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ABSTRACT

There has been a pressing clinical need for adaptive intra-
operative dosimetry in the delivery of prostate brachytherapy
implants. The missing prerequisite is the robust matching of
the seeds across multiple C-arm images. This is further ag-
gravated since seeds are invariably hidden in each image. We
present a solution to recover these hidden seeds in this pa-
per. A network flow formulation of the problem is proposed,
where the desired solution is obtained (in polynomial time)
by computing the flow with minimum cost. Phantom ex-
periments show that using four X-ray images, on an average
99.8% of the seeds are recovered correctly, while simulations
indicate that our algorithm is robust to segmentation errors of
up to 1 mm and hidden seed rate of at least 8%. The results
show strong feasibility and clinical data collection is currently
underway.

1. MOTIVATION AND BACKGROUND

With an approximate annual incidence of 220,000 new cases
and 33,000 deaths, prostate cancer continues to be the most
common cancer in men in the United States. The defini-
tive treatment modality for low risk prostate cancer is per-
manent brachytherapy, which is performed on approximately
40,000 patients each year. In this treatment a large number
of small (~ 125 mm) radioactive capsules are implanted into
the prostate to kill the cancer by emitting radiation. Accord-
ing to a comprehensive review by the American Brachyther-
apy Society [1], the preplanned technique used for permanent
prostate brachytherapy has limitations that may be overcome
by intraoperative planning. However, the report continues,
the major current limitation of intraoperative planning is the
inability to localize the seeds in relation to the prostate.
Brachytherapy is typically performed transperineally un-
der real-time transrectal ultrasound (TRUS) guidance and C-
arm fluoroscopy is often used for gross visual observation
of the implant. TRUS usually provides adequate imaging of
soft tissue anatomy, but it fails to visualize implanted seeds,
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while C-arm fluoroscopy can visualize seeds, but not soft tis-
sues. By reconstructing the implanted seeds from C-arm flu-
oroscopy and registering them to ultrasound, intra-operative
dosimetry becomes possible.

3D coordinates of the implanted seeds can be calculated
by resolving the correspondence of seeds across multiple X-
ray images. Five major obstacles need to be overcome: (a)
C-arm calibration; (b) C-arm pose tracking; (c) Seed segmen-
tation; (d) Seed matching and reconstruction; and (e) Regis-
tration between C-arm and TRUS. While adequate techniques
are available for most of these problems [2] and several groups
have published results supporting C-arm fluoroscopy for intra-
operative dosimetry [3], this technique has yet to become a
standard of care in hospitals. The last technological barrier
appears to be robust matching and reconstruction of seeds
across multiple C-arm images. This problem is still unsolved
because implants are usually dense and all the seeds are hardly
ever visible in any one image. Even in the case of hand seg-
mentation, perfectly overlapping seeds cannot be segmented
(~ 2—16%). This phenomenon is often referred to as the issue
of “hidden seeds” and is the focus of this paper.

=

Fig. 1. Example of a hidden seed not detectable by the human
eye (right) matching to two distinct seeds (left).

Many contemporary works have made a simplifying as-
sumption that all the seeds are visible, which makes these al-
gorithms infeasible for clinical use. Among previous works,
Fast-CARS was extended to incorporate hidden seeds, but the
new algorithm reconstructed a greater number of seeds than
were actually present [4]. Another variant was proposed [5]
by ordering the seeds using the epipolar constraints. Unfor-
tunately, the algorithm required co-planar images (co-linear
X-ray sources) and could not reconstruct undetected seeds if
they existed in the same search restriction band and did not
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extend to multiple images. An intensity-based method using
tomosynthesis [6] and using Hough trajectories [7] has also
been proposed. However they require an unfeasibly large
number of images to achieve a stable reconstruction, yet do
not offer accuracies better than 1mm. Another technique [8]
optimized on seed positions and camera parameters, by gen-
erating simulated images and iterating them until they match
the observed images. This optimization method is prone to
fall into local minima and was tested only on clean simulated
images. Significant works as they are, the problem merits fur-
ther research to produce a clinically viable solution.

We have previously proposed matching and reconstruc-
tion of brachytherapy seeds using the Hungarian algorithm
(MARSHAL) [9]. In this paper, we extend MARSHAL to
also tackle the hidden seed problem.

2. METHODS AND MATERIALS

We assume that the seeds are 3D points and convert the seed-
matching problem to a network-flow-based combinatorial glo-
bal optimization. In this formulation, any correspondence of
the seeds is represented by an appropriate flow through the
network. The goal is to find the flow with the minimum cost.
In the case with no hidden seeds, two images do not have a
unique solution, while using three or more images makes the
problem NP-hard [9]. Since the case with hidden seeds is a
generalization of the earlier problem, it is also NP-hard. This
proves that a globally optimal polynomial time algorithm is
not possible.

In contrast to the previously proposed heuristic method-
ologies, MARSHAL solves the problem in a more mathemati-
cally rigorous framework of combinatorial optimization. This
formal approach allows better control of the behavior of the
algorithm, as well as consideration of seed groups as a whole
(global optimization) instead of analyzing seed groups with
heuristic rules (local optimization).

A Network-flow-based Formulation: Let NV be the number
of seeds inserted and N1, N», and N3 be the number of seeds
actually segmented in the acquired C-arm images I, I», and
I5. Let s;; be the position of the i*" seed in the j* image.
We construct a directed network as shown in Fig 2.

Sets A, B, C, and D, each containing N1, Na, N3, and Ny,
respectively, represent images I, Is, I3, and I, respectively.
There are no edges between nodes of the same set, but there
are directed edges (links) connecting every node in set A (left)
to set B, set B to set C, and set C to set A (right). There are
also links from the source S to every node in set A (left), and
similarly from set A (right) to the sink T. A flow of value
N originates at S and ends at T. Because any of the sets can
contain fewer than N nodes, each link from S to A or from
A to T must allow for a flow greater than 1. A flow of 2 ata
node implies that this seed is a hidden seed. To enforce the
constraint that each seed in image 2 & 3 is chosen at least
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once but not more than twice, we add dummy internal links.
Thus, we allow a maximum/minimum flow of 2/1 through
each of the internal links and through nodes connected to the
source and sink. The links connecting the sets allow for a
maximum/minimum flow of 1/0.

Set A
(Imagel)

Set B
(Image2)

Set C

Set A
(Image3) (Imagel)

Fig. 2. The flow network used to solve the matching problem.

The problem now reduces to efficiently computing a flow
of N. To determine the optimal solution, we need to assign
a cost C;; to the link connecting seed s;; to seed sja. Cjj
represents the likelihood of seed s;; matching seed s;o, with
the cost being 0 if they match perfectly and oo (infinity) if
they do not match at all, with extensive discussions available
[9]. Any feasible flow in the network has a net cost of >, C; f;,
where f; is the flow in link ¢ and C; is the cost of sending a
unit flow along that link. Thus the seed-matching problem is
reduced to finding the flow with minimum cost.

The minimum-cost flow can be computed using many poly-
nomial and pseudo-polynomial algorithms [10]. We imple-
mented the cycle cancelling algorithm to compute min-cost
flow, which starts with a feasible flow and then searches for
negative cost cycles in the residual network and pushing a
flow along the negative cycle. This is iterated until there is
no negative cost cycle detected, at which point the minimum
cost flow has been computed. Negative cost cycles can easily
be computed using the Bellman-Ford algorithm, which runs
in O(Edges * Vertices) time. Thus the run-time for the
min-cost flow evaluation is O(cost of the initial flow) x
O(Edges=Vertices), which will be pseudo-polynomial. Al-
though there are strongly polynomial time algorithms avail-
able, the cycle-cancelling algorithm proves to be sufficiently
fast.

Overview of the Algorithm: Extended MARSHAL is illus-
trated in Fig 3. Since the problem is NP-hard the network is
not able to constrain the hidden seeds in image 1. Neverthe-
less, hidden seeds in image 2 & 3 are very well constrained.
Thus the min-cost flow nearly solves the problem, except for a
few cases which exhibit some ambiguity. These cases usually
incarnate themselves as self-consistent complete subsets of 2-
5 seeds. Each of these subsets can be independently solved
using an extremely fast brute-force type of algorithm.

In the case that the size of any subset is large, the subset
can be resolved by constructing a miniature network and solv-
ing for the min-cost flow. It is unusual to encounter small sub-
sets which have hidden seeds in all three images, and hence
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Construct flow network
Solve for min—cost flow
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Fig. 3. The flowchart for extended MARSHAL.

these subsets can be resolved correctly by switching the order
of the images. In the rare case that all three images in the
subset have hidden seeds, then a choice of set A can be made
arbitrarily and the network solved. Seeds solved as hidden in
sets B/C can then be replicated and used as the outer set and
the network solved again.

The robustness of the reconstruction can be significantly
improved by taking another X-ray image, and thus we ex-
tend the algorithm to work with any number of images. The
problem is well conditioned due to the epipolar constraints, so
when four images are available, three images can be chosen
as the main images, while one can be chosen as an assisting
image (one with the most number of hidden seeds) affecting
only the costs in the main network. This approach can be ex-
tended to any number of images. Thus extended MARSHAL
always recovers the hidden seeds and resolves the correspon-
dences in polynomial time (typically close to O(IN?) [9]).

3. RESULTS AND DISCUSSION

Simulations: Data was generated to simulate a 55 cc prostate
with a seed density of 2.0 seeds/cc. The algorithm was run
on three different datasets using combinations of four images,
varying segmentation error from 0 — 2 m/m in increments of
0.25 mm. To test the sensitivity to the number of hidden
seeds, the algorithm was also run varying the hidden seed per-
centage from 0 — 20% in increments of 2%. Averaged results
are shown in Fig 4.

Phantom experiments: Experiments were conducted on a
precisely fabricated acetol seed phantom. The FTRAC fidu-
cial [2] was used to track the C-arm, and was attached to the
phantom (Fig 5). The phantom comprises of twelve 5 mm
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Fig. 4. (a) Sensitivity to segmentation error. (b) Sensitivity to
hidden seed percentage.

thick slabs, each having one hundred holes with 5 mm spac-
ing. Known implant constellations were created, with the
number of seeds ranging from 40 to 100 in increments of 15,
while keeping the seed density at 1.56 seeds/cc.

For a given constellation, 6 images within a 20° cone
around the AP-axis were taken using an uncalibrated Philips
Integris V3000 and dewarped using the pin-cushion test. Ac-
curate ground truth for matching was computed from the known
3D seed locations. Matching was achieved with three and four
images. All seeds closer than 1.2 mm were called hidden.
Averaged results are displayed in Table 1.

®)

Fig. 5. (a) An image of the phantom attached to the FTRAC
fiducial. (b) A typical X-ray image of the combination.

Discussion: The simulation results show that the algorithm
can nearly perfectly match all the seeds even with segmenta-
tion errors up to 1 mm. While increasing the segmentation
error further decreases the matching percentage, at 2 mm er-
ror, the matching rate is still over 90%, with the reconstruction
error of the mismatched seeds remaining below 2 mm. When
the percentage of hidden seeds is varied, the algorithm can
robustly match when the hidden seed percentage is at least
8%. Because the datasets for this case were generated by cre-
ating a threshold for closeness based only on the hidden per-
centage, significant error was introduced as the percentage in-
creased, since the threshold became unrealistically large, cre-
ating much lower matching percentages than would normally
be seen.

For the phantom data, using three images gives a good
matching rate, but mismatched seeds reconstruct with a high
error. Using four images gives substantially better results,
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Number of Seeds
3 Images 4 Images
4 | 55 | 70 85 | 100 4 | 55 | 70 85 | 100

Matching 983 | 100 | 99.9 | 98.2 | 98.0 100 | 100 | 100 | 99.9 | 99.5
Rate (%)

s =
Reconstruction | 3\ ¢4 | 050 | 0.67 | 071 | 0.77 0.64 | 039 | 0.63 | 0.76 | 0.82
Error (mean) =
Reconstruction
Error (STD) 0.27 | 027 | 0.31 | 0.26 | 0.34 0.25 ] 021 | 029 | 0.27 | 0.28
Reconstruction = || 7.46 ) 080 | 12.47 | 4.99 - - - 14.13 | 1.73
Error (mean) §
Reconstruction | 2 902 | - |080!| 1734 838 - - - 14.13 | 1.89
Error (worst)
Reconstruction ' -l 55 | 0.32 [ 040 | 0.54 | 0.53 0.32 [ 0.30 | 0.38 | 0.34 | 0.41
Error (relative)

Table 1. Performance on phantom data.

with nearly perfect matching and a mostly low reconstruc-
tion error for mismatched seeds. Since it is readily feasible to
obtain a fourth image in a clinical setting, our implementation
is extremely viable for intra-operative dosimetry.

Conclusions and Future Work: In contrast to other pro-
posed methods, we have formalized the seed matching prob-
lem and have extended a previously proposed polynomial time
algorithm (MARSHAL) to resolve hidden seeds. A MAT-
LAB 7 implementation runs in under 20 s in a typical implant
using any number of images. Using 4 images, it matched over
99.8% of the seeds. Simulations indicate that MARSHAL is
robust to various parameters. It can reconstruct an implant
when three or more images are used, with a robustness, pre-
cision, and speed that promises to be sufficient to support in-
traoperative dosimetry in prostate brachytherapy.

MARSHAL is being combinatorially improved to increase
the matching rate when only three images are used and also to
reject spuriously segmented seeds. Moreover, other sources
of information like seed orientation are being added to the
cost metric to increase robustness. Clinical data is also being
collected for further analysis.
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