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Abstract

We develop visual servo control to stabilize the image of moving soft
tissue in B-mode ultrasound (US) imaging. We define the target region
in a B-mode US image, and automatically control a robot to manip-
ulate an US probe by minimizing the difference between the target
and the most recently acquired US image. We exploit tissue speckle
information to compute the relative pose between the probe and the
target region. In-plane motion is handled by image region tracking
and out-of-plane motion recovered by speckle tracking using speckle
decorrelation. A visual servo control scheme is then applied to manip-
ulate the US probe to stabilize the target region in the live US image.
In a first experiment involving only translational motion, an US phan-
tom was moved by one robot while stabilizing the target with a second
robot holding the US probe. In a second experiment, large six-degree-
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of-freedom (DOF) motions were manually applied to an US phan-
tom while a six-DOF medical robot was controlled automatically to
compensate for the probe displacement. The obtained results support
the hypothesis that automated motion stabilization shows promise for
a variety of US-guided medical procedures such as prostate cancer
brachytherapy.

KEY WORDS—medical robotics, ultrasound, speckle corre-
lation, visual servoing, motion compensation

1. Introduction

Quantitative ultrasound (US) guidance has great potential in
supporting a wide range of diagnostic procedures and mini-
mally invasive interventions. However, one of the barriers to
wider application is the challenge of locating and maintaining
targets of interest within the US scan-plane, particularly when
the underlying tissue is in motion. Conventional wisdom might
suggest that this problem could be effectively solved by apply-
ing known motion tracking techniques to 3D US images. How-
ever, current 3D US systems are prohibitively expensive, suffer
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from low voxel resolution, and, most importantly, they do not
provide access to each real-time volumetric data stream to the
user. Specialized hardware and privileged access is required to
accommodate the huge volume of B-mode image data deliv-
ered by such systems, and accessing the raw radiofrequency
(RF) signal volume in real-time is difficult with today’s tech-
nology. However, real-time access to the data stream is crucial
for applications that control a robot directly from US images.
In addition, tapping into the internal data stream falls outside
the scope of current regulatory approvals of the US machines,
which creates regulatory issues in scanning human subjects,
even in a laboratory setting.

A more practical approach is to achieve target tracking and
stabilization with conventional two-dimensional (2D) B-mode
US imaging systems which are readily available in most clin-
ics. Given the prevalence of conventional 2D US, a workable
method operating on 2D US images could be exploited in a
host of clinical applications. For example, in diagnostic US
imaging, one could automatically move the US probe to main-
tain the optimal view of moving soft tissue targets. Or, in biop-
sies and localized therapy procedures, one could synchronize
the insertion of needles or other surgical tools into a moving
target observed in live US.

Although full six-degree-of-freedom (DOF) US motion
tracking and robotic image stabilization seems to lend itself to
a wide spectrum of US-guided diagnostic and interventional
procedures, introduction of an autonomous US probe manipu-
lation robot into many of these procedures will represent major
departure from current clinical practice. Therefore, it seems
prudent to adapt robotic image stabilization first to a proce-
dure where constrained mechanical US probe motion is part of
standard practice, and motorizing the probe’s motion will not
create any new clinical hazards.

We have identified prostate cancer brachytherapy as one
such pilot clinical application. The prostate is a walnut-sized
organ situated in the pelvic floor, adjacent to the rectum.
Prostate brachytherapy entails implanting radioactive pellets
the size of a grain of rice into the prostate through the per-
ineum. This is performed under live transrectal ultrasound
(TRUS) imaging guidance (Wallner et al. 2001). The ra-
dioactive pellets kill cancer by emitting radiation. A typical
brachytherapy procedure requires the insertion of 20–40 nee-
dles, the actual number of needles depending on the size of the
prostate. Penetration by the needle often causes severe dislo-
cation, rotation, and deformation of the prostate. The scanning
motion of the TRUS probe has similar effects, although to a
lesser degree, as the probe deforms the prostate gland through
the rectum wall. As a result, in the TRUS image it is not un-
usual to lose sight of the target when the needle is being ob-
served or to lose sight of the needle when the target is being
observed. Worse yet, the target location is seldom character-
ized by any visible anatomical feature.

Since the desired target is invisible to the naked eye in B-
mode US, US speckle-based tracking methods are an appeal-

ing approach to synchronize the motion of the probe with the
motion of the target. As described by Wallner et al. (2001),
the TRUS probe is already mounted on a movable structure
(called a probe stepper) that allows the physician to translate
the probe inside the rectum and to rotate the probe about the
axis of translation. Automated target tracking would allow us
to automatically modify the probe’s position with respect to
the prostate through robotized motion of the probe controlled
based on the US image. The modifications necessary to ac-
complish this are described in Section 6. In short, brachyther-
apy can significantly benefit from US-based motion tracking
and robotic image stabilization, and this approach does not
represent major departure from current clinical hardware and
workflow. Thus, the transition to clinical trials can be achieved
relatively quickly.

Over the past several years, a sizable body of research has
been dedicated to US imaging in conjunction with medical ro-
bots for the purposes of image acquisition. For example, Pier-
rot et al. (1999) developed a robotic system that automatically
performs 3D US acquisition of cardiovascular pathologies by
moving a 2D probe along a given trajectory. In Martinelli et al.
(2007) a teleoperated master/slave is used to perform remote
US examination in order to detect abdominal aortic and iliac
aneurysms.

The use of the US imaging information in robot control has
received much less attention. In Abolmaesumi et al. (2002),
visual servoing was used for automatic centering of the aorta
artery section in the observed US image in order to maintain
it visible during a 3D robotized US scan. In this work, the
three in-plane motions (two translations and one rotation) of
the probe were controlled directly from 2D visual features ex-
tracted after a 2D segmentation of the section image. The re-
maining three out-of-plane motions (one translation and two
rotations) were teleoperated by the user. However, no solu-
tion was proposed to control the out-of-plane motions of the
2D probe by visual servoing. Hong et al. (2004) presented a
robotic system including a motionless US probe and a two-
DOF needle manipulator. Automatic needle insertion into a
soft sponge phantom was performed using US image-based vi-
sual servoing. However, in this work, the actuated needle had
to lie in the US observation plane, as only two DOFs inside the
observation plane were controlled. In general, a conventional
US probe provides a 2D B-scan image which therefore limits
vision-based control to the three DOFs contained in the plane
(two translations, one rotation) using classic visual servoing
techniques. Stoll et al. (2006) positioned a surgical instrument
under 3D US visual servoing, but as we pointed out earlier, 3D
US guidance for real-time applications is limited by a variety
of commercial and regulatory considerations.

There are some recent studies that have investigated con-
trolling DOFs outside the US observation plane. In Vitrani et
al. (2005), four DOFs were controlled by visual servoing in or-
der to automatically position a robotized laparoscopic instru-
ment. In Bachta and Krupa (2006), a visual servoing technique
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was used to control six-DOF motion of the US probe to target
a targeted section of a tumor. These methods, however, de-
pended on geometrical models of the objects of interests, i.e.
the tool forceps in Vitrani et al. (2005) and a pre-operative tu-
mor model in Bachta and Krupa (2006), as well as on exten-
sive image processing to segment the objects in B-mode US
images.

Our stabilization methods rely heavily on the properties of
US speckle. Traditionally, US speckle has been considered to
be noise, and much effort has been devoted to eliminating or
reducing speckle in US images. Speckle, however, is not ran-
dom noise. It results from coherent reflection of very small
cells contained in soft tissue. As a result, it is spatially coher-
ent and remains highly correlated over small motions of the
US probe. In practice, focusing of the US beam is never per-
fect, especially in the elevation direction, i.e. orthogonal to the
imaging plane, and so the US beam has a thickness of several
millimeters. Thus, for small motions of the US probe, consec-
utive beams overlap in space. Perfect, or “fully developed”,
speckle created by the region of tissue in the intersection of
two beams appears to be fixed in space. In principle, it follows
that just three regions of perfect speckle are sufficient to locate
the full six-DOF pose of the US beam relative to the tissue. Un-
fortunately, in biological tissue speckle is seldom perfect and it
is further diminished during the formation of B-mode images.
Nonetheless, as we show in the following, B-mode images still
possess enough coherence that we can exploit it to recover the
full six-DOF relative pose of B-mode US images, even in the
elevation direction.

In prior work, speckle information was used to estimate
multi-dimensional flow of 2D US images (Bohs et al. 2000).
Recently several authors (Chang et al. 2003� Gee et al. 2006)
have published speckle decorrelation techniques for perform-
ing freehand 3D US imaging without the need for a position
sensor to provide the location of the 2D US probe. A prob-
abilistic framework was also proposed by Laporte and Arbel
(2007) to estimate elevational separation between US images
over large image sequences from speckle information. These
techniques depend on experimental pre-calibration of speckle
decorrelation curves in real soft tissues and/or speckle mimick-
ing phantoms. In Boctor et al. (2005), a method using speckle
tracking was used for real-time intra-operative calibration of a
tracked 2D B-mode probe used in image-guided surgery appli-
cations. Speckle correlation is also widely used in sonoelastog-
raphy imaging, to estimate the displacement field of biological
scatterers caused by physical pressure (Boctor et al. 2006).

In contrast to the motion tracking methods enumerated
above, we present a method for fully automatic, real-time
tracking and motion compensation of a moving soft tissue tar-
get, using a sequence of 2D B-mode US images. We track both
in-plane and out-of plane motions by making direct use of the
speckle information contained in the US images. This is fun-
damentally different from prior techniques that relied on seg-
menting structures of interest, such as in Abolmaesumi et al.

Fig. 1. Decomposition of the target plane position by succes-
sive in-plane and out-of-plane homogeneous transformations.

(2002) and Hong et al. (2004). Much abridged descriptions of
particular aspects of this project have appeared in Krupa et
al. (2007a,b). Here we provide a wider survey of prior art, in-
depth description of the tracking method, and extensive sim-
ulation and experimental results accompanied by an in-depth
discussion and analysis.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the overall tracking problem and the motion
decomposition we use to describe the full motion of the soft
tissue target. Sections 2.1 and 2.2 present the methods used
to extract the in-plane and out-of-plane motion, respectively,
of the target B-scan image. A hybrid servo control approach
is developed in Section 3 to control the displacement of an
US probe held by a robot in order to stabilize a moving B-
scan target of soft tissue. Results obtained from simulations
and ex vivo experiments are then presented and discussed in
Sections 4 and 5.

2. Motion Estimation

Our problem is to control the motion of an US probe so as
to minimize the relative offset between the observed B-scan
denoted by a Cartesian frame �p� and a target B-scan denoted
by a Cartesian frame �t�. Since this relative offset will be close
to zero during the active stabilization process that we present
in this paper, we propose to approximate the six-DOF target
plane pose relative to the probe from the combination of two
homogeneous transformations: pHt � pHc

cHt where pHc and
cHt describe the in-plane and out-of-plane displacement of the
target, respectively, as illustrated in Figure 1.
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Fig. 2. (Left) The reference image acquired at time t0 � 0
with the region of interest to track. (Right) The observed image
modified by the in-plane motion f �x� �� with the estimated
region of interest.

Note that �c� corresponds to the Cartesian frame attached to
an intermediate “virtual” plane. The in-plane displacement is
described by the translations tx and ty along the X- and Y -axes
of the observed B-scan plane �p� and the angular rotation �
around the Z -axis (orthogonal to the image), such that

pHc �

�
���������

cos�� � � sin�� � 0 tx

sin�� � cos�� � 0 ty

0 0 1 0

0 0 0 1

�
���������
� (1)

We define the relative displacement caused by out-of-plane
motion as an elevation of distance tz along the Z -axis of �c�
and two successive rotations � and � around the Y - and X -axes
of �c�. This yields the following homogeneous transformation
matrix between �c� and �t�:

cHt �

�
���������

cos��� cos��� sin��� sin��� cos��� 0

0 cos��� � sin��� 0

� sin��� cos��� sin��� cos��� cos��� tz

0 0 0 1

�
���������
� (2)

2.1. In-plane Motion Estimation

Figure 2 shows the target image captured at time t0 � 0 and
an image obtained at a later time t after in-plane motion was
applied. To extract the in-plane rigid motion between the two
images, we use the image region tracking technique presented
by Hager and Belhumeur (1998) which we briefly recall here.

The objective of this technique is to estimate the parameter
vector � of an appropriate parametric model function f �x���
which describes the geometrical transformation on the pixel
coordinates x � �x y�T from the reference to the observed
image. For in-plane rigid displacement, the motion parameter
vector is�� �ux uy � �

T where ux , uy are the pixel translations
along X- and Y -axes of the reference image and � is the rota-
tion angle around the Z -axis. Note that ux and uy are related
to tx and ty by

tx � ux sx

ty � uysy (3)

where sx and sy are, respectively, the width and height of a
pixel.

The vector form of the motion parametric model function
is

f �x� ux � uy� � � � R�� �x� u� (4)

where R�� � is the 2 	 2 rotation matrix of angle � and
u � �ux uy�

T is the translation vector. The principle of the
motion tracking method is to compute the motion parameter �
that minimizes the sum of squared differences of pixel intensi-
ties between the region of interest (obtained with the geomet-
rical transformation (4) in the observed image) and the refer-
ence region of interest (fixed in the target image where �� 0).
Therefore, the objective function to minimize is as follows:

���� � 
I��� t�� I�0� t0�
2� (5)

where I�0� t0� is the vector containing the intensity values of
the N pixels belonging to the reference target image at t � 0
and I��� t� contains the intensity values of the N pixels in the
image acquired at time t after resampling (warping) according
to (4) using the most recent motion parameter ��t� as given
here:

I��� t� �

�
�����	

I � f �x1���� t�

���

I � f �xN ���� t�



������ � (6)

By rewriting (5) in terms of a vector of offsets �� such that
��t � 	� � ��t�� �� from an image captured at time t � 	 :

����� � 
I��� ��� t � 	�� I�0� t0�
2 (7)

and approximating it with a first-order Taylor expansion, we
obtain

����� � 
M��� I��� t � 	�� I�0� t0�
2� (8)

where M is the Jacobian matrix of I with respect to �:

M��� �

�
�����	

�x I �x1� t0�
T fx�x1���

�1 f��x1���

���

�x I �xN � t0�T fx�xN ���
�1 f��xN ���



������ � (9)



1338 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2009

Here �x I �x� t0�T is the intensity gradient vector at pixel loca-
tion x � �x y�T in the target image and fx, f� are the partial
derivatives of f �x��� with respect to x and �, respectively. By
using � � �ux uy � �

T and the parametric motion model (4)
we have

f �1
x f� �

�
	 1 0 �y

0 1 x



�
�
	 R��� � 0

0 1



� � (10)

The solution of �� is then obtained by setting the gradient of
����� to zero and solving which yields

�� � �M��I��� t � 	�� I�0� t0��� (11)

where M� is the pseudo inverse of M. The motion parameter
vector is then

��t � 	� � ��t�� ��� (12)

In practice, in order to obtain adequate convergence, we
successively compute (11) and (12) during several iterations
until 
��
2 becomes lower than a small fixed threshold value

. For more complete details on this method we invite the
reader to refer to Hager and Belhumeur (1998).

Other methods based on the same principle are proposed in
the literature, for example Benhimane and Malis (2004) pre-
sented a second-order minimization technique for large motion
tracking with fast convergence rate by using the mean value of
the Jacobian M in the target image and the one in the observed
image. An unifying framework is also presented in Baker and
Matthews (2004) which compares the different approaches.

2.2. Out-of-plane Motion Estimation

We estimate the out-of-plane motion of the target US image
plane �t� with respect to the intermediate “virtual” plane �c�
obtained after applying the estimated in-plane motion trans-
formation. The principle is to first use a speckle decorrela-
tion technique to estimate the elevation distance of a grid of
n patches that were fixed on the target image at time t0 � 0,
and then to fit a plane to this data.

2.2.1. Speckle Decorrelation Technique

An approximation of the speckle correlation function as a
function of the orthogonal distance d between two B-mode
scans I1 and I2 is given in Gee et al. (2006) using the Gaussian
model function:

��I1� I2� � exp


�d2

2� 2

�
� (13)

where � is the correlation value of speckle included in two
corresponding patches in the two images and � is the resolu-
tion cell width along the elevation direction. In practice, this

approximation works well when the gray level intensity of the
image is defined on a linear scale. This is the case when we
directly use the RF signal provided by the US imaging device.
Unfortunately, this signal is not generally available on most
standard US systems. Instead, the RF data is processed into B-
mode images with intensity compressed on a logarithmic scale.
As we deal with B-mode images, we first convert the intensity
back to a linear scale by applying the relation given in Smith
and Fenster (2000):

I �i� j� � 10P�i� j�
51� (14)

where I �i� j� is the decompressed gray level intensity of the
pixel located at image coordinates i� j and P�i� j� is the mea-
sured intensity in the B-mode image.

In order to perform position estimation using decorrelation,
it is necessary to experimentally calibrate speckle decorrela-
tion curves from real soft tissues or from an US phantom sim-
ulating speckle. These curves are obtained by capturing a set
of B-scan images at known distances along the elevation di-
rection and measuring the normalized correlation coefficients
��d�. Let I0, Id correspond, respectively, to the pixel intensity
array of a given patch of the B-scan image captured at d � 0
and that of the corresponding patch in the image captured at
distance d. Let I0, Id denote the mean value intensity of these
patches, and let m and n be their height and width. Then the
normalized correlation coefficients are given by

��d� �
�m

i�1
�n

j�1�I0�i� j��I0��Id �i� j��Id ���m
i�1

�n
j�1�I0�i� j��I0�

2�m
i�1

�n
j�1�Id �i� j��Id �

2
� (15)

These values are measured for several patches positioned in the
images. Figure 3 shows the decorrelation curves when we con-
sider a grid of 25 patches in images taken from an US speckle
phantom.

As described in (13), the observed decorrelation curves be-
have like Gaussian functions, but with different parameters � .
This is due to the fact that the resolution cell width � is a
function of the lateral and axial position of the patch in the
image. In general, for sensorless freehand 3D US, a look-up
table based on these calibrated decorrelation curves is used to
provide an accurate estimation of the elevation distance from
the considered measured inter-patch correlation value. In our
motion stabilization application the objective is to minimize
the relative position between the observed B-scan and a de-
sired position, therefore we do not require high accuracy on
the target plane position estimation. Consequently, we propose
to estimate the inter-patch elevation distance directly from (13)
by using

�d��� �
�
�2 �� 2 ln���� (16)

where �� � 0�72 mm is identified by averaging the experimen-
tal decorrelation curves and fitting the model function.
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Fig. 3. (Left) Experimental decorrelation curves of the 25 patches considered in the (right) US image.

2.2.2. Plane Estimation

To estimate the target plane position, the 3D coordinates of
a minimum of three non-collinear patches are needed. As (16)
gives only absolute value d of the patch Z-coordinate, we must
determine the correct sign of each elevation distance. If we first
assume that the sign of each inter-patch distance is known, we
can estimate the target plane �t� position with respect to the
intermediate plane �c� by using the plane equation:

ax � by � cz � d � 0� (17)

where x , y, z are the 3D coordinates of the center of a patch
belonging to the target image plane with respect to the interme-
diate image plane �c�. Here x , y correspond to its 2D position
fixed in the image grid (the same for the intermediate and tar-
get image plane) and z is the signed elevation distance which
can be estimated from (17) by

�z �
3�

j�1

� j f j �x� y�� (18)

where f1�x� y� � 1, f2�x� y� � x , f3�x� y� � y depend
on the coordinates x , y which are known and �1 � �d
c,
�2 � �a
c, �3 � �b
c are the parameters of the plane. By
considering all of the n patches of the grid, these parameters
can be estimated by using a classical least-squares algorithm
whose the cost function to minimize is the sum of squares of
the differences between the estimated and observed elevation
distances:

J �
n�

i�1

��zi � zi �
2 (19)

and which gives the solution

��1 �2 �3�
T � �MTM��1MTZ� (20)

where the components of the n 	 3 matrix M are given by
Mi� j � f j �xi � yi � with i � 1� � � � � n, j � 1� � � � � 3 and the
vector Z contains the n observed elevation distances Zi � zi .
The normal vector of the target plane expressed in the interme-
diate plane �c� is then obtained by


n � �a b c�T � ��2 �3 1�T


��2 �3 1�T
 (21)

and the elevation distance of the target plane �t� with respect
to the intermediate plane �c� is tz � �1.

As the third column of cHt in (2) corresponds to the Z -axis
of the target plane expressed in the intermediate plane �c� the
out-of-plane angles � and � can be determined directly from
the components of the estimated normal vector 
n, with

� � a tan�a
c��

� � �a sin�b�� (22)

However, this least-squares algorithm cannot be applied di-
rectly to estimate the plane position owing to the sign ambi-
guity of the zi distance of each patch. So we propose hereafter
two methods to estimate the signed elevation distance of each
patch.

2.2.2.1. Signed Elevation Distance: Small Motion Estima-
tion Method. The first method applies the iterative algo-
rithm presented in Figure 4 to rearrange sign of each distance
measurement. The principle is to first choose a random sign
on each zi � and to then compute an initial plane estimate and
least-squares error using these signs. Then, we modify the sign
of a patch and compute the new least-squares error. If the new
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Fig. 4. Iterative algorithm for plane position estimation.

Fig. 5. (Top) Symmetric plane position solutions provided by
the iterative algorithm. The points on the planes show the re-
arranged (signed) positions of patches after the algorithm con-
vergence. (Bottom) Plots of the decreasing least-squares error
norm during the iterative algorithm process.

error norm is lower than the previous error, then the sign is
kept or otherwise it is discarded. This process is repeated for
the n patches in a loop. At the end, if the resulting error norm
is lower than the initial error norm, then the initial error is set
to the current error and the loop is repeated until the last re-
sulting error is the same as the initial error. The algorithm will
then stop when it converges to one of the two stable symmet-
ric solutions as illustrated in Figure 5. The first solution corre-
sponds to the case when there is a positive elevation distance
tz � 0 between the target and observed plane and the second
to the case for a negative distance tz � 0. Note that from one
solution we can easily determine the second. For the case pre-
sented in Figure 5, the algorithm converges with only 50 itera-

Fig. 6. The state-transition graph used to track the sign of the
elevation distance tz and compute the relative position cHt be-
tween the observed and target planes.

tions whereas there are, in principle, 2n (with n � 25) possible
configurations of the signed distances. In fact, there are fewer
than 2n owing to the planarity constraint� indeed this is why
such a simple algorithm works.

The two solutions of cHt are then given by

� � a tan�a
c�� � � �a sin�b� if tz � 0�

� � a tan��a
c�� � � �a sin��b� if tz � 0� (23)

Note that, if tz � 0, there is an ambiguity on the target plane
orientation. This problem will be considered next.

Once a correct sign is known for the elevation plane, it is
possible to develop a system for tracking it without the need
for continual re-estimation. In order to resolve the remain-
ing sign ambiguity and initiate tracking, we have developed
a state-transition graph which memorizes the evolution of the
sign and uses an intermediate B-scan image to reconstruct the
target frame position cHt when �tz � is close to zero.

In practice, the B-scan image target that is to be tracked
will be chosen in some initial US image. This will be done
after the user positions the probe held by a medical robot to
see the target of interest. Therefore, at the start, the most recent
image and the target B-scan are superposed, so tz � 0. We then
propose to initially move the probe by a small control step in
the negative elevation direction in order to obtain tz � s where
s is a very low threshold value. This provides initialization for
the state-transition graph presented in Figure 6.

In particular, this first motion provides data for state 1
where the position of the target is given by cHt �tz � 0�. This
state is maintained while tz � s. If �tz� decreases below the
threshold s owing to the motion of soft tissues, then an in-
termediate plane with Cartesian frame �s� is set and frozen
to the observed target B-scan position cHs � cHt�s� and the
state switches from 1 to 2. In this new state the position of
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the plane target is then given by cHt � cHs�s�sHt�zs � 0�
where sHt �zs � 0� is the homogeneous matrix from the fixed
intermediate plane to the target plane computed from (20)–
(22) with positive elevation distance zs between these two
planes.

This new state is maintained while �tz� � s. Of course there
is the possibility of going back to the state 1 if tz increases
when the transition �tz� � s and �zs � � �tz� is validated. If now
�tz� � s and �zs � � �tz� which means that tz is negative and
is lower than �s, then the state goes to 3 where the target po-
sition is given directly by the solution with negative elevation
distance cHt�tz � 0�. If afterwards �tz� becomes lower than the
threshold, the intermediate plane is updated and frozen to the
observed target position cHs � cHt��s� and the state goes to 4
with solution cHt � cHs��s�sHt�zs � 0� where sHt�zs � 0�
is the transformation matrix from the recent updated interme-
diate plane to the target. The first state is then retrieved when
�tz� � s and �zs � � �tz�. This method permits computation of
the correct sign of the distance tz by taking into account its
evolution and avoiding the ambiguous orientation case when
tz � 0. Moreover, in order to obtain smooth transitions when
the state switches, the following interpolation function is ap-
plied to give the target plane pose vector p:

p � �1� ��tz �
s�2�p1 � ��tz�
s�2p2� (24)

where p1 is the pose vector describing the reconstructed ho-
mogeneous matrix cHt obtained during state 2 or 4 and p2 is
the pose vector describing the direct solution cHt during state
1 or 3. Note that this function gives no weight to the direct
solution cHt when tz � 0 in order to reject the unstable case.
The components of the normal vector 
n of the B-scan plane
and its orientation angles �, � are then retrieved using (2) and
(23).

2.2.2.2. Signed Elevation Distance: Large Motion Estima-
tion Method. The previous method only works locally about
the target region owing to the rapid rate of speckle decor-
relation with out-of-plane motion. Therefore, in order to in-
crease the range of convergence, we propose a second ap-
proach that allows us to estimate independently the signed
elevation distance of each patch belonging to the target im-
age plane for large out-of-plane displacement. The method is
described hereafter for one patch and is applied to all of the
patches before fitting the plane to the data.

First, at start time t � 0, when the observed patch and the
target patch are superposed, the patch image is acquired in a
memory array starting at index k � p where k is the index
corresponding to the target patch and p � 0 is a counter index
that represents the number of intermediate patches that will be
memorized in the array with positive elevation distance.

As in the previous method, we propose to initialize the sign
of the elevation distance by moving the probe in the negative
elevation direction. This time we do not apply a step motion

Fig. 7. Configuration of the intermediate patch position ob-
tained after performing the initialization procedure that con-
sists of moving the probe in the negative elevation direction.

but a constant velocity during a very short time period. There-
fore, the positive elevation distance of the given target patch
computed from the speckle decorrelation increases linearly.
When it reaches the threshold value s, the index p is incre-
mented and the positive elevation distance dc[k�p�1] of the tar-
get patch with respect to the observed patch is memorized in
the array such that d[k�p][k�p�1] � dc[k�p�1] and the observed
image patch is stored as a first intermediate patch at array in-
dex k � p. Here we choose the notation dc[i] to define the
signed elevation distance of the memorized patch at index i
with respect to the observed patch called c and d[i][ j] corre-
sponds to the signed elevation distance of memorized patch at
index j with respect to the memorized patch at index i . This
is performed during the probe motion each time the distance
of the last memorized intermediate patch with respect to the
observed patch reaches the threshold value. When the probe
motion stop after this initial procedure we obtained the patches
“path” configuration shown in Figure 7.

The relative distances between the memorized patches can
then be expressed by the following vectorial system form:

Y � DP� (25)

where Y is a vector of size
�� j�n

j�1 j
�

with n � p, containing

the signed relative inter-patch elevation distances stored in the
array, such that
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Y �

�
������������������������	

d[i�1][i]

d[i�2][i]

d[i�2][i�1]

d[i�3][i]

d[i�3][i�1]

d[i�3][i�2]

���

d[i�n][i�n�1]



�������������������������

(26)

with i � k and n � p.

Here D is a matrix of size
�� j�n

j�1 j
�
	 �n � 1� depending

only on the absolute elevation distance between patches of the
array and the observed patch c. It is given by the following
structure:

D�

�
�����������������	

�dc[i ]� ��dc[i�1]� 0 0 0 0 0

�dc[i ]� 0 ��dc[i�2]� 0 0 0 0

0 �dc[i�1]� ��dc[i�2]� 0 0 0 0

�dc[i ]� 0 0 ��dc[i�3]� 0 0 0

0 �dc[i�1]� 0 ��dc[i�3]� 0 0 0

0 0 �dc[i�2]� ��dc[i�3]� 0 0 0

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

0 0 0 0 0 �dc[i�n�1]� ��dc[i�n]�



������������������

(27)

with i � k and n � p.
Here P is a vector of size �n � 1� containing the sign of the

distance of all of the memorized patches with respect to the
observed patch c. After the initialization procedure it contains
only positive signs such that

P �
�

1 1 1 1 1 � � � 1
�T
� (28)

Now, we consider that the soft tissue containing the target
patch starts to move along the elevation direction with an un-
known sign motion. Its signed elevation distance with respect
to the observed patch can then be estimated by the following
algorithm. The first step consists of estimating the elevation
distance sign of each memorized patch with respect to the ob-
served patch. This is done by minimizing the sum of squares of
the differences between the estimated �Y � D �P and memorized
Y inter-patch distances:

J � �P� � �Y�D �P�T�Y� D �P�� (29)

Fig. 8. Configuration of the intermediate patches position
when the target patch elevation distance is negative and in-
creases in the negative direction.

The minimization is performed by testing all possible
sign configurations of vector �P and keeping �P that pro-
vides the lower cost function error J . Note that the pos-
sible configurations of �P are limited to circular sign sequences
such as �1� 1� 1� 1� � � � � 1�, ��1� 1� 1� 1� � � � � 1�, ��1��1� 1�
1� � � � � 1�, ��1��1��1� 1� � � � � 1�, ��1��1��1��1� � � � � 1�,
��1��1��1��1� � � � ��1�, �1��1��1��1� � � � ��1�,
�1� 1��1��1� � � � ��1�, �1� 1� 1��1� � � � ��1�, �1� 1� 1� 1� � � � �
�1�, and are provided in practice by a shift register. All of the
signed distances dc[ j] with j � i� � � � � �i � n� are then affected
with their estimated signs given by �P. The second step consists
of computing the elevation distance of the target patch with
respect to the observed patch. In order to increase robustness
of the estimation we perform a distance averaging which gives
us the following distance estimate:

dc[k] � 1

n � 1

j�i�n�
j�i

dc[ j] � d[ j][k] (30)

with i � k and n � p.
These two steps of the algorithm are repeated at each itera-

tion of the soft tissue tracking process.
The value of the estimated signed distance dc[k] is also used

to control the evolution of the array of intermediate patches.
If the distance becomes greater than its maximal value dmax

previously achieved dc[k] � dmax and if the distance of the k�p
patch with respect to the observed patch reaches the threshold
value s, dc[k�p] � s, then the positive patches counter index
p is incremented and a new intermediate patch is acquired in
the memory array. In the opposite side if the distance of the
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Fig. 9. Configuration of the intermediate patches position for large target patch elevation distance estimation. A sliding window
is centered on the memorized patch [l] which is the closest patch to the observed patch.

target patch with respect to the observed patch goes below its
minimal value dmin achieved previously dc[k] � dmin and if the
distance of the k �m patch with respect to the observed patch
reaches the negative threshold value �s such as dc[k�m] � �s,
then a negative patches counter index m (initially set to zero)
is incremented and a new intermediate patch is acquired in the
memory array at index k � m. Note that the index m counts
the patches of negative elevation distance in opposite to index
p which counts the patches of positive distance.

Figure 8 illustrates the case when the target distance is neg-
ative and shows the different intermediate patches captured
during the motion. Note that if m � 0, then we simply adapt
the estimation algorithm by setting i � k �m and n � p �m
in (26)–(30).

For the moment this second method only allows us to lo-
cally estimate the signed elevation distance of the target patch
since all of the memorized patches contained in the array have
to be speckle correlated with the observed patch observed by
the probe. Therefore, to allow large displacement of the target
we propose to use a sliding window as illustrated in Figure 9
in order to include only the intermediate patches closest to the
observed patch in the estimation process. The sliding windows
are centered on the patch l which is the closest to the observed
patch and whose index l is determined from elevation distance
comparison. The estimation process is then performed by set-
ting i � l � � and n � 2� in (26)–(30) where �2� � 1�
corresponds to the size of the window in term of number of
patches.

Note that when the observed patch is far away from the tar-
get patch, they are not speckle correlated. This is not a prob-

lem if the sliding window is used. However the image region
tracking algorithm described in Section 2.1 needs a minimum
of image correlation between the observed and target patch im-
ages to extract the in-plane motion. Therefore, we propose to
set the reference image used by the tracking algorithm to the
image of the patch corresponding to the center of the sliding
window (index l). In this way the reference image patch is au-
tomatically updated when the sliding window moves due to
large target displacement. In addition, if the absolute elevation
distance of the target patch decreases then the reference image
of the region tracking algorithm is set to a previous memorized
image until it retrieves the initial reference when the observed
and target patch join together.

An overview of the algorithm is described by Listings 1 and
2. Listing 1 gives the successive steps performed to initialize
the array of patches. The several steps used to estimate the
signed elevation distance of the target patch with the sliding
window are given in Listing 2. Note that the successive steps
of Listing 2 are continuously iterated with the US stream.

This method is used to estimate independently the signed
elevation distance of each patch belonging to the target plane.
The signed elevation distance tz and the out-of-plane angles �,
� of the target plane �t� with respect to the intermediate plane
�c� are then computed from (20)–(22).

3. Visual Servoing

Now that the complete position of the B-scan target can be es-
timated, we present the control scheme used to control a med-
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Listing 1. Initialization of the patches array.

Listing 2. Estimation of the target patch signed elevation distance and patches array updating.
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ical robot holding the US probe in order to reach and stabi-
lize a moving B-scan target. We propose a hybrid visual servo-
ing approach that consists of independently controlling the in-
plane three-DOF and out-of-plane three-DOF motions of the
US probe, respectively, by a 2D image-based visual servoing
algorithm and a 3D visual servoing algorithm.

3.1. Out-of-plane Motion Control

The out-of-plane motion stabilization is performed by a 3D
visual servo control. We chose as the visual features s1 �
�a b c tz�

T the three components of the normal vector 
n of
the estimated target plane and its elevation distance tz with re-
spect to the observed B-scan. The desired visual feature vector
to achieve is s�1 � �0 0 1 0�T which means that the final posi-
tion of the normal vector of the target plane will be orthogonal
to the observed image and that relative elevation distance will
be null. The variation of the visual information s1 to the out-
of-plane velocity v1 � ��z �x �y�

T of the probe is given by

�s1 � Ls1v1 �

�
��������	

0 0 �c

0 c 0

0 �b a

�1 0 0



���������

v1� (31)

where �z is the probe translational velocity along the orthog-
onal Z -axes of the observed image frame �p� (attached to the
center of the image) and �x , �y are the rotational velocities
around the X - and Y -axis, respectively. In visual servoing Ls1

is called the interaction matrix (see Espiau et al. (1992)) and
is determined from the geometrical model of the considered
system. In our case it depends only on the components of the
normal vector 
n of the target plane. The visual servoing task
can then be expressed as a regulation to zero of the task func-
tion e1 � s1 � s�1. Usually, the control law is defined such that
the task e1 decreases exponentially in order to behave like a
first-order system by using a proportional controller (Espiau et
al. 1992). In this work we apply rather the second-order mini-
mization technique introduced in Malis (2004) which uses the
following control law to improve the trajectory for large dis-
placement:

v1 � �2�1��Ls1 � L�s1
��e1 with gain �1 � 0� (32)

where �Ls1 is the interaction matrix estimated at each control it-
eration and L�s1

is the interaction matrix at the desired location
(with a � b � 0 and c � 1).

3.2. In-plane Motion Control

To control the in-plane motion of the probe we implement an
image-based visual servoing algorithm where the visual fea-
tures s2 � �tx ty � �

T are directly the translation tx , ty and the

Fig. 10. Ultrasound simulator: 3D view of the US volume and
the initial US image observed by the virtual probe with the
25 speckle patches (grid) and the in-plane tracking region of
interest (largest box).

rotation � extracted and expressed in the observed image by
using the method described in Section 2.1. The corresponding
desired feature vector to reach is s�2 � �0 0 0�T and the interac-
tion matrix Ls2 related to s2 such that �s2 � Ls2 v2, is simply a
3	3 identity matrix. The control velocity v2 � ��x �y �z�

T to
apply to the probe in order to obtain an exponentially decreas-
ing visual error e2 � s2 � s�2 is then obtained by:

v2 � ��2�Ls2�
�1e2 with gain �2 � 0 (33)

where �x , �y are the translational velocities of the probe along
the X - and Y -axis of the reference frame �p� attached to the
observed image, and �z is the rotational velocity around its
Z-axes.

The six-DOF control needed to track the full motion of the
target B-scan is finally performed by applying to the probe
the screw velocity v � ��x �y �z �x �y �z�

T whose compo-
nents are given by the two independent control laws (32) and
(33).

4. Simulation Results

4.1. Ultrasound Imagery Simulator

We first apply the algorithms described above to simulated
ground truth data to analyze how the system performs under
ideal circumstances. We then gradually introduce systemic and
random errors into the data and the tracking system, thereby
gradually approaching realistic scenarios, before an experi-
mental validation on real data (especially on human data) is
attempted. To this end, we developed an US simulator soft-
ware which allows us to position and move a 2D virtual probe
and simulate a moving 3D US volume. We composed an US
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Fig. 11. (Top) Out-of-plane and in-plane tracking positioning errors and (bottom) position and orientation (u� representation) of
the volume and the US probe with respect to a fixed base frame.

volume from 100 parallel real B-mode US images of 180	210
pixels resolution with a pixel size of 0�2	 0�2 mm2, captured
from an US speckle phantom at elevation intervals of 0.25 mm.

The simulator was built with the Visualization ToolKit
(VTK) software system (Schroeder et al. 2003) and the Visual
Servoing Platform (ViSP) (Marchand et al. 2005), both freely
available as open-source resources, implemented as C++ rou-
tines and libraries. We use VTK to render the 3D view of the
US volume, as shown in Figure 10 and to generate the ob-
served 2D US image with cubic interpolation, as if was gen-
erated by a virtual US probe. We also use ViSP to implement
the target B-scan motion extraction from the resliced US vol-
ume and to compute the visual servo control law applied to the
probe.

4.2. Stabilization Robotic Task Results

We simulated the six-DOF motion of the volume by apply-
ing six sinusoidal signals with same period of 5 seconds to
the position of a Cartesian frame �o� attached to the volume
and initially superposed to the US plane frame �p� such that
�o�t � 0�� � �p�t � 0��. The translational magnitudes were
set to 10 mm along the X -, Y - and 12 mm along the Z -axes of
�o� and the rotational magnitudes were set to 10� around the
X - and Y -axes and 8� around the Z-axes. We used a grid of 25
patches (25	 25 pixels for each patch) and a threshold eleva-
tion distance s of 0.1 mm to extract the out-of-plane motion. A

patch of 50 	 50 pixels centered in the grid was employed to
extract the in-plane motion.

First, we tested the motion stabilization task using the out-
of-plane small motion estimation method described in Sec-
tion 2.2.2.1 and the decoupled control scheme proposed in
Section 3. The gain of the control laws (32) and (33) were both
fixed to �1 � �2 � 10.

Figure 11 shows the time responses of the out-of-plane and
in-plane positioning errors during the full motion stabilization
task. The components of the out-of-plane error correspond to
the � and � angles and the elevation distance tz of the tar-
get B-scan plane with respect to the observed B-scan. Their
values are linked to the visual feature s1 by the relation (22)
whereas the in-plane error corresponds directly to the visual
feature vector s2. Figure 11 also shows the evolution of the
volume position and probe position with respect to a fixed base
frame. We can see that the task is performed well since only
tracking errors lower than 0.8 mm for the translation and 0�6�
for rotation components are measured.

Figure 12 shows the control velocity screw applied to the
probe and the evolution of the inter-patch speckle correlation
values between the observed and target B-scan images. The
figure also presents the evolution of the plane estimation least-
squares error norm and the cycle of the state-transition graph
performed to track the elevation distance sign. As we can see,
correlation values are decreasing owing to the tracking error
and reach the minimal value of 0.25.
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Fig. 12. (Top) Velocity control screw applied to the virtual US probe and speckle correlation values of the patches between the
observed and target image plane and (bottom) target plane least-squares error norm and state value of the state-transition graph
used to extract the elevation sign.

Fig. 13. (Top) Out-of-plane and in-plane tracking positioning errors and (bottom) position and orientation (u� representation) of
the volume and the US probe with respect to a fixed base frame.
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Fig. 14. (Left) Velocity control screw applied to the virtual US probe and (right) speckle correlation values of the patches between
the observed image plane and the image plane fixed at the center of the sliding window.

Fig. 15. (Top) Out-of-plane and in-plane tracking positioning errors and (bottom) position and orientation (u� representation) of
the volume and the US probe with respect to a fixed base frame.

In a second simulation we test the motion stabilization task
using the out-of-plane large motion estimation method pre-
sented in Section 2.2.2.2 with a sliding window set to seven
intermediate patches such that � � 3. Figure 13 and 14 shows
the results when the same decoupled control scheme is used
with �1 � �2 � 10. We can note that the tracking errors are
the same as the first simulation. However, the speckle correla-
tion values between the patches of the observed image and the
patches of the intermediate plane, which is fixed at the cen-
ter of the sliding window, do not go below the minimal value
of 0�9 as we can see in Figure 14. This means that the out-

of-plane large motion estimation method will be more robust
to large tracking error. To demonstrate this, we purposely in-
creased the tracking error by reducing the gains of the decou-
pled control scheme to �1 � �2 � 1.

As we can see from Figure 15 and 16 a tracking failure
occurs due to a lack of speckle correlation when we use the
out-of-plane small motion estimation method. This is not the
case when the out-of-plane large motion estimation is applied
as shown in Figures 17 and 18 with the same law control gains.
This demonstrates the robustness of the latter method to large
error tracking as expected. Note that when the volume stops
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Fig. 16. (top) Velocity control screw applied to the virtual US probe and speckle correlation values of the patches between the
observed and target image plane and (bottom) target plane least-squares error norm and state value of the state-transition graph
used to extract the elevation sign.

Fig. 17. (Top) Out-of-plane and in-plane tracking positioning errors and (bottom) position and orientation (u� representation) of
the volume and the US probe with respect to a fixed base frame.
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Fig. 18. (Left) Velocity control screw applied to the virtual US probe and (right) speckle correlation values of the patches between
the observed image plane and the image plane fixed at the center of the sliding window.

to move at time t � 10 s then the static error decreases to
zero.

From these simulation results we note that the out-of-plane
small motion estimation method fails when the elevation track-
ing error exceeds the value of the Gaussian model parameter
� � 0�72 mm which is of the same order as the US beam
width. That means that, in practice, the main drawback of the
first method is the need for a fast and accurate robotic sys-
tem using a high US stream frame rate to work. That is the
reason why we developed the second method, which has the
advantage of being robust to large tracking error and which is
consequently better adapted for real robotic applications.

5. Experimental Results

5.1. Two-DOF Motion Compensation

As a first step, we tested the motion stabilization method on
two-DOF motions combining a translation along the image X-
axis (in-plane translation) and elevation Z -axis (out-of-plane
translation). The experimental, setup, shown in Figure 19, con-
sists of two X–Z Cartesian robots fixed and aligned on an opti-
cal table. The first robot provides a ground truth displacement
for an US speckle phantom. The second robot holds a tran-
srectal 6.5 MHz US transducter and is controlled as described
above to stabilize a moving B-scan target. The US image is
440	320 pixels with resolution of 0.125 mm per pixel. A lap-
top computer (Pentium IV 2 GHz) captures the US stream at
10 fps, extracts the target plane position by using a grid of 25
patches (25 	 25 pixels size) and computes the velocity con-
trol vector applied to the probe holding robot. For this exper-
iment we implemented the out-of-plane large motion estima-
tion method introduced in Section 2.2.2.2. The video showing
this experiment is given in Extension 1.

The plots in Figure 20 show the evolution of the robots po-
sitions and the tracking error when sinusoidal motions (magni-
tude of 30 mm on each axis) were applied to the phantom. The

Fig. 19. Experimental setup for two-DOF motion compensa-
tion.

dynamic tracking error was below 3 mm for in-plane trans-
lation and 3.5 mm for the elevation translation. This error is
attributed the dynamics of the target motion, time delays in
the control scheme, and the dynamics of the probe holding ro-
bot. In order to determine the static accuracy of the tracking
robotic task, we applied a set of 140 random positions to the
phantom by using ramp trajectories while tracking the target
plane using the robotized probe. When the probe stabilized at
a position, the phantom was held motionless for 2 seconds and
the locations of the two robots were recorded. We recorded
a static error of 0�0219 � 0�05 mm (mean � standard devia-
tion) for the in-plane positioning and 0�0233 � 0�05 mm for
the out-of-plane positioning, which is close to the positioning
accuracy of the robots (�0�05 mm).

5.2. Six-DOF Motion Compensation

As a second step, we tested our motion stabilization approach
by considering six-DOF rigid motions that were manually ap-
plied to the US phantom. The experimental setup is shown in
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Fig. 20. (left) Evolution of the robots positions and (right) tracking error.

Fig. 21. Experimental setup for six-DOF motion compensa-
tion.

Figure 21. It consists of a six-DOF medical robot equipped
with a force sensor, similar to the Hippocrate system (Pierrot
et al. 1999), that holds a broadband 5–2 MHz curved array
usually used for general abdominal imaging. In order to keep
the transducer in contact with the phantom, the probe veloc-
ity component along the Y -axis of the observed image was
directly constrained by a classical closed-loop force control
scheme in such a way to keep a contact force of 2 N along
the Y -axis direction. The remaining five DOFs of the probe in-
clude two in-plane motions (one translation along the X-axis
and one rotation around the Z -axis of the observed image), and
three out-of-plane motions (one translation along the Z -axis
and two rotations around the X- and Y -axes of the observed
image). These five DOFs were actuated by our motion stabi-
lization approach using only the speckle information. Since the

six-DOF motions are applied manually (by hand) to the US
phantom, we have no accurate ground truth related to its 3D
pose as opposed to the first experimental setup where two ro-
bots were used. Nevertheless, a ground truth can be provided
by using an external vision system that measures the phan-
tom and the object respective 3D poses. In our case, we use
a remote calibrated camera that observes two patterns of vi-
sual dots that are attached to the phantom and the US probe
as shown in Figure 21 and perform pose computation by us-
ing the Dementhon approach (Dementhon and Davis 1995).
The US image stream of 384 	 288 pixels with resolution of
0.58 mm per pixel was captured at 12 fps and the out-of-plane
motion of the target B-scan image was estimated by using a
grid of nine patches (25	 25 pixels size).

In a first experiment we tested the out-of-plane small mo-
tion estimation method introduced in Section 2.2.2.1. Unfor-
tunately, the motion stabilization failed a few times after we
started to move the US phantom manually. This was due to the
phantom jerky motion whose frequency component induced
by hand tremor was too high in comparison with the low band-
width (12 Hz) of the robotic system. Therefore, it resulted a
large tracking error with a loss of speckle correlation between
the observed and target B-scan.

In a second experiment we tested the out-of-plane large mo-
tion estimation method introduced in Section 2.2.2.2 which is
based on the use of memory array of intermediate patches. The
video showing this experiment is given in Extension 1. The
plots in Figure 22 present the time evolution of the 3D poses
of the US phantom and US probe both expressed in the remote
camera frame and the positioning error of the probe with re-
spect to the phantom during the test. We can see that the US
probe automatically follows the motion of the phantom with
tracking errors lower than 1.4 cm for the translation and 3� for
rotation components. Note that this error also combines the
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Fig. 22. (Top) Translation and orientation (u� representation) of the phantom and the US probe with respect to the remote camera
frame. (Bottom) Translation error and orientation error (u� representation) of the probe with respect to the phantom.

pose estimation error inherent to the camera localization sys-
tem. These results validate the concept of our automatic stabi-
lization approach in the case of a rigid motion including both
translations and rotations.

The tracking error could be reduced if a prediction of its
variation is introduced into the control law by some methods
such as a Kalman filter or generalized predictive controller
(Ginhoux et al. 2005). Adopting recent methods (Rivaz et al.
2006) for more accurate and efficient identification of fully
developed speckle patches should also improve the tracking
performance and may allow estimation of relative motion be-
tween different soft tissue elements.

6. Conclusion

In this paper we have presented an estimation and control
method to automatically stabilize the six-DOF motion of a
conventional 2D US probe with respect to a moving 3D US
volume by tracking the displacement of a B-scan image rel-
ative to a reference target. The out-of-plane motion has been
extracted from the speckle information contained in the US
image, and an image region tracking method has been used
to extract the in-plane motion. Two approaches were consid-
ered to estimate the out-of-plane motion and compared from

simulation and experimental results. A hybrid visual control
scheme has been proposed to automatically move the probe
in order to stabilize the full motion of the target B-scan. The
method was first validated in simulation by controlling a vir-
tual probe interacting with a static US volume acquired from a
medical phantom.

The approach was then demonstrated on two different ex-
perimental setups. The first consisted of an US speckle phan-
tom, a two-DOF robot for simulating tissue motion, and a two-
DOF robot controlling the US probe directly from the speckle
information. The results demonstrate in a first step the validity
of our approach for two-DOF motions combining a transla-
tion along the image X-axis (in-plane translation) and eleva-
tion Z -axis (out-of-plane translation). In a second experiment
we also demonstrated the approach for both translational and
rotational motions by using an experimental setup consisting
of a six-DOF medical robot actuating the probe and an US
speckle phantom that we moved manually.

In the introduction, we identified prostate brachytherapy as
a clinical application of this work. We are currently addressing
several challenges in adapting our work to prostate brachyther-
apy. First and foremost, we must not alter the clinical setup
and workflow. In current practice, the probe is moved in two
DOFs by the mechanical stepper under manual actuation, but
our motion tracking will work in the full six DOFs. We can
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encode and actuate existing DOFs of the stepper, but further
modifications are prohibitive. To this end, several extensions
will be necessary to our current tracking and servoing tech-
niques. Most contemporary TRUS probes have two perpen-
dicularly arranged transducers: one crystal provides a trans-
verse image perpendicular to the translation axis and a sec-
ond crystal gives a sagittal image across the rotation axis. In
essence, the transverse crystal maps the prostate in Cartesian
space while the sagittal crystal works in a cylindrical frame
of reference. Therefore, we will adapt our automatic stabiliza-
tion approach to the mixed Cartesian–cylindrical scheme used
in TRUS imaging. Second, we will attempt to track the tar-
get and needle at the same time with a single TRUS probe.
We expect that some target and needle motions can be com-
pensated for, and the remaining misalignments will have to be
represented visually. Such a mixed scheme will undoubtedly
lead to an extensive investigation of human–machine interface
techniques as well. Finally, in a later phase, we will integrate
the resulting six-DOF motion tracking and two-DOF TRUS
image stabilization with an existing needle placement robotic
system (Fichtinger et al. 2008). Altogether, the work presented
here has launched us on a challenging and clinically important
trajectory of research.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions.

Extension Type Description

1 Video Video showing simulations and
experiments.
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