FTRAC—A robust fluoroscope tracking fiducial
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C-arm fluoroscopy is ubiquitous in contemporary surgery, but it lacks the ability to accurately
reconstruct three-dimensional (3D) information. A major obstacle in fluoroscopic reconstruction is
discerning the pose of the x-ray image, in 3D space. Optical/magnetic trackers tend to be prohibi-
tively expensive, intrusive and cumbersome in many applications. We present single-image-based
fluoroscope tracking (FTRAC) with the use of an external radiographic fiducial consisting of a
mathematically optimized set of ellipses, lines, and points. This is an improvement over contem-
porary fiducials, which use only points. The fiducial encodes six degrees of freedom in a single
image by creating a unique view from any direction. A nonlinear optimizer can rapidly compute the
pose of the fiducial using this image. The current embodiment has salient attributes: small dimen-
sions (3 X3 X5 cm); need not be close to the anatomy of interest; and accurately segmentable. We
tested the fiducial and the pose recovery method on synthetic data and also experimentally on a
precisely machined mechanical phantom. Pose recovery in phantom experiments had an accuracy
of 0.56 mm in translation and 0.33° in orientation. Object reconstruction had a mean error of
0.53 mm with 0.16 mm STD. The method offers accuracies similar to commercial tracking sys-
tems, and appears to be sufficiently robust for intraoperative quantitative C-arm fluoroscopy. Simu-
lation experiments indicate that the size can be further reduced to 1 X 1X2 cm, with only a mar-
ginal drop in accuracy. © 2005 American Association of Physicists in Medicine.
[DOL: 10.1118/1.2047782]
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I. INTRODUCTION

C-arm fluoroscopy is the most widely used intraoperative
imaging modality in general surgery (some of the prominent
works being Refs. 1-8), but it presently lacks the ability for
robust and easy quantitative guidance.9 Quantitative
fluoroscopy-guided surgery needs to solve four major prob-
lems: (1) C-arm image distortion; (2) the calibration of im-
aging parameters; (3) pose recovery or tracking; and (4) reg-
istration to imaging modalities. The first two are well-studied
problems in the literature.">° On the other hand, pose recov-
ery on unencoded C-arm machines is a major technical prob-
lem that presently does not have a clinically practical solu-
tion in many areas of application. In this paper, we propose a
solution to accurately estimate the pose by using a radio-
opaque fiducial. Moreover, it can also register the x-ray im-
ages to other imaging modalities.
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The history of using radio-opaque fiducials to solve for
the C-arm pose starts as early as 1987,'° where 16 spherical
beads in a known configuration were introduced in the region
of interest. Theorems from projection geometry were used to
reconstruct the C-arm pose, calibration parameters and target
details. This was later followed by other bead-based
fiducials®™'"™" for solving both the problems of a C-arm pose
and calibration (a small surveyM). The number of beads var-
ied from 20 to 613, with the patient sometimes fitting inside
them. Though the accuracies were acceptable (0.5—1 mm),
the fiducials tended to be (a) too large; (b) cumbersome to
use in a clinical setting; (c) interfering with the anatomy in
the image; and (d) nontrivial to segment. A smaller and well-
encoded fiducial can solve these problems efficiently.

Off-the-shelf tracking devices, as they became available,
were a natural choice to simplify the problem. In current
commercial C-arm fluoroscopy surgical navigation systems,
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the x-ray detector is localized in room coordinates by some
auxiliary optical tracker'™'® or electromagnetic (EM)
tracker."’ Unfortunately, auxiliary trackers sometimes be-
come impractical for various reasons. They are expensive
and add to the complexity of the operating room since they
require an additional calibration step. Optical trackers require
a line of sight, which becomes cumbersome in a clinical
setting and requires an alteration in the standard workflow.
The EM trackers can successfully overcome this issue, but
become susceptible to field distortion from metal objects like
surgical tools or the C arm itself, compromising on accuracy.
This has lead some recent researchers to prefer fiducial-based
tracking. In a recent publication,]8 the authors delineate the
above problems and also say that using optical trackers re-
duces the useful imaging volume of the fluoroscope and po-
tentially compromises the achievable accuracies. Despite us-
ing an optical tracker to track their surgical tools, they
explicitly choose to not track the C arm using the tracker but
instead use a radio-opaque fiducial. Their system has been
fairly successful for various surgeries and has been in clini-
cal use for the last four years. Similar preferences can be
observed in other recent publications as well 192

To make the fiducials feasible, recent publications have
reported smaller fiducials by compact bead placement. It
should be noted that this increase in clinical friendliness by
decreasing the size was achieved at the cost of a decrease in
accuracy. The typical number of beads were reported to be
between 6-28,'%7% achieving translation accuracies ranging
from 1-3 mm and orientation accuracies around 1°-2°. The
variation 1in accuracies is governed by both bead
conﬁguration19 and implementation20 choices. Increasing the
number of beads greater than 6 provides little improvement
in the accuracy.lg Moreover, nonlinear optimization fares far
superior when compared to linear methods.”** Thus, from
recent publications, it seems that a | mm error in translation
and 1° error in rotation is probably the best that bead-based
fiducials can achieve. The reason for this is that accurate
segmentation of beads in the x-ray image is nontrivial. A
2 mm diameter radio-opaque bead would project as an el-
lipse with a 12 pixel long axis. The center of the ellipse does
not necessarily correspond to the center of bead, contributing
at least 1-2 pixel segmentation error. Moreover, a further
decrease in fiducial size would greatly compromise the
accuracy.24

Methods to accommodate for and decrease the effect of
such systematic biases® are studied by the computer vision
community during their camera calibration procedures. Un-
fortunately, the improvement is not substantial. Moreover,
point-based registration methods are known to be sensitive to
segmentation errors.”* Thus a totally new approach toward
fiducial design will be required. Moreover, automatic seg-
mentation and establishing correspondences between the fi-
ducial beads and their projections in the image is itself a
nontrivial task for arbitrary positions of the fiducial. In a
synergistic problem, the end effector of a surgical robot was
registered to a C arm using line fiducials’ mounted on the
robot’s tool holder. The idea was to register the x-ray image
to a robot, in order to locate the target anatomy in the coor-
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dinate frame of the surgical robot. Although their helical fi-
ducial did not allow for sufficiently accurate and robust pose
recovery, it was an important effort that inspired our work.
Our present contribution to the state of the art is the devel-
opment of a novel fiducial system and its mathematical
framework. The fiducial uses ellipses and straight lines in
addition to points. It offers a decrease in size, an enhance-
ment in accuracy and robustness in C-arm pose recovery,
allowing for precise object reconstruction. Some preliminary
studies have been published earlier,ZI’26 while we present the
complete mathematical framework, results and analysis in
this paper.

Il. MATERIALS AND METHODS

Our solution to image-based pose recovery is to mount a
stationary fiducial in the field of the C-arm fluoroscope. The
fiducial, by design, encodes six degrees of freedom (DOF)
from a single image by creating a unique view from any
direction. The accuracy and robustness of pose recovery
would critically depend on the design and precise manufac-
turing of the fiducial. Software was created for segmentation
of the fiducial and for numerical optimization that deter-
mines the six-DOF transformation between the coordinate
frames of the C arm and the fiducial.

A. Fiducial design and manufacturing

For practical viability the fiducial should (a) be nonintru-
sive with small dimensions; (b) not corrupt image quality; (c)
not necessarily be close to the anatomy of interest; (d) be
easily/accurately segmentable from x-ray images; and (e)
have software that is robust, fast, and simple to use.

1. Choice of fiducial features

Geometric aspects of x-ray imaging are modeled using the
perspective projection model (Sec. IT B), under which we can
limit the choice of features to well-behaved features like
points, straight lines, ellipses, parabolas, helixes, and other
curves. Different features exhibit varying segmentation accu-
racies, each combination thus producing a fiducial with dif-
ferent characteristics. Segmentation is crucial, since it di-
rectly relates to achievable pose estimation accuracy. Image
processing algorithms can more accurately segment con-
strained (parametric) curves when compared to uncon-
strained curves, usually to a subpixel precision.

Projected point features have a high segmentation error
(~1-2 pixel) but make the pose estimation problem very
well constrained.”’ Straight lines are not as well constrained
as points, but offer superior segmentation accuracies to
points. Linear methods are available for both feantures,zg_30
but it should be noted that due to an inability to incorporate
all the rotation constraints, linear methods have been shown
to not fare as well as nonlinear methods.”** A helix is a
parametric curve that projects as a nonparametric curve with
nondifferentiable segments, leading to inaccurate segmenta-
tion, which makes pose estimation prone to errors.” Alterna-
tively, ellipses, parabolas, and hyperbolas are conics that will

25
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FiG. 1. The center of the cone is the x-ray source, while the base is the
image plane. The intersection of this plane with the cone is an ellipse. Any
3D curve combined with the x-ray source defines a unique cone, which
intersects the image plane as an ellipse. Any conic in general projects as
another conic under perspective geometry.

always project as another member of the same family. The
proof of this is self-explanatory from Fig. 1. Moreover, since
the mean direction of the x-ray beam is near-orthogonal to
the image plane, we can, without loss of generality, assume
that the projection of all conics would be an ellipse on the
image plane. Parabolas and hyperbolas would project as
open ellipses, making segmentation prone to error. In com-
parison, a 3D ellipse will project as a closed ellipse in the
image, making it an ideal candidate feature.’'** A 3D circle
is a special case of the ellipse.33735 It should be noted here
that even though ellipses are easy to segment, exact linear
techniques for pose estimation from ellipses are not
available.***” Some authors have attempted to linearize pose
estimation using an ellipse,29 but not with high accuracy.

Thus we choose a combination of ellipses, straight lines,
and points as our primary features, balancing between accu-
racy and convergence. Ellipses make the algorithm more ac-
curate, points make it more robust, and lines will achieve a
bit of both.

2. Necessary and sufficient feature combinations

A combination of the above features can be used for pose
estimation. The number and placement of the features will
decide the robustness of the fiducial. It can be shown geo-
metrically that the correspondence of at least three points is
required for determining the pose of the fiducial uniquely.
Using the point-line duality, we can also conclude that a
minimum of three straight lines (not line segments but infi-
nite lines) is necessary to find the pose uniquely. A single 3D
circle limits the pose to four discrete symmetric choices,
along with an indeterminable rotation along the normal axis.
An ellipse is able to limit this to only 16 discrete positions.
Thus, an ellipse/circle along with a point, can uniquely en-
code the pose of the fiducial. Open curves like the helix,
parabola, and hyperbola can limit the pose to just two dis-
crete rotations.

Note that these are purely theoretical considerations and
using the bare minimum number of features will result in a
loss of accuracy. Inaccuracies in the imaging model coupled
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FIG. 2. Images of the FTRAC fiducial (a) cylindrical sheath design; (b) wire
model; (c) photograph; (d) x-ray image.

with image quantization errors, would make slight variations
from the actual pose produce nearly identical images. In
other terms, the Jacobian for image formation loses rank and
becomes singular. Singular matrices are undesirable because
they cannot be inverted, and indicate that the system has
become degenerate. Each feature has blind spots, near which
the Jacobian would be singular. Near-singular matrices are
theoretically invertible but numerically unstable, resulting in
large errors during matrix inversion. For example, the ellipse
projects as a straight line in its own plane, and hence the
Jacobian would be ill conditioned (near-singular) when the
actual pose is in the vicinity of this blind spot. Thus, the
placement of all the features should be such that a singularity
from one feature is cancelled by a good Jacobian from an-
other. This suggests that a highly redundant structure is
needed to accommodate a sufficient range of projection
angles and compensate for inevitable calibration and image
processing errors.

Our first motivating application is prostate brachytherapy
(Sec. IV), where the fluoroscope has a limited view within a
25° cone around the AP axis. To tackle blind spot singularity,
we choose to arrange two noncoplanar ellipses 60° from each
other (Fig. 2). When one ellipse projects with high eccentric-
ity, the other ellipse projects as a circle, forcing at least one
ellipse to encode strongly in any direction. We added three
line segments as features, further utilizing the endpoints of
the segments as six point features. To make it nonsymmetric,
three additional points were added at known distances along
the lines. Thus, one segment has four points, another has
three, while the third has just two. This fact is also used to
distinguish between the ellipses, which otherwise have the
same dimensions. These features constitute our fiducial,
which henceforth we shall refer to as the fluoroscope track-
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FiG. 3. Projective geometry and notations for fluoroscopic imaging.

ing (FTRAC) fiducial. The features are placed carefully so
that the projection of radioactive seeds in the prostate does
not overlap with that of the fiducial, even when they are
beside each other. All the features of this fiducial are
mounted on the surface of a hollow cylinder, which remains
stationary. The diameter of the cylinder is 3 cm. Thus, all the
features fit inside a 3 X3 X5 cm volume.

3. Manufacturing

The design for the fiducial was refined by generating mul-
tiple rough prototypes from ABS (acrylonitrile butadiene sty-
rene) using an FDM (fused deposition modeling) rapid pro-
totype machine. The final fiducial design was then fabricated
from a acetol rod using a four-axis CNC (computer numeri-
cal control) mill, with the grooves of the fiducial geometry
machined into its surface to press fit 0.5 mm stainless steel
wires and 2 mm stainless steel beads. The cylinder was press
fit into a custom acetol mount that provided three mutually
orthogonal sets of mounting holes for attaching to an accu-
rate rotary table for validation.

B. Pose recovery mathematics
1. C-arm imaging

Geometric aspects of fluoroscopic imaging can be mod-
eled as a perspective transformation with five parameters—
focal length, image origin, and pixel size (Fig. 3). The trans-
formation formula is given in Egs. (1) and (2); where
Fr,Fx,F; are the coordinate frames of the fiducial, x-ray
source, and the image, respectively; P is a 3D point; Py are
the homogenous coordinates of P in Fg; p is the projection
of P on the image plane; p; are the homogenous coordinates
(in pixels) of p in frame F;; *F is the 4 X4 rigid transfor-
mation matrix that transforms a point in F to Fy; va 'y 1s the
3 X4 perspective projection matrix; f is the focal length; O
=(0,,0,) is the projection of the x-ray source on the image
plane (later referred to as the origin); s, and s, are the pixel
sizes along the X and Y axes of the image,

p1=1FXXFFPF7 (1)
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Assuming that the C arm is calibrated ('Fy is known), the
problem remains to estimate the pose of the fiducial (*F )
given the image. *F » consists of six independent
parameters—17;,7,,T5 are the translation parameters, while
b1, &y, 5 are the three Euler rotation angles along the x, y,
and z axes [which determine r;; in Eq. (2) uniquely].

In this framework, the exact solution is rendered nonlin-
ear and we use the iterative Newton’s optimization method to
solve it. We segment the fiducial from the image, solve the
correspondence problem using the nonsymmetry of the de-
sign, and then feed this to the optimizer. The optimizer as a
first step computes an expected image location of the fidu-
cial. It also computes a Euclidean-distance-based multidi-
mensional error function. It is assumed that at the correct
pose, this error is zero. A closed form of the Jacobian is
provided, to ensure quick and accurate convergence.

2. Error formulas for points, lines, and ellipse

The multidimensional error vector measures the Euclidian
distance (in the image) between the segmentation of the ob-
served projection of the fiducial, and that of the current pro-
jection. A segmentation algorithm for the current image is
not needed since the position of any feature in the current
image is computed directly using its 3D location on the fi-
ducial. The distance from each feature in the current projec-
tion, to its corresponding counterpart in the observed image,
constitutes one element in the vector. When all features
match perfectly, each element in the vector is zero.

The Euclidian distance for corresponding point features is
the difference in their image coordinates. Let (X!",Y",Z") be
the coordinate of P; in Fp (model/FTRAC frame) and
(X;,Y;,Z,) be its coordinates in Fy. Let (x;,y;) be the current
coordinates of p; in F}. p; is a function of the six parameters
(b1, b, d3,T,T,,T3), which we shall refer to by a rotation
matrix R and a translation vector 7. Let (X;,y;) be the coor-
dinates of the observed point p; in the image. Since each
iteration of the method has its own rotation and translation
parameters, we shall refer to them by their iteration number k
as, R, and 7;, with R and 7, being the initial estimate. & is
the error function. Under this notation, the current estimate
of the distance function for points can be written as

;= xRy, Tp) - ;. (3)

5yi=yi(Rk777c) =i 4)
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Note that the L, norm of these two values is the exact
Euclidian distance between the two points, and that the op-
timizer minimizes the L, norm of the vector.

There is no notion of the Euclidian distance between two
straight lines. Thus, we select a point on one straight line and
measure the distance of this point from the other straight
line. Any two points uniquely determine a line, and hence
they can be sufficient to measure the distance between the
straight lines. If the equation of a straight line in the image is
Ax+By+C=0, then the distance of (x;,y;) from the line is

Axi+Byi+ C

VA + B?

8x;,y;) = (5)

Any two points on the line segment can be used, but we
use the endpoints for robustness. A similar technique can be
used for an ellipse, but no simple closed-form formula exists
for the Euclidian distance of a generic point from an ellipse.
In fact, this distance is one of the solutions to a fourth degree
polynomial,38 from which the minimum distance solution has
to be chosen. We derive an approximation that works well
when the point is not too far away from the ellipse. The
general equation of an ellipse (conic) is PTMP=0,

A B2 D[«
[x vy 1|B2 ¢ E2|y|=o0, (6)
b2 E2 F |1

which can be rotated, translated, and scaled to give
PTFTMFP=0(P™M'P=0),

1/a*> 0 0 |[x
[x y 1]l 0 1/* 0 ||y]|=0, (7)
0 0 -1]1

where a,b are the length of the major and minor axes. PTM P
is a good distance metric since it is rotation and translation
invariant. Unfortunately, it is a nonlinear metric but can be
scaled near the ellipse boundary to give an approximate Eu-
clidian distance. Using Eq. (7), the scale factor after some
first-order approximations turns out to be K=ab(AC
—B?/4)/2\a*+b* det(M). The final distance function from
any point to the ellipse is shown in Eq. (8). Theoretically, a
minimum of 5 points are required to localize an ellipse ex-
actly, though we use 12 for robustness,

8(x;,y;) = KPTMP
__ab  (AC-B4)
_2\"’a +b*  det(M)
A B2 D2 ||lx
X|Bl2 C ER2 ||y | (8)
D2 ER F |1

v, yi 1]

3. Jacobian calculation

The error/distance metric is a 48-dimensional vector (18
from 9 points, 6 from 3 lines, and 24 from 2 ellipses), the
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FIG. 4. The derivative of a point vector P with respect to a direction n is
given by the cross-product of n and P.

zero value of which is computed using the Newton’s method.
To quickly find this global minimum is a practical challenge.
Exact knowledge of the closed form Jacobian of this vector
makes a significant improvement in speed and accuracy. The
Jacobian is a matrix of size 48 X 6, and of the form 96,/ &Pj,
where i=1---48, j=1---6; and P, representing the (six) pose
parameters. We first compute the building blocks dx;/dP; and
dy;l IP;, for later use in the Jacobian computation. From Egs.
(1) and (2), we derive

/X,

+0
|:xi:| SeZ, :
Vi -1Y;

+o0,
S Z; ’

irHX;"+r12Y;"+r13er-"+T1 ‘o
m m m
_ Sy r31Xl~ + r32Yi + r33Zl~ + T3 (9)

irQIX;" + r22Y;n + r23Z;" + Tl

Sy VSIX;H + r32Ylm + r33Z;-" + T3

X

+o0,

From here, straightforward manipulations lead to the tran-
snational Jacobian,

f 1 8)6[

ox; - ax;  fX;
A sz T sz
(10)
Moo mi_ofl Y
JT, ary 5,77

AT, s, 7

To obtain the rotational Jacobian, we first estimate
Pl &cﬁj, which we use to estimate &P,J&(ﬁj, which will give
us dx;/ d¢p; and dy;/ d¢p;. Here P; is treated as a vector in space
dP}'/ d¢; can be obtained geometrically as a cross-product, as
illustrated in Fig. 4,
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P!
L= [l,O,O]TX P,
9
P
—-=[0,1,0]" X P, (11)
ddy
P
— = [0,0,1]T>< P!
d3

dP}'/ d¢; is defined in Fp. It needs to be rotated to change
it to frame Fy,

P, P

— =R—. (12)

dp; 2

From Eq. (9), dx;/d¢; and dy;/ d¢; can be derived as
Nz~ X Nz -Yi—

9% _ Ip; 9/ i _ Ib; _99;

I .27 Ly Z; .

(13)

Using Egs. (3)—(5), (8), (10), (12), and (13), we can derive
the Jacobian for the point, line, and ellipse features as

aox;)  ax; Ady) i

ap; P aP; Py

35, 1 x; 4
_L=’—<Ai+3@>’ (14)
(7Pj \s“AZ+B2 JP]' (97)]

— =K<(2Ax,-+By,-+D)£ + (2Cy,»+Bx,»+E)ﬂ>.

IP; J IP;

4. System of equations and update formula

Thus, for each feature distance, a first-order approxima-
tion can be written as

Y 8
E<_ZATf+_lA¢j)=5i’ (15)
which can be rewritten as
JAP =6, (16)

where J is the Jacobian, P are the six parameters, and J is
the multidimensional error function. The method proceeds by
computing new estimates for R and 7, and iterates until §
becomes acceptably small. The new estimates for PP are ob-
tained by inverting Eq. (16). Given the current estimate R,
and 7, and corrections A7, and A ¢, the new estimates R
and 7, can be computed as follows:

0 {RM Tm}_[nk Tk][ARk Mk]_
o 1] Lo 1jflo 1]

(2) T =T+ ATy, = G+ Ay
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) T =T+ AT, Ripi = RAR,.

The third update formula is most robust, while the first
two are not stable, as they are extremely sensitive to numeri-
cal errors. It is also important that the order of A¢,, Ag,,
and A¢; should not be changed while generating AR,. Al-
ternately, some other representation for the rotation matrix
can also be used.

5. Least-square robustness

The fiducial rotation is measured in radian while transla-
tion is measured in mm, giving rise to numerical instabilities
during the inversion of the Jacobian in Eq. (16). The inver-
sion process can further worsen if the Jacobian is close to
singularity. Besides, the assignment of different weights to
different features may be desired, since within the region of
interest some features will be statistically more robust than
others. These problems are solved by using parameter and
task variable scaling,”’40

G(UJH)(H'AP)=G§. (17)

H scales the parameter space without changing the least-
squares solution, since H can be chosen to make JH better
conditioned than J. The H matrix can be constructed by us-
ing the parameter covariance matrix, for which we need an
initial estimate of the solution and the standard deviation of
each parameter. Column scaling41 is another popular method
when no a priori information is available. Unfortunately, this
can have a problem if the parameters are poorly identifiable®?
in some poses. This is solved using the external scaling
method, which does a column scaling on the most conserva-
tive estimates (the worst possible Jacobians). We ran 50 000
pose simulations to determine our H matrix using this
method.

The G matrix is used for task variable (8) scaling, which
can be computed by the Gauss—Markov estimate by using a
good estimate of the covariance matrix of the error function.
In the absence of this matrix, another statistical approxima-
tion is to use a diagonal matrix, with each entry being the
reciprocal of the standard deviation of that error element.
This would make the L, norm a reasonable measure of the
size of the least square error vector. We computed our G
matrix using data from the same 50 000 pose simulations
that we ran earlier.

6. Final optimization

The above framework was implemented using Newton’s
nonlinear optimization. We noticed that the optimization al-
ways converged in less than 25 iterations. The exit condition
was defined as 50 iterations or a plateau in the error curve,
whichever came later. We also incorporated some basic
checks on the final answer to remove any mirror solutions.
Other extraneous solutions can also act as a local minimum,
in which case the initial estimate is perturbed a little to yield
the correct convergence. A robust pose recovery algorithm
was developed, by building on this optimization.



3191 Jain et al.: Fluoroscope Tracking (FTRAC)

Scgment Fiducial

:

Current Estimate

Initial Estimate

Expected Fiducial Image
Jacobian
FEuclidian Error Function
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FiG. 5. The basic pose estimation algorithm.

7. Robust pose recovery algorithm

To make the pose recovery more robust, we have de-
signed a two-phase pose recovery algorithm. The basic pose
recovery algorithm is outlined in Fig. 5. Like all optimiza-
tions, this one is prone to fall into a local minima, from
which it may not be able to recuperate. This is resolved by
running the algorithm multiple times from various initial es-
timates for the pose. This approach is able to reduce the
probability of failure exponentially. In a loose sense, if
p(~0.3) is the probability of failure in any given iteration,
then the probability of success after N independent runs is
1-p", which is sufficiently close to guaranteed success.
Moreover, to make pose recovery more accurate, we use the
observation that point features, though inaccurate, converge
more reliably (see Table I). Thus, the basic algorithm runs 25
times using only the point features, from which we obtain a
very good guess for the final pose. This is used as the initial
estimate and now the basic algorithm runs another 25 times
using all features. Though the number of iterations can be cut
to one-fifth without compromising on the convergence, the
extremely fast run time allows us to add a safety bracket by
increasing the number of iterations. Figure 6 outlines the
algorithm. This robust algorithm ran for tens of thousands of
poses (spanning the complete workspace) without failure.

TaBLE 1. For the basic pose algorithm, different feature combinations give
varying errors and percentage failures.

Points, lines and ellipse Translation Rotation Failures
combinations (nm) (°) (%)
6P+3L+2E 1.82 0.89 31.40

6P+2E 1.96 1.16 28.00
6P+3L 2.09 1.24 28.80
3L+2E 223 0.98 90.60

6P 2.48 1.53 27.00
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Basic Pose Algorithm
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Choose Pose with
Minimum Error

Choose Pose with
Minimum Error
Final Pose

FiG. 6. The robust pose estimation algorithm.

8. Segmentation

Additional constraints on their coordinates make a seg-
mentation of parametric curves (straight lines, ellipses, etc.)
more accurate than points. Since automatic segmentation of
parametric curves is not the research contribution of this
work, we do not produce specific numerical results that
would sidetrack the main theme of the paper. Instead we
refer the readers to the extensive literature already available
in the computer vision and image processing community,
where ellipse segmentation is a field in itself.>>** The
parametric constraints can help segment the whole curve
with high accuracy, even when most of the curve is occluded
and only a small part is visible/segmented.43 This makes
pose estimation efficient. Moreover, the compact design of
the fiducial decreases the likelihood of occlusion. We have
developed and tested two methods of segmentation, both of
which exhibit similar performances.

For many clinical applications, semiautomatic segmenta-
tion suffices. The operator clicks at a few points in the image
that are close to the curves of interest. A minimum intensity
centroid search in the neighborhood fine-tunes this location.
Least square curve fitting is used to obtain the equation of
the straight line and ellipse. Since the point features are
known to be on the (extended) straight lines, their centroid
positions are projected on the straight lines to get the final
position. The semiautomatic MATLAB implementation takes
about 10—15 s to process each image, which is acceptable
for many applications.

Automatic segmentation of parametric curves is achieved
by using the Hough transform,”>* which searches in the
parametric space. An edge image is created to search in the
parametric space. Straight lines are segmented using the
Hough transform, after which each line is fine-tuned by do-
ing a search for minimum intensity points in a small neigh-
borhood, followed by running a RANSAC-based least square
ﬁtting43 on these points. The three strongest near-parallel
straight lines are chosen. The ellipse is composed of five
parameters, which renders the parametric search space huge.
A decoupled approach is used where the Hough transform is
used to estimate various possible axes of symmetry in the
image. Selected intersecting orthogonal axes are possible
candidates for an ellipse. A 2D Hough transform is used to
find the best ellipse for each intersection pair, which is then
fine-tuned. The two strongest ellipses are chosen. Our imple-
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TABLE II. Pose recovery error (simulation) as a function of segmentation error.

Translation (mm)

Segmentation

Rotation (°)

error (mm) X Y Z X Y Z
0.00 0.18 0.19 0.75 0.02 0.02 0.01
0.50 0.19 0.18 0.79 0.05 0.06 0.04
1.00 0.19 0.19 0.79 0.09 0.11 0.07
2.00 0.22 0.22 0.98 0.18 0.22 0.14
3.00 0.26 0.26 1.24 0.26 0.32 0.21

mentation is a normalized and robust variation of Ref. 45.
The points are segmented as end points of the lines. Alterna-
tively, a curve following technique%’47 can also be used,
though not implemented in our package.

lll. RESULTS AND DISCUSSION

To measure sensitivity and robustness, the FTRAC fidu-
cial was tested using simulated data and data that was ob-
tained from real images of a precisely fabricated phantom.
Finally, experiments measuring 3D fluoroscopic reconstruc-
tion of objects (C-arm tracked using the FTRAC fiducial)
were conducted. The description and results for each experi-
ment is followed immediately by the discussion.

A. Simulation studies

As a customary first step in the evaluation of fluoroscopic
registration, simulations were conducted to evaluate the ac-
curacy and robustness of the pose estimation software. As-
suming an ideally calibrated fluoroscope, studies were con-
ducted on synthetic images to analyse the effects of various
governing parameters. MATLAB software was created to
model x-ray imaging. Given C-arm parameters and fiducial
pose, it generated a synthetic image and the exact location of
each feature in the image. Appropriate noise was added to
each imaging parameter, and its effect on pose recovery ac-
curacy was observed. The error was modeled using a uni-
form and random probability density function, i.e., a 1 mm
error means that a maximum error of magnitude 1 mm was
added, with a uniform probability distribution. Based on our
experience, the parameter values (for an average commercial
C arm) were chosen to be 0.25 mm segmentation error,
10002 mm focal length, 0.5 mm translation from the image
center for the origin, and 0.5 mm=1 wum as the pixel size.
The region of use was near the isocenter of the C arm, at
about a distance of two-thirds the focal length from the x-ray
source. With the above-mentioned error in the parameters,
individual parameters were changed to understand the sensi-
tivity of pose recovery. The simulations were carried out for
randomly selected poses in the workspace. The initial guess
was also chosen at random, far away from the actual pose.

1. Segmentation

Segmenting the projected fiducial from the x-ray images
is one of the most important sources of error. The last step of
our segmentation algorithm is to pick out multiple minimum
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intensity points and fit a least square curve. Since in the
synthetic data we know the precise position of each feature
in the image, we added a segmentation error to the simulated
point position. The erroneous points were then fit on a least
square curve. This shifted the recovered position of the fidu-
cial, which was compared to the known actual location.

Most of the translation error (Table II) was found to be
along the imaging direction, which is intuitive since small
changes in depth do not change the image significantly. The
translation error parallel to the image plane is low, which is
also intuitive since any small movement in that plane is mag-
nified in the image. This can also be derived mathematically
from Eq. (10), where the depth derivative has a quadratic
term in the denominator, while the other derivatives are lin-
ear. Note that this could be an important source of error in
depth sensitive surgeries, but in most cases is acceptable,
especially when 3D information is projected into the image
for guidance. The rotation error, on the other hand, is similar
for all axes. The net translation and rotational error (based on
10 000 simulated poses) is displayed as a graph in Fig. 7(a).
Most image processing algorithms achieve 1 pixel (0.4 mm)
segmentation accuracy for ellipses, which indicates a
0.8 mm translation and 0.1° rotation error. This appears to be
acceptable for most procedures and is similar to commercial
image guidance systems that use optical/EM trackers. More-
over, the graph suggests that the pose recovery error does not
grow exponentially with an increase in segmentation error. It
can be concluded that the FTRAC fiducial is fairly robust to
segmentation errors.

2. Focal length

The focal length, usually calibrated using an accurately
machined phantom, could vary as much as a few mm when
the C arm changes pose. Thus, an error in the focal length
estimate is very likely, which could possibly lead to an inac-
curate pose. Figure 7(b) (based on 20 000 simulated poses)
shows the pose recovery error as a function of focal length
calibration error. Orientation is always recovered with under
0.1° error, while translation error is nearly linear. Even a
5 mm error in focal length leads to under a 2 mm pose re-
covery error, with the largest component being in the imag-
ing direction. We conclude that the orientation of the FTRAC
fiducial is robust to focal length errors, while translation is a
little sensitive.
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FIG. 7. Error in pose recovery as a function of (a) segmentation error; (b) focal length error; (c) origin error; (d) pixel size error; (e) fiducial size; (f) region

of use.

3. Origin

The origin of the image, also calibrated using an accu-
rately machined phantom, would change location with vary-
ing C-arm poses. Any error in the origin estimate could lead
to a consistent shift in that particular direction. Figure 7(c)
(based on 20 000 simulated poses) shows the rotational and
translational sensitivity to the magnitude of error in origin
estimation. Both translation and orientation errors are linear,
though orientation is more robust. A 5 mm origin error leads
to under a 2 mm translation error and 0.2° orientation error,
with the largest component being parallel to the imaging di-
rection. We conclude that the FTRAC fiducial is robust to
origin estimation errors.

4. Pixel size

The pixel size along the x and y axes of the image does
not change with fluoroscope movements and stays constant
throughout the life of the fluoroscope. Hence a one-time cali-
bration can provide very accurate estimates that can be used
repeatedly, though any inaccuracies could have strong effects
in fluoroscopic reconstruction. An error as small as 10 um
could lead to a 5 mm shift near the boundary of the image.
Figure 7(d) (based on 20 000 simulated poses) shows the
sensitivity to this parameter. Both translation and orientation
errors grow linearly, with most of the translation error being
parallel to the image and orientation error less than 0.5°. We
conclude that pose recovery orientation is robust to errors in
pixel size, while translation is sensitive but linear.
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5. Fiducial size

In the design of the FTRAC fiducial, the size of the fea-
tures can influence the accuracy of the algorithm to some
extent. A large fiducial tends to be more stable than a smaller
one, and thus the size should be chosen depending on the
work space constraints of the clinical application. We studied
the pose recovery sensitivity by scaling the size (diameter
and length), but without altering the relative configuration.
Figure 7(e) (based on 8000 simulated poses) shows the trans-
lation and rotation errors as a function of size. It can be
concluded that the curve practically plateaus at 30 mm, with
a bigger fiducial exhibiting no improvement in accuracy.
Moreover, a fiducial of 1 X 1X 2 cm size appears to be prac-
tical for most applications, with only a marginal drop in ac-
curacy.

6. Region of interest

The region of use of the fiducial also has a strong effect
on the accuracies obtained. A fiducial closer to the source has
a larger magnification, thus scaling any small errors and
making the algorithm converge better. This is evident also
from Eq. (10), where the denominator in the Jacobian is the
depth of the fiducial. Figure 7(f) (based on 6000 simulated
poses) shows the pose recovery error as a function of the
distance from the image plane, expressed as a percentage of
the focal length. It can be concluded that orientation is inde-
pendent of fiducial placement, while the translation error
drops linearly in depth.
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TABLE III. Pose recovery results (phantom) using the FTRAC fiducial phantom.

Translation (mm)

Rotation (°)

Trial Number
number of images X Y Z X Y Z

1 4 0.03 0.04 0.40 0.13 0.07 0.07
2 7 0.13 0.04 0.68 0.21 0.27 0.27
3 7 0.04 0.02 0.51 0.15 0.15 0.12
4 7 0.05 0.02 0.52 0.17 0.17 0.11
5 13 0.08 0.10 0.60 0.40 0.40 0.15

Mean 0.07 0.04 0.55 0.21 0.21 0.15

STD 0.05 0.03 0.32 0.12 0.14 0.09

7. Run time and convergence

The robust pose recovery algorithm always converged
without failure. An unoptimized implementation using
MATLAB 6.5.13, on a 2.4 GHz Intel P4 with 512 MB of RAM
with a Windows 2000 OS, takes around 3.5 s to run (exclud-
ing image transfer and processing time). This indicates that
an optimized C++ implementation would perform near real
time.

B. Pose recovery studies on phantom

A highly precise phantom was manufactured and real
x-ray images were taken using a fluoroscope (Philips BV
3000). The system-supplied parameters were read from the
DICOM header, otherwise the fluoroscope was not explicitly
calibrated. Moreover, the images were not distortion cor-
rected (distortion <2 mm). The fiducial was mounted on a
highly accurate 0.002° resolution rotational turntable (30000
Heavy Load Worm Gear Drive from Parker Automation, Ir-
win, Pennsylvania). The fluoroscope remains stationary
while the fiducial moves in a known path, providing ground
truth.

A fiducial mount was designed such that it produced zero
translation and a known rotation when the turntable was ro-
tated. The design supported the two independent rotation
axes typical to C arms. Thus, given any starting pose, the
relative motion between the current pose and the starting
pose is known precisely from the turntable reading. The rela-
tive motion is also calculated using our algorithm (from
computed current pose and the computed starting pose). The
difference between the computed relative motion and known
relative motion is the error. This setup was taken to the OR
and five series of tests were carried out with different fiducial
trajectories. The results are shown in Table III.

We recorded a mean accuracy of 0.56 mm for translation
(STD 0.33 mm) and 0.33° for rotation (STD 0.21°), which
appears to be acceptable for most surgeries. It can be argued
that there may be a constant drift in the pose algorithm com-
putation, which would not be captured by this experiment.
All five trials have consistent results with the simulation ex-
periments, indicating that a constant error drift is highly un-
likely, which is further affirmed by the 3D reconstruction
studies below.
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C. Reconstruction studies on phantom

C-arm tracking is not an end in itself, but is a necessary
link toward 3D object reconstruction using multiple x-ray
images. The second set of phantom experiments involved
taking x-ray images of a stationary object from different
views, and reconstructing it in space. The FTRAC fiducial
was kept stationary, while the C arm was moved and mul-
tiple images (20° around the AP axis) were taken. The 3D
coordinates of the nine fiducial points were reconstructed
using two to five images (the FTRAC fiducial tracked the C
arm). The location of these points was known with respect to
the fiducial by precise fabrication. The 3D reconstruction
accuracy is the difference between the computed coordinates
and the actual coordinates of the fiducial points. The points
were reconstructed with a mean accuracy of 0.53 mm (STD
0.16 mm), which appears to be acceptable in most surgeries.
A significant portion of the pose error is in the imaging di-
rection, and hence in order to improve accuracy, the image
separation should be increased, being orthogonal in the ideal
case. Complete results are available in Table IV. Note that
this reconstruction accuracy will also be a function of image
warping and segmentation error. The FTRAC fiducial has
also been successfully used to reconstruct phantom brachy-
therapy implants,48 the performance of which is similar to
that reported here.

D. Comparison to conventional fiducials

In Sec. I, we provided the reasons why there is a need for
a small, yet accurate radio-opaque fiducial. In this section,
we offer quantitative results indicating progress over previ-
ous work. When analyzing the basic pose recovery algo-
rithm, simulation experiments from Sec. II show that though
using only point features is most stable, it is also the least
accurate (Table I). As reviewed in Sec. I, all previously pro-
posed fiducials can be classified as bead-based fiducials (ex-
cept one’ that we shall compare with in the end). Moreover,
even among these fiducials, increasing the number of beads
to more than 6 has little improvement in acculra(:y.19 For any
given fiducial, various pose estimation algorithms can be de-
signed, most of which fall into two categories—linear and
nonlinear. Linear algorithms evaluate least-squares solutions
to the pose problem, for which they typically linearize the
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TaBLE IV. Object reconstruction results using the FTRAC fiducial phantom.

Number of images
used for each

reconstruction MEAN STD MIN MAX

2 0.55 0.17 0.20 1.18

TRIAL 1 3 0.50 0.14 0.19 0.92
4 0.48 0.14 0.19 0.75

5 0.47 0.14 0.23 0.67

2 0.66 0.25 0.27 1.70

TRIAL 2 3 0.55 0.16 0.29 1.13
4 0.53 0.15 0.30 0.80

5 0.52 0.14 0.33 0.73
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rotation matrices. Though quick and easy to implement, the
problem with this approach is that it neglects the rigid rota-
tion constraints, leading to lower accuracies. Extensive re-
sults are available in the 1iterature,20’23 where the accuracy of
nonlinear methods is shown to be superior to linear methods.
Thus, it should be sufficient to compare the performance of
the FTRAC fiducial to a nonlinear pose estimation algorithm
using six beads. To improve robustness of bead-based fidu-
cials and to remove any biases that can arise due to a pref-
erential configuration of the six beads, we compared the
FTRAC fiducial to a nine-bead fiducial.

The predominant reason that the FTRAC fiducial offers
better accuracies to other fiducials is that it relies on ellipses
for evaluating the pose. Both for automatic and semiauto-
matic segmentation methods, achievable accuracies are de-
pendent on multiple parameters like feature constraints, im-
age resolution, x-ray wavelength, material used, choice of
algorithm, etc. Thus, in the same image, different features
provide different levels of accuracies. As reviewed in Sec. II,
ellipses intrinsically offer better segmentation than beads. To
quantitatively understand the improvement, we look at the
residual errors from segmented datasets. The accuracy of
each feature at the recovered pose is shown in Table V. It can
be noticed that closed parametric curves (ellipses) segment
with an overall accuracy of 0.13 mm, open parametric curves
are a little more error prone with an accuracy of 0.19 mm,
while points offer only 0.43 mm. The standard deviations

TaBLE V. Residual distances for each feature from the five phantom trials.
Parametric curves provide greater accuracies.

Points Lines Ellipse

Residual 0.44 0.14 0.15
error 0.49 0.14 0.18
(mm) 0.43 0.28 0.11
0.38 0.21 0.10

0.42 0.19 0.11

MEAN 0.43 0.19 0.13
STD 0.04 0.05 0.03
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values are stable at under one-eighth of a pixel (50 wm).
Thus, it seems that ellipse segmentation tends to be about
three times more accurate than points.

We conducted simulations for over 7000 poses and com-
pared the pose recovery results of a nine-bead fiducial to the
FTRAC fiducial, keeping this disparity in mind. The results
for translational and rotational pose recovery accuracies are
available in Figs. 8(a) and 8(b), respectively. It can be noted
that even with high amounts of segmentation error, the
FTRAC fiducial exhibits only a marginal loss in accuracy.
On the other hand, the errors for bead-based fiducials climbs
steadily. This pattern is observed for both translation and
rotation, where the error quickly climbs to the 1 mm and 1°
mark for the bead-based fiducials, while it remains consis-
tently low for the FTRAC fiducial. This indicates that the
FTRAC fiducial is not only more accurate, but also more
robust when compared to conventional fiducials. We do not
explicitly compare the FTRAC fiducial to the helical
fiducial,” since the errors reported there are well over
1.5 mm in translation and 2° in rotation, while we obtain
significantly superior results. Last, it should also be noted
that the results obtained in Sec. III indicate a significant im-
provement to the previously published results (Sec. I).

IV. MOTIVATING APPLICATIONS

Though we have designed and tested the fiducial as a
stand-alone piece of technology, we also intend to use it in a
clinical application. The first use of this pose recovery tech-
nique will be in prostate brachytherapy, where C arms are
ubiquitous, with over 60% of the practitioners using it in the
operating room.* Unfortunately, it is used only for qualita-
tive implant analysis and not for providing real-time intra-
operative dosimetry. Thus, the ultimate goal will be to
achieve registration between the seeds that are reconstructed
from fluoroscopy and the soft tissue anatomy that is recon-
structed from transrectal ultrasound (TRUS), which would
allow us to make immediate provisions for any dose devia-
tions from the intended plan. Several leading groups have
published initial results favorably supporting C-arm fluoros-
copy for intraoperative dosimetric analysis.sw52 To achieve
intraoperative dosimetry in prostate brachytherapy, we need
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Rotation Accuracy of FTRAC to Bead-Based Fiducials

FIG. 8. A comparison of pose recovery
accuracies for a nine-bead conven-
tional fiducial compared to the
FTRAC fiducial. Errors in (a) transla-
tion; (b) rotation. The FTRAC fiducial
performs significantly superior.
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to address the issues of (a) C-arm distortion correction and
calibration; (b) C-arm pose tracking; (c) seed matching and
reconstruction; and (d) registration of C-arm to TRUS im-
ages. The FTRAC fiducial is capable of addressing the issues
of pose tracking and registration.

In a quick survey of registration, thin metal wire™ inside
a Foley catheter was used to visualize the prostatic urethra
fluoroscopically in anterior—posterior and lateral projections.
Recently, gold marker seeds™ were implanted into the pros-
tate and the relative positions of the needles and marker
seeds were observed in fluoroscopy. Inserted implant
needles’” were used as fiducials for the registration of the
fluoroscopy and ultrasound spaces. Unfortunately, implanted
markers of any sort are susceptible to motion, and thus are
not reliable. Alternately, radio-opaque spherical beads have
been rigidly attached to the TRUS probe,19 not only register-
ing the TRUS to the x-ray images, but also addressing track-
ing. This process appears to require a permanent alteration to
the probe, which for some practitioners might not be desir-
able.

Since in commercial brachytherapy systems the template
is already registered to TRUS, the FTRAC fiducial will be
attached to the implant template with a precision-machined
mechanical connector in a known position. The spatial rela-
tionship between the FTRAC and TRUS is explained in Fig.
9. Let Py be a point reconstructed in FTRAC space, Py be
the same point in ultrasound space, Frr be the transformation
between FTRAC and template, and Fy; be the transforma-
tion between template and ultrasound. Then the relationship
between P; and P can be expressed as Py=Fyy Frr Pg.
Let us examine how accurate Py, is expected to be the accu-
racy of Fpr is defined by the accuracy of CNC machining
and is in the neighborhood of 0.25 mm. The accuracy of P
was found to be about 0.5 mm in our experiments. The ac-
curacy of Fry is specific to the FDA-approved brachytherapy
system (CMS Interplant) that we will be using, and it is
about 1.0 mm. Thus, the overall accuracy of the whole sys-
tem is expected to be under 2 mm and can be further reduced
by an improvement in the template-to-TRUS registration
method. Experiments to evaluate the accuracy of the com-
plete system are currently underway.

The fiducial is of general use, but has been optimized for
prostate brachytherapy. The ellipses (and other features) are
inclined at an angle of 30° to the vertical. Even when the
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fiducial is kept close to the prostate and at varying heights, a
30° plane (to the vertical) divides the fiducial from the pros-
tate (which contains the seeds). If the C-arm images are
taken in any position inside the 30° cone around the AP axis,
this design reduces the likelihood of overlap between the
seed projections and the fiducial. As we have mentioned ear-
lier, we will mount the FTRAC fiducial over the abdomen on
the TRUS stepper, in a known calibrated pose relative to the
template with the use of a precision-machined extender [Fig.
10(a)]. The distance between the FTRAC fiducial and the
prostate will be about 15 cm, in which range the pose recov-
ery and object reconstruction stabilities are adequate. The
fallback plan,” as shown in Fig. 10(b), is to place the fidu-
cial on a rectal sheath that supports the prostate, while the
TRUS probe can move unhindered inside the sheath. The
technical difficulty in this case was a robust coupling be-
tween the TRUS probe and the sheath, at acceptable loss in
image quality. However, an increase in insertion diameter is
of concern. A third alternative is to put the patient on a foam
board incorporating one or several FTRAC fiducials in
known relative offset with respect to the TRUS stepper.
Apart from brachytherapy, another promising application
is fluoroguided robot-assisted surgery, as done in the
literature.” If mounted on the robot, the FTRAC fiducial can
register the robot to the C-arm space, achieving virtual fluo-
roscopy. In general, surgical tool tracking under x-ray fluo-

Py=FryFer Pe
F

fw—\»
: Extender

FTRAC

Needle

rostate

TRUS PROBE™~_

FIG. 9. Frame transformations between the FTRAC and TRUS.




3197 Jain et al.: Fluoroscope Tracking (FTRAC)

X-ray Fiducials Sheatn

Sheath Mount to TRUS stepper

| Sheath-Stepper Quick Release Mount |

FiG. 10. The FTRAC fiducial mounted on (a) the template; (b) a hollow
cylindrical sheath.

roscopy imaging can be achieved if the C arm is kept sta-
tionary, while the FTRAC fiducial is rigidly mounted on a
surgical tool. Moreover, segmentation of the fiducial image
and pose recovery have an inherent duality (i.e., knowing
one directly relates to the other), which can further boost
accuracy. The final pose can be used to improve segmenta-
tion, which, in turn, can enhance the pose. Iteratively doing
this will not only improve accuracy, but also remove the
need for an accurate segmentation. Alternately, an algorithm
that does not optimize on the geometric error of the fiducial
features, but optimizes directly on the intensity information,
can be used. Both these techniques will eliminate the need
for segmentation, while still achieving accurate pose recov-
ery. The FTRAC fiducial can potentially also be used for
both preoperative and intraoperative C-arm calibration. Ad-
ditionally, the FTRAC fiducial can be instrumental in regis-
tering x-ray images to other imaging modalities. Thus, the
FTRAC fiducial can facilitate a plurality of fluoroscopically
guided procedures.

V. CONCLUSION AND OPEN QUESTIONS

A fiducial for robust and accurate C-arm tracking was
designed, prototyped, computationally evaluated, and experi-
mentally validated. The primary contribution of this work
was the use of parametric curves (ellipses and straight lines),
in addition to spherical beads that have been used conven-
tionally. Point-based algorithms, though easy to implement,
are sensitive to errors. On the other hand, parametric curves
(a) segment accurately; (b) constrain pose recovery better;
and (c) move pose recovery outside the framework of purely
point-based methods. The proposed fiducial also addresses
the issue of registration to other imaging modalities by pre-
cise placement.

Without distortion correction and extensive calibration,
the FTRAC fiducial can track a C arm with a mean accuracy
of 0.56 mm in translation (STD 0.33 mm) and 0.33° in rota-
tion (STD 0.21°) and can reconstruct 3D coordinates to a
mean accuracy of 0.53 mm (STD 0.16 mm). It not only
promises to offer superior accuracies when compared to con-
ventional fiducials, but also is significantly smaller in size
(3X3 X5 cm). The simulations suggest that the size of the
FTRAC fiducial can be further reduced to 1X1X2 cm,
maintaining a similar level of accuracy.

One of the open questions in quantitative fluoroscopy is
the importance of distortion correction and C-arm calibra-
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tion. Generally speaking, distortion is widely prevalent and
necessitates a correction procedure. This assures accurate
tracking and reconstruction. Since properties vary from one
machine to another, the distortion on some fluoroscopes
might be small, while on others it might be large. Moreover,
some applications might be more robust to distortion effects
than others. Depending on the application and the amount of
distortion, researchers might choose to (a) correct for a
unique distortion at every pose, (b) use a constant correction
for all poses, or (c) completely neglect distortion. This deci-
sion has to be made on a case by case basis. The results in
this paper are on uncorrected images. The reason for robust-
ness of our results to C-arm distortion can be attributed to the
low amounts of distortion in the fluoroscope (average
<2 mm) and to the small physical size of the fiducial, which
covers only a small area in the image. Since distortion cor-
rection is not the focus of this paper, we do not analyze its
effects on reconstruction. The results and analysis are avail-
able elsewhere.*®

A similar issue arises for a calibration of the imaging
parameters. Though it is believed that accurate calibration is
a necessary prerequisite for quantitative fluoroscopy, our re-
sults indicate that it might not always be the case. Depending
on the C arm used and the variation in the imaging param-
eters, inaccurate imaging parameters might still provide an
accurate reconstruction of 3D information. These ideas can
have desirable repercussions in a variety of clinical proce-
dures, meriting further research. Though the FTRAC fiducial
directly does not address these issues, it has provided the
necessary intuition. We hope that these ideas, in collabora-
tion with the FTRAC fiducial, will boost the clinical rel-
evance and applicability of quantitative fluoroscopy on ordi-
nary C arms.
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