permutation array. This
problem has (n!)? feasible solutions. Branch and bound is a classical algorithm
for optimally solving the 3DAP. This can be generally achieve only for n small
because of the combinatorial explosion. Thus, it has been proposed heuristics
that approximately solve the 3DAP, such as MARSHAL in [I]. MARSHAL sub-
optimally projects the original 3DAP into three distinct 2DAP that can be solved
in polynomial time by using the Hungarian algorithm.

We point out that the 3DAP has a salient feature that we can exploit. Since
the images represent a real situation, the optimal solution has a near-zero cost
when the pose error is low and the optimal cost is actually zero without no pose
error. In the next section, we use this feature to reduce the number of variables
in the problem, thus permitting us to get the optimal solution at a reasonable
computational cost. This new method tackles the complete optimization problem
without using suboptimal projections, such as in MARSHAL.

2.2 Dimensionality Reduction

Let N = n3. We rewrite the variables xijk, and the costs ¢ in a vectorial form
such that z, c € RY. In the sequel we also make use of the notation u, to denote
uijk. The 3DAP ([d)- (@) reads as the following integer linear program
P: minc'z, (3)
xeC
with the constraint set C = {& : Ma = [1,...,1]", 2, € {0,1}}, where Mz =
[1,...,1]" is a matrix form of ().

Principle. Since the coefficients of x are either 0 or 1 and there must be n
1’s, an optimal solution of P can be thought of as the selection of n cost coeffi-
cients such that the resulting cost is minimum while constraints C are satisfied.
Given a feasible solution, Lemmal/[I] (below) states that all cost coefficients that
are greater than the cost associated with this solution cannot be selected in the
optimal solution. Since those coefficients can never be selected, the dimension
of the problem can be reduced by removing those coefficients from further con-
sideration. This yields an equivalent problem of reduced dimensionality. If the
reduction in dimensionality is sufficiently large, then the new problem can be
solved exactly in reasonable time even though the original problem is far too
costly to solve.
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Lemma 1. Let us assume that the cost coefficients ¢y are positive. Let g € C be
a feasible solution. The integer linear problem P defined by @) is equivalent to
the following integer linear problem (ie., they share the same optimal solutions)

P': min(c)'x, where
xzeC

;o {027 if ¢o < mp(xo)

4
00, if cg > mp(xo) @
and where mp(x) = c'x is the cost of problem P at the feasible solution x.
Proof. Let * € C be an optimal solution to problem P. We have for all g € C

mp(x") < mp(w). ()

Let us consider ¢, > mp(xp). From (@) we have ¢, > mp(x*). Since ¢; are
positive and x; are binary, we have necessarily z; = 0. g

The dimensionality reduction can be illustrated as follows:

/ Cl
“ “1 OZO a1 Ci1
= “ e Ci2
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/ c C;
CN cy Cik K 1K

The original problem P is equivalent to the reduced problem

P: miné'z,
xzeC

where Z,é € RX (K < N) and with the constraint set ¢ = {Z : M& =
[1,...,1)", % € {0,1}} with M = MR and where R is the dimensionality reduc-
tion matriz of size N x K such that [z 02p 0 ... xiK]t =R [ 3 ... :%K]t
Once the reduced problem P is solved, the optimal solution to the original prob-
lem P is simply given by * = Rz*.

Note that a dimensionality reduction (K < N) is not guaranteed for the
general 3DAP, even in the most favorable case mp(xy) = mp(x*). However, a
dimensionality reduction occurs in the case of our problem since the range of the
cost coefficients is wide and the optimal solution has a near-zero cost when the
pose error is low. The practical interest clearly depends on the dimensionality
reduction ratio (K/N). We show next that this ratio actually can be improved.

Improving dimensionality reduction. Lemma [I] uses only the integer con-
straint in C to reach dimensionality reduction. But using the fact that the feasible
set C comprises permutation matrices, is is possible to reduce the dimensionality
of this problem even further. To demonstrate this, we start with the following
Lemma.
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Lemma 2. The integer linear problem P defined by @Bl is equivalent to the
following integer linear problem

P”: min(c")'z
xzecC

where the minimum cost in each row is subtracted from the entire row
[ — e — AN G (6)
Cijk = Cijk Iillkn Cijk-

Proof. For lack of space, the proof is not detailed.

To show that this Lemma permits further dimensionality reduction, let us apply
Lemma/[I] on the new problem P”. From (), the cost coefficient ¢} is equivalent

to oo if ¢/ > mpr(x). According to () the former condition is equivalent to
n

Cijik > mp(x) — (Zl r?’ikncij;c - rgukn Cijk)
i=
The latter condition is less restrictive than ¢, > mp(x) since the cost coefficients
are positive. As a result, the dimensionality reduction is higher within the new
problem P” than within the original problem P. It is then preferable to consider
problem P’ instead of problem P since Lemma [2] ensures that they are equiva-
lent. It is actually possible to reduce dimensionality even further. The operation
([©]) can also be performed successively for the columns and depths to decrease
the cost coefficients, while still ensuring equivalency to the original problem.

2.3 Optimization Strategy

Integer Programming / Linear Programming. The Integer Program (I)-
@) can be directly solved with standard techniques such as branch and bound.
IP problems are NP hard, however, and may take an exponential amount of
computational time. It has been shown that the linear program corresponding to
the 2D assignment problem (2DAP) has an integer solution even without integer
constraints [2]. As well, this linear program can be solved efficiently in polynomial
time using interior point methods for instance [3]. To our knowledge, however,
there is no analogous result for the 3SDAP. Nevertheless, we have gone ahead and
implemented the linear program for the 3DAP problem followed by a test to see
if its solution is binary (up to numerical errors). In all of our experiments, we
have never obtained a nonbinary solution to this problem, which points to the
potential validity of the 2D theoretical result in 3D as well. (We are currently
investigating this theoretical issue.)

Dimensionality reduction thresholding. From Lemma [ the degree of di-
mensionality reduction depends on the cost mp(xg) of a feasible solution xq. It
is possible to use a suboptimal algorithm, such as MARSHAL, to find a feasible
solution xy. Unfortunately, when there is high pose error, MARSHAL often pro-
vides such a suboptimal solution that very little dimensionality reduction can be
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be achieved. Therefore, we propose instead to choose a threshold parameter 7,
which is essentially a “guess” as to what the cost of a feasible solution might be.
This permits us to reduce the dimensionality of the problem and run the linear
problem on the resultant problem. If the solution of this problem is integer and
it has a cost lower than 7, then it must be optimal. If the resultant cost is larger
than 7 then the solution might be optimal, but we cannot guarantee it. It is then
our option whether to accept a (potentially) suboptimal solution or to increase
1 and rerun the linear problem until we have a guaranteed optimal solution.

In our experiments, we determine 7 in the following way. Rank order all costs
from lowest to highest and pick an integer K. Let 1) be the value of the K*"* small-
est cost coefficient. The influence of K on the rate of feasibility and optimality
of the proposed method is experimentally studied in the next section.

3 Simulation and Phantom Experiments

We present a comparison between the MARSHAL algorithm and the proposed
method using simulation and phantom data. We got a copy of the MARSHAL
code from the authors for comparison [I]. Both algorithms were implemented in
Matlab 7.1 on a Linux PC (Intel EM64T 3.6 GHz, 24GB RAM).

3.1 Evaluation of Pose Errors Sensitivity

Two separate comparisons were performed. One compared the two algorithms
to translational errors and the other to rotational errors. These are both com-
mon errors in C-arm position calibration in the operating room. Random error
was modeled using a uniform probability density function. When we report re-
sults for an h error this means that each of the three components of error (in
either translation or rotation) were generated as independent random variables
uniformly distributed on [—h, h]. Following [I], a statistical bias in translation
was incorporated in the generation of the datasets to account for the expected
differences in directional errors in fluoroscope tracking using a fiducial. In par-
ticular, we assumed that the in-plane error is a factor of five times smaller than
the through-plane error h. No analogous bias was used in the rotation errors.

Realistic simulations of prostate brachytherapy seeds implants were generated
with seeds density of 2 and 2.5 seeds/cc and prostate size of 35 and 45 cc. The
number of seeds in the implants were n = {72,84,96,112}. A cone angle of
10° was used for the acquisition of the three simulated X-ray images. Averaged
results from a total of 2,000 datasets are shown in Fig.[Il

The proposed method, with 100n cost coefficients remaining after dimension-
ality reduction, performs significantly better than MARSHAL, as shown in
Fig.M(a)-(d). It still matches correctly 89% of the seeds when rotation error
reaches 4°, while MARSHAL drops to 59%. The proposed method still matches
correctly 99% of the seeds when the translation error reaches 10 mm, while MAR-
SHAL drops to 72%. The computational time of the proposed method is higher
than that of MARSHAL as shown in Fig.[(e)-(f). We point out that most of the
computational time of the proposed method (solid line) is actually used in the
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Fig. 1. Performance comparison between MARSHAL and the new method for pose
error. (a)-(b): Mean of matching rate (%), (c)-(d): STD (%), (e)-(f): Computation
time (s), dotted line: time required solely for cost minimization (new method).

Table 1. Feasibility and optimality of the proposed method for pose error

Feasibility rate

Guaranteed optimality rate

Number of cost coef. 20n 50n 100n  500n 1000n 20n 50n 100n  500n 1000n
Error 1 ° 0.9 0.96 1 1 0.98 0.88 0.91 0.94 0.98 1
Error 2 ° 0.9 0.98 1 0.98 0.94 0.35 0.38 0.46 0.6 0.71
Error 3 ¢ 0.58 0.94 0.98 0.94 0.92 0.1 0.13 0.13  0.22 0.27
Error 4 ¢ 0.42 0.83 0.92 0.92 0.85 0.15 0.1 0.07 0.07 0.1
Error 2 mm 0.96 1 1 1 0.94 1 1 1 1 1
Error 4 mm 0.94 0.98 1 1 0.92 0.56 0.6 0. 65 0.77 0.89
Error 6 mm 0.96 0.96 1 0.96 0.88 0.35 0.41 0.46 0.63 0.64
Error 8 mm 0.77 0.9 0.98 0.94 0.88 0.14  0.19 0.19 0.31 0.38
Error 10 mm 0.58 0.92 0.96 0.94 0.77 0 0.02  0.04 0.07 0.08

computation of the cost coefficients. However, computing all the cost coefficients
is not required since most of them will eventually be thrown out by dimensional-
ity reduction. After further code optimization, we expect the computation time
to reduce, near to the time required solely for cost minimization (dotted line).

The feasibility and optimality rates of the proposed method as a function
of the number of remaining cost coefficients after dimensionality reduction are
shown in Tab.[l It is expected that the feasibility rate should increase as a
function of the number of cost coefficients. This is true for smaller numbers of
cost coefficients but, surprisingly, the feasibility rate decreases when the number
of cost coefficients reaches 500n (=~ 50, 000). This is due to the failure of 1inprog
in Matlab using default parameters because “one or more of the residuals, duality
gap, or total relative error has stalled”. These cases were not displayed in Fig.[I]
and we are currently investigating how to cope with them.

The guaranteed optimality rate increases as a function of the number of cost
coefficients. For low errors (1° and 2 mm), all solutions are guaranteed opti-
mal given an acceptable dimensionality ratio. We point out that the guaranteed
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optimality is only a sufficient condition. As shown in Fig.[I(b), all solutions
from 0 to 8 mm translation error of the proposed method correspond to perfect
matching (100%), even if they are not all guaranteed optimal.

3.2 Phantom Experiments

A radiographic fiducial was used to track the C-arm (0.56 mm translation; 0.33°
rotation accuracy) and was accurately attached to a random point cloud phan-
tom. Phantoms of {40, 55,70, 85,100} points with 1.56 points/cc were used. Six
X-ray images within a 20° cone around the AP-axis were randomly taken using
an Philips Integris V3000 fluoroscope and dewarped. Thus both the seed loca-
tions and X-ray pose were not biased/optimized in any way, closely representing
an uncontrolled surgical scenario. Each image was hand segmented to establish
the true segmentation and correspondence.

Both MARSHAL and the proposed method perform very well on phantoms,
achieving almost perfect matching, as shown in Tab.2l Note that the accuracy
of the radiographic fiducial ensures here a low pose error. The proposed method
is significantly slower compared to MARSHAL. We point out that the proposed
method uses here more than 90% of the computational time for the n® cost
coefficients. We expect to reduce significantly this time as explained in Sect.[31l

Table 2. Performance of MARSHAL and the proposed method on phantoms

MARSHAL Proposed method
Number of seeds 40 55 70 85 100 40 55 70 85 100
Mean Match. (%) 97.6 100 98 97.7 98.2 98 994 97.1 100 98
STD Match. (%) 3.6 0 2.3 3.2 2.3 2.6 1.4 0 0 0
Time (s) 0.3 0.6 1 2.5 3.1 12,6 32 64.6 106.6 185

Conclusion and Future Work. In summary, we achieved significant increase
in the robustness to pose errors compared to [I] by considering all images simul-
taneously, instead of using subsets. Experimentally, our method ensured opti-
mality for small pose errors. C-arm tracking is a cumbersome process and easing
on this constraint has great practical utility. With our method, a less accurate
estimation of the pose may suffice. For example in [4], starting from an initial
guess, pose was further estimated iteratively using the current 3D reconstruc-
tion, yet the seed matching remained susceptible to pose errors. Applying our
method to [4] promises a clinically viable solution without using external tracker
or encoder on the C-arm. We are also extending the method to reconstructing
overlapping seeds that are occluded in one or more X-ray images [B6].
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