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Abstract—This paper presents the results of a feasibility study
to demonstrate the application of ultrasound RF time series
imaging to accurately differentiate ablated and non-ablated
tissue. Methods: For 12 ex vivo and two in situ tissue samples,
RF ultrasound signals are acquired prior to, and following, high
intensity ultrasound ablation. Spatial and temporal features of
these signals are used to characterize ablated and non-ablated
tissue in a supervised-learning framework. Results: In cross-
validation evaluation, a subset of four features extracted from RF
time series produce a classification accuracy of 84.5%, and an
area under ROC curve of 0.91 for ex vivo data, and an accuracy
of 85% for in situ data. Conclusion: Ultrasound RF time series
is a promising approach for characterizing ablated tissue.

Index Terms—tissue ablation, ultrasound RF time series, char-
acterization of ablated tissue region.

I. INTRODUCTION

Ablation therapy is an active field of study as a minimally
invasive cancer treatment modality in the last few decades [1].
Using this modality, the surrounding tissue can be preserved
while targeting specific tumour locations. Chemical, cryo,
and thermal ablation are the techniques developed to achieve
permanent destruction of tumours. Chemicals, chemothera-
putic drugs, or radioactive isotopes are used as intralesionally-
injected agents for attacking cancerous cells in the tissue.
Yet, they result in incomplete necrosis of ablated lesions
[2]. Cryoablation is another promising technique that causes
tissue death by alternating cooling and thawing cycles, but
was previously limited by the large size of cryoablators
[3], [4]. With the development of ultrathin cryoprobes, it is
currently possible to successfully target tumours less than three
centimetres in diameter [5]. In thermal ablation, the target
tissue is coagulated by transferring heat to the target area.
There are many heat delivery mechanisms currently in use.
Microwave energy directed at the tumour causes coagulation
near the probe due to vibration of water molecules in the
tissue [6], and has been used to treat tumours of various sizes
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[7]. Microwave ablation is not affected by the heat sink of
large blood vessels located near the tumors as significantly
as other thermal ablation techniques. The heat sink effect
happens when the heat generated by the ablator is drawn
away by flowing blood in the vessels. Although microwave
ablation requires less ablation time, it is difficult to minimize
the probe diameter which currently spans a few centimetres
[8]. Laser therapy delivers heat in the form of high intensity
light through small fibers and has been applied to irresectable
hepatic tumours [9]. Laser photocoagulation can be performed
in many clinical applications to target small tissue spots with
high resolution. This method can be effective in up to 10 mm
depth of tissue [8]. In addition to its low penetration in depth,
this approach is quite expensive and usually multiple sessions
are required for therapy [10]. Particularly popular is radio
frequency ablation, in which an electrode is inserted into a
grounded patient and radio frequency current coagulates the
target tissue [11]. This procedure has two major drawbacks:
inadvertent charring of tissue creates thermal insulation, and
the presence of nearby heat sinks (e.g. blood vessels) can draw
heat away from the desired target [12].

High Intensity Focused Ultrasound (HIFU) is an approach
to thermal ablation that has been utilized for cancer treat-
ment since the 1940s [1]. In this approach, high levels of
acoustic energy are deposited into the tissue at the localized
focus of an ultrasound transducer for a short duration. This
causes rapid temperature elevation and coagulation necrosis
in the tissue. HIFU is considered a minimally invasive tissue
ablation method that can be used to ablate tumors deep in the
body [13]. More recent advances include the development of
interventional devices that emit directional and conformable
high intensity ultrasound delivered via a needle or catheter to
achieve sensitive controlling of heating patterns [14]. These
devices are termed ultrasound interstitial thermal therapy ap-
plicators (USITT), and are used in the study presented in the
current paper [15].

The limitation associated with ablation therapy is primarily
the difficulties in monitoring the temperature rise and the
extent of the ablated region in the tissue. Some devices make
use of built-in thermistors that are in close proximity to the
ablation probe to crudely monitor the extent of ablation based
on temperature readings [16]. Several image-based approaches
with MRI and ultrasound have been proposed to address this
issue. MRI can provide non-invasive thermometry with an
excellent contrast in soft tissue by measuring the frequency
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of MR signal (i.e. proton resonance frequency) [17]. Highly
promising results have been reported using MRI thermometry,
with a primary focus on prostate ablation therapy [18]. The
main drawbacks of using MRI in visualizing thermal therapy
are its high cost and low temporal resolution [19].

Ultrasound-based techniques for evaluating heat-induced
lesions following thermal ablation have also been used by
several groups. B-mode ultrasound imaging is one method
for analysis of the ablated regions in the tissue [20], [21]. In
this modality, changes in echogenicity enable the visualization
of ablated regions. The negative side of an acoustic pressure
wave may generate gas or vapour filled cavities in the tissue.
This cavitation is usually the main reason for hyperechoic
occurrence; however, the phenomenon is unpredictable and
not a reliable factor to identify ablated regions [22], [23].
Several methods are also developed to estimate the temperature
increase during the ablation process by detecting the change of
sound speed, attenuation coefficient, and backscattering [23]
[24], [25], [26]. By increasing the temperature in the tissue,
the speed of sound generally increases (except in fatty tissue)
which causes a time shift in ultrasound Radio-Frequency (RF)
echoes, referred to as virtual shift [26]. Studies have shown
major limitations of using speed of sound for detecting ablated
lesions. Such limitations include the nonlinear relationship be-
tween speed of sound and temperature [25] and its variability
with the proportion of fat in the tissue [23]. It has also been
reported that there is an increase in the integrated backscatter
and attenuation coefficient in the region of ablation for various
ex vivo animal experiments [24], [27], [28]. Spectral analysis
of ultrasound RF signals in a single RF frame, which is
related to the physical scatterer properties, is used in the
literature to characterize coagulated tissue for ex vivo and in
vivo experiments at high and clinical ultrasound frequencies
[20], [29], [30]. Ultrasound elastography has emerged as
another technique to augment conventional ultrasound imaging
for monitoring the ablation zone [16]. Following a tissue
displacement generated by an external mechanical stimulus or
using high energy acoustic radiation, various elastic properties
of the tissue are calculated from ultrasound images to identify
stiffer ablated regions [31], [32]. Although the computed strain
images have been reported to be in good agreement with gross
pathology, this approach either requires additional hardware
for external excitation of the tissue, or a modification to the
diagnostic ultrasound image sequence to apply high energy
acoustic radiation forces.

Recently, our group has proposed a tissue typing approach
that uses a time series of ultrasound RF frames acquired
from a fixed location in the tissue. This method has been
effectively applied for tissue classification at both high and
clinical frequencies [33]. We have also improved the tissue
classification results achieved using this method by applying
wavelet transform [34], and depth-dependent phase shift of RF
time series [35]. The feasibility of this method for ablation
region classification was demonstrated in a limited study with
three tissue samples [36]. We showed that the RF time series
features were consistent within each tissue sample; however,
no attempt was made to predict the ablation region in a tissue
based on the features obtained in other tissue samples.

Fig. 1. Tissue ablation and data acquisition setup. Three prongs enter the
tissue from the left: the ablator in the middle, and thermocouples at distances
of 7.5 and 15 mm.

In this paper, we demonstrate the potential of RF time
series to classify ablated and non-ablated regions of tissue
in ultrasound images, following tissue coagulation, through a
set of controlled laboratory experiments. We show that the
characterization of ablated regions in a set of tissue samples
can be effectively extrapolated to classify the ablated regions in
a never-before-seen tissue sample. We achieve this by training
a classifier based on features extracted from the tissue samples,
and distinguishing between ablated and non-ablated regions of
tissue through a leave-one-out tissue sample cross-validation.
A detailed validation is presented using ultrasound RF data
acquired from 12 ex vivo tissue samples following USITT
ablation. We demonstrate the capability of the RF time series
features to classify ablated regions of never-before-seen tissue
samples along with their consistency and superiority over the
spectral features of a single RF frame previously reported
in the literature [20], [29], [30], [38]. Finally, we perform a
feasibility study for classification of ablated tissue in in situ
bovine liver using RF time series features.

II. MATERIALS AND METHODS

A. Data Acquisition

A USITT applicator (Acoustic MedSystems, Champaign,
IL) [14], [15] is used for coagulation of 12 homogeneous
chicken breast tissue specimens purchased from the grocery
store. For each experiment, the tissue sample is submerged
in water heated to 37◦C. Water from a temperature-controlled
reservoir is pumped into a stainless steel heat exchanger under
the tissue to maintain the temperature of the water bath. Two
type T thermocouples (Physitemp Instruments, Clifton, NJ)
mounted parallel to the applicator, are inserted with the needle-
based ablation applicator in the tissue (Fig. 1). One thermo-
couple is positioned at 7.5 mm and another thermocouple
at 15 mm from the applicator. Each thermocouple contains
three thermal sensors located at the tip, and 0.5 cm, and
1 cm from the tip. Degassed water is pumped through the
inside of the hollow applicator and out over the surface of the
transducers at a rate of 25 ml/min. Water cooling is crucial
for the applicator, as it removes heat from the piezoelectric
elements and allows the transducer to be operated at higher
power levels. The ablator is configured to transmit non-focused
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acoustic energy in the form of longitudinal pressure waves of
10 Watts, using two cylindrical piezoelectric transducers. The
spatial peak temporal average intensity (I) is calculated as:

I = Sound Power/(4πr2), (1)

where Sound Power for the transducer is approximately 50%
of the input power (50% of 10 Watts), and r is the distance
from the transducer. Ablation-induced heating increases the
thermal dose to the tissue, until at least one sensor on the
thermocouples consistently displays a reading above 45◦C
and the equivalent minute dose (t43) corresponding to the
location of that sensor reaches 250 [14], [39]. Ablation is
then terminated and the tissue is allowed to cool down for
eight minutes.

An Ultrasonix SonixTouch scanner (Ultrasonix, Richmond,
BC) with a L14-5/38 linear array transducer (Ultrasonix,
Richmond, BC) is used to collect ultrasound RF time series
signals prior to, and at the end of the ablation process. The
ultrasound probe, thermocouples and the ablator are fixed
using two mechanical arms during the ablation process, and
the chicken tissue is placed on duct tape immersed in water.
Substantial care is taken to avoid any macroscopic motion
while tissue coagulation progresses. Data is acquired from
the tissue along the transducer plane and perpendicular to the
ablator and thermocouples (i.e. the same plane as the tissue is
sliced at the end of the ablation). The central frequency of the
probe is 6.6 MHz, and the focal point is set to 1–2 cm, i.e.
approximately the same imaging depth as the tip of the ablator.
The power is set the maximum clinical value available for the
machine, and the scanner is configured to acquire 128 frames,
at the rate of 45 frames/sec (22.22 ms temporal resolution).
Each RF frame contains 256 scan lines laterally and 1168
samples axially that correspond to 38 mm × 45 mm spatially.
The RF signals acquired from the tissue are sampled using an
A/D with a sampling rate of 20 MHz.

B. Registration and Region of Interest Selection

The ablated regions of the tissue are verified using the cor-
responding gross pathology images. Following ablation, each
tissue sample is cut approximately along the data acquisition
plane. The corresponding plane of the tissue is shown in Fig. 2
on the left hand side. This plane is found by guiding the cut
with two lines, marked on the tissue surface, approximating the
axis and tilt of the ultrasound probe on the tissue. Landmarks
for registration are the tip of ablator, and two thermocouples
marked by the black circle and X, respectively in Fig. 2.
The location of the ablator and thermocouples are readily
discerned in ultrasound as they appear bright white and cast
prominent hypoechoic shadows. In the case of the tissue,
the ablator leaves a gaping hole once it is removed that is
immediately visible, but locating where the thermocouples
intersect with the plane of interest is more complex as it is
common to see small, natural perforations in the tissue of a
similar diameter. However, the distinct shape of the recess
created by the thermocouple and the fact that it is a known
distance from the ablator allows the match to be made in the
tissue. With these landmarks localized in both ultrasound and

Fig. 2. Left: Matching slice of the tissue with the ablation zone delineated.
The black circle and ”x” indicate ablator and thermocouples, respectively.
Right: ROI selection from B-mode images; ablated and non-ablated ROIs
are picked from the areas inside the red circle, and outside the blue circle,
respectively. The area between these circles is not used for ROI selection.

tissue, it is then possible to select ablated and non-ablated
regions of interest (ROIs).

Sixty equally-sized ROIs from ablated and non-ablated re-
gions of the tissue are selected in each tissue sample, resulting
in a total of 720 ROIs. Each ROI is the time series data
from a 2.08 mm (axially) × 1.21 mm (laterally) section of an
image frame, while the distances between each two samples
in axial and lateral directions are 0.0385 mm and 0.1484 mm,
respectively. In other words, an ROI is a three dimensional
signal with 54 axial, 8 lateral and 128 time samples. The
wavelength of ultrasound for the transducer central frequency
of 6.6 MHz is 0.23 mm, assuming the speed of sound in soft
tissue to be 1540 m/s. The axial sample size allows for having
a reasonable number of ROIs in that direction (20 ROIs). The
ratio of the number of selected ablated to non-ablated ROIs
is approximately 1:1. Any mis-registration errors have been
handled by only selecting ROIs that were very close to the
ablator tip or safely far from it. As depicted in Fig. 2, for each
tissue sample cut, the selected ablated ROIs are located less
than 0.8 cm from the tip of the ablator (inside the red circle),
whereas the non-ablated ROIs are at a distance of 1.2 cm or
greater from the tip of the ablator tip (outside the blue circle).
Therefore, we have avoided using the ROIs located close to
the approximate boundary of the ablated regions, i.e. the area
between blue and red circles.

C. Feature Extraction

Tissue characterization of ablated and non-ablated ROIs of
each tissue specimen is performed by extracting the features of
the acquired ultrasound RF time series data. Each ultrasound
RF time series is a discrete signal containing N sequentially
acquired frames from each sample of the imaging plane. The
ultrasound RF time series of sample l, as a function of acquired
frames n is as below:

xl(n); n = 1, ..., N, (2)

where N = 128 is the length of the time series or acquired
frames. Since we are interested in the variation of the signal,
its mean is subtracted:

x̂l(n) = xl(n)− x̄, and x̄ =
1
N

N∑
l=1

xl(n). (3)



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 4

Fig. 3. The spectral features of RF time series where the vertical bars
delineate the four frequency bands. The red-dotted line represents a line of
best-fit.

TABLE I
A SUMMARY OF THE RF TIME SERIES FEATURES PROPOSED IN THIS PAPER

AND THE SPECTRAL FEATURES OF A SINGLE RF FRAME USED FOR
ABLATED TISSUE CLASSIFICATION.

RF time series features
Feature Description

1-4 The sums of the amplitude spectrum in the four quarters of
the frequency range.

5-6 Intercept and slope of the line fitted to the entire spectrum.
7 Fractal dimension of the RF time series.

8-9 Intercept and slope of the line fitted to the Central Frequency
(CF) values as a function of depth for each ROI.

10 Mean Central Frequency (MCF) in an ROI.
Spectral features in a single RF frame

Feature Description

11-12 Intercept and slope of the regression line to RF signal in
spectral domain.

13 Average of the power spectrum of the RF signal over the
bandwidth.

A discrete Fourier transform is applied on the zero-mean RF
time series of sample l as below:

Xl(k) =
1
N

N∑
l=1

x̂l(n)e−j2Πkn/N (4)

The corresponding power spectrum of sample l for Xl(k) is
then computed. The power spectrum is calculated for all sam-
ples in an ROI (54 × 8 samples), and averaged. As such, each
ROI is represented by a single “averaged” power spectrum of
length N . The average spectrum is then normalized through
dividing it by its maximum.

Ten features, previously reported by our group for tissue
characterization, are extracted from the RF time series signal
and summarized in Table I [33], [35], [36], [37]. Features
include the sums of the power spectrum in four frequency
bands (Features 1-4) depicted in Fig. 3, calculated as:

Feature(i) =
Ni/8∑

k=1+(i−1)N/8

|XROI(k)| , i = 1...4. (5)

The frequency range of the power spectrum is between 0–
22.5 Hz (45 frames/second). Due to symmetry, only the
positive frequency components (XROI(i), i = 1...N/2) have
been used to reduce the computational complexity. The slope
and intercept of the best-fit line to the entire power spectrum,
and fractal dimension constitute features 5–7.

Fractal dimension is calculated using Higuchi’s method for
all samples in an ROI (54 × 8 samples) and averaged over each
ROI. Implementation details of Higuchi’s method are offered
elsewhere [33], [37], [40].

Central Frequency as a function of depth (CF(z)) is defined
for each spatial sample in the RF data as the mean of
bandwidth of the power spectrum of its corresponding time
series [35]:

CF (z) =
∑N/2

i=1 fi.PSD(fi)∑N/2
i=1 PSD(fi)

, (6)

where PSD(f) is the power spectrum density of RF time
series, and z is the distance from the transducer in depth (axial
direction). For each axial distance (54 points in total) in an
ROI, CF values are averaged over the eight lateral samples.
A regression line is then fitted to the data distribution of the
resulting 54 points. The slope, and the intercept of this line
consitute features 8 and 9. The mean of all CF values in an ROI
constitutes feature 10 and is called Mean Central Frequency
(MCF).

D. Classification

A Support Vector Machine (SVM) classifier is used to
classify ablated and non-ablated ROIs1. This classifier finds
an optimal hyperplane with maximum margin separating the
data into two classes (usually in a higher dimensional space).
Specifically, given a set of real-valued training vectors xi,
i = 1, ..., n and corresponding labels yi ∈ (1,−1), the goal is
to find W , b, and ξi that minimizes the following cost function:

1
2
WTW + C

n∑
i=1

ξi, (7)

subject to

yi(WTφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, for i = 1, ..., n. (8)

The ξi allows for misclassification of imperfect data, C > 0
is the penalty parameter that regulates the ξi, and φ is the
function that maps the training data into a higher dimensional
space. The kernel function defines dot products in this space:
K(xa, xb) = φ(xa)Tφ(xb). The radial basis function (RBF) is
our kernel of choice due to its ease of initialization (possessing
a single parameter, γ) and classification accuracy [33]:

RBF (xa, xb) = exp(−γ ‖xa − xb‖2), γ > 0. (9)

We optimize the only parameter of the RBF kernel function,
γ, and the penalty parameter C by an exhaustive search to
achieve the highest classification accuracy. To find the best
classifier parameters, we perform a coarse followed by a fine
search to reduce the computational complexity. The SVM
library we used provides class posterior probability estimates,
in addition to class labels, for each data point.

1A Library for SVMs: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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E. Feature Reduction and Cross-Validation
Clinically, the most relevant evaluation of our proposed

approach for identifying ablated regions is to use a classifier
trained with the best features from a selected group of tissue
samples, and successfully classifying the ablation region in a
never-before-seen tissue sample. We refer to this as leave-
one-out tissue sample cross-validation. In this framework,
we exhaustively search for the best subset of time series
features (amongst the proposed 10 time series features) for
classification of ablated and non-ablated tissue. We further
evaluate the consistency of the time series features within each
tissue sample and in pooled data from all tissue samples. The
three cross-validation tests we perform are as follows:
Leave-one-out tissue sample evaluation: In this evaluation,
the classifier is built using features from the ROIs of previous
tissue samples, with known labels, and applied to ROIs of the
current tissue sample. To characterize the ablated tissue, the
best subset of RF time series features common to all leave-
one-out tissue sample evaluations is selected. We exhaustively
search for subsets of one to six time series features. We noticed
that larger number of features resulted in reduced classification
accuracies. The selected subset of the best features from RF
time series is used in the next two evaluation tests.
Intra-tissue sample evaluation: To determine the consistency
of the selected subset of RF time series features in individual
tissue samples, we use these features to classify ablated and
non-ablated ROIs in each tissue sample separately.
Pooled tissue sample evaluation: To further study the con-
sistency of RF time series features across the larger context
of all tissue samples, ROIs are pooled from all tissue samples
and ablated regions are identified.

Leave-one-out tissue sample evaluation is a cross-validation
experiment achieved by running the SVM classifier 12 times.
Each run is performed by training on features extracted from
11 tissue samples and testing on the remaining 12th tissue
sample. To implement the SVM classifier for intra-tissue
sample and pooled tissue sample evaluations, a five-fold cross
validation strategy is performed. ROIs are randomly divided in
five parts; five classifiers are trained each using four different
parts of the data, with the remaining part used for testing.
In order to remove the effect of bias in data division, ROIs
are reordered and the entire process is repeated 50 times. The
average accuracies are reported over these 250 runs.

F. Effects of ROI Size and RF Time Series Length
We analyzed the effect of ROI size on the classification

outcome. We performed experiments using three sizes: i) ROI
size 1 (smaller size): x/2× y/2, ii) ROI size 2 (original size,
used in this paper): x × y, and iii) ROI size 3 (larger size):
2x × 2y, where x = 1.21 mm in the lateral direction and
y = 2.08 mm in the axial direction. The smaller size ROIs
are generated by dividing each original size ROI into 4 ROIs,
and the larger ROIs are made by combining the adjacent ROIs.

In addition, for the ex vivo data, we chose three RF time
series lengths (16, 64, and 128 frames) for tissue characteriza-
tion. We calculated the classification accuracies using the best
common subsets of RF time series features with these three
lengths for all three cross-validation evaluation methodologies.

TABLE II
CLASSIFICATION ACCURACIES, AND THE AREA UNDER ROC CURVE FOR
LEAVE-ONE-OUT TISSUE SAMPLE, INTRA-TISSUE SAMPLE, AND POOLED
TISSUE SAMPLE EVALUATIONS USING THE BEST COMMON SUBSET OF RF

TIME SERIES FEATURES.

Average mean Average area
and STD of under

classification accuracies ROC curve
Leave-one-out tissue sample 84.43±9.84% 0.91
Intra-tissue sample 89.48±8.79% 0.94
Pooled tissue sample 85.55±0.95% 0.91

G. Characterization of Ablation Using a Single RF Frame

We compare the performance of RF time series features
with the spectral features of a single RF frame [20], [29],
[30], [38]. To extract the spectral features of a single RF
frame, each frame is passed through a Hamming window and
calibrated to remove variations due to transducer and electrical
components. Calibration approaches presented in the literature
either use a planar reflector [37], [38], [41], or reference
phantom techniques [30]. Here, we closely implement the
calibration method proposed in [38], [41], [42], [43], [44]. A
planar reflector in the form of a thick piece of glass immersed
in water is used, and the gain of the receiver amplifier is
adjusted to its minimum to avoid signal saturation due to large
amplitude echoes. The power spectrum of the windowed RF
data for each scan line (Si

win(z, f)) is divided by the power
spectrum of the RF data acquired from the surface of the glass
(Si

glass(z, f)) [37][38][41]:

Si
cal(z, f) =

Si
win(z, f)

Si
glass(z, f)

, i = 1...8 (10)

where i represents the scan lines in a window and z is the axial
distance from the transducer. The resulting signal (Si

cal(z, f))
is used to extract three spectral features as shown in Table I.
The intercept and slope of the regression line fitted to the
portion of the power spectrum that lies in the transducer
frequency band (5–10 MHz), and the average spectrum in
this band constitute features 11–13. The spectral features of
a single RF frame are computed for every scan line of each
ROI, and averaged over that ROI [37]. To compensate for the
effect of attenuation, we correct the values of the slope and
mean of the power spectrum of a single RF frame by applying
an assumed linear attenuation coefficient of 0.5 dB/cm/MHz
[38], [41].

III. RESULTS

A. Leave-One-Out Tissue Sample Evaluation

The verification of the proposed approach is performed by
learning from a series of tissue samples in order to extend the
method to future independent tissue samples. We determined
that the feature subset with the best classification result is made
up of features 2, 3, 5, and 10. The histograms of these four
features across all 12 tissue samples, prior to and following
ablation, are depicted in Fig. 4. The best classifier parameters
using the RBF kernel function are C = 12 and γ = 7,
computed from an exhaustive search. The classification results
for 12 leave-one-out tissue sample evaluations are displayed by
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Fig. 4. Histograms of the selected RF time series features prior to and
following ablation using the ultrasound data acquired from 12 tissue samples.
Each feature is normalized between the minimum and maximum values of
that feature across all values obtained prior to and following ablation.
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features.

blue bars in Fig. 5. Each blue bar corresponds to the accuracy
of identifying ablated and non-ablated ROIs when that tissue
sample is left out for testing and features from all other tissue
samples are used for training. The averages of these results are
also presented in Table II. The classification accuracy achieved
using the best subset of RF time series features for 12 tissue
samples varies between 67% and 100% with an average of
84.43%. The Receiver Operating Characteristic (ROC) curve
for leave-one-out tissue sample evaluation is also shown in
Fig. 6 as the blue-solid line. The average area under the
ROC curve using the best RF time series features is 0.91,
as presented in Table II.

Applying the RF time series features to classify the entire
imaging plane (and not just the ROIs used for testing the
classification accuracy) results in the colormaps shown in
Fig. 7. These colormaps are generated through leave-one-
out tissue sample evaluation and using the class posterior
probability estimates provided by the SVM classifier. In Fig.
7, tissue ablation is predicted for the entire imaging planes
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Fig. 6. ROC curves for leave-one-out tissue sample, intra-tissue sample, and
pooled tissue sample evaluations using the best common subset of RF time
series features.

for three tissue samples at the end of the cooling period
(bottom right images in (a), (b) and (c)). Corresponding gross
pathology for each tissue sample is also shown to compare the
predicted zone of ablation (bottom left images in (a), (b) and
(c)). As seen, the areas of ablation are not readily visible in
B-mode images. Although the colormaps are generated for the
entire B-mode image, we only display those ROIs that have a
0.3 or greater probability of being ablated.

B. Intra-Tissue Sample Evaluation

The consistency of the selected subset of RF time series
features is examined to classify the ablated regions of each
tissue sample individually. The features used are those iden-
tified as the best RF time series features from leave-one-out
tissue sample evaluations. The optimal classifier parameters (C
and γ) were determined from the leave-one-out tissue sample
evaluations as well (as described in Section III.A), and the
same parameters were used for all tissue samples in the intra-
tissue sample evaluations. In each intra-tissue evaluation, 30
ablated and 30 non-ablated ROIs were selected where 80%
were used for training and 20% were used for testing the
classification results. The classification accuracies for each of
the 12 tissue samples are computed independently as shown
by yellow bars in Fig. 5 and then averaged as presented
in Table II. Each yellow bar corresponds to the accuracy
of identifying ablated and non-ablated ROIs when 20% of
the ROIs in each tissue sample are selected randomly for
testing and features from the remaining ROIs are used for
training. The process of data division and reordering the ROIs
is repeated 250 times and the average accuracies are presented
using the selected subset of features and optimal classifier
parameters. The classification accuracies using the best subset
of RF time series features over all tissue samples vary between
72-100% with an average of 89.48%. Moreover, the ROC
curve for intra-tissue sample evaluation is plotted in Fig. 6
as a red dashed line. The average area under this ROC curve
using RF time series is 0.94 (Table II).
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Fig. 7. B-mode images prior to (top left), and following ablation (top right),
colormaps of posterior probabilities of ablated regions (bottom right), and their
corresponding gross pathology images (bottom left) for three tissue samples
(a, b, and c). Colormaps are generated by using four RF time series features
extracted from a limited number of ROIs for each tissue, and extending the
ablated tissue classification results to the entire image using the leave-one-out
tissue sample evaluation. Only the ROIs that have a 0.3 or greater probability
of being ablated are displayed. Note that the ablation zone is not visible in
the B-mode images after the ablation.
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Fig. 8. Histograms of the selected spectral features of a single RF frame prior
to and following ablation using the ultrasound data acquired from all tissue
samples. Each feature is normalized between the minimum and maximum
values of that feature across all values obtained prior to and after ablation.

TABLE III
CLASSIFICATION ACCURACIES USING THREE ROI SIZES USING THE BEST

COMMON SUBSETS OF RF TIME SERIES FEATURES.

ROI size 1 ROI size 2 ROI size 3
Leave-one-out 80.29±12.95% 84.43±9.84% 80.62±13.81%tissue sample
Intra-tissue 90.62±8.67% 89.48±8.79% 77.58±18.38%sample
Pooled tissue 86.33±0.93% 85.55±0.95% 72.57±1.95%sample

TABLE IV
CLASSIFICATION ACCURACIES USING THREE RF TIME SERIES LENGTHS

USING THE BEST COMMON SUBSETS OF RF TIME SERIES FEATURES.

Time series length 128 64 16
Leave-one-out 84.43±9.84% 78.77±8.02% 59.19±16.74%tissue sample
Intra-tissue 89.48±8.79% 89.20±8.37% 89.67±12.14%sample
Pooled tissue 85.55±0.95% 86.76±0.52% 79.69±0.7%sample

C. Pooled Tissue Sample Evaluation

While cross-validation accuracy achieved using RF time
series features is high within an individual tissue sample, it
only demonstrates the consistency of ablated and non-ablated
tissue and its corresponding features in that tissue sample. It
is important to determine the classification performance in the
larger context of all available data. Table II shows the results of
pooling data from the 12 tissue samples into one large cross-
validation test. The classification accuracy shown in this table
(85.55±0.95%) is achieved using the best subset of RF time
series features as determined in the leave-one-out tissue sample
evaluation, and the same optimal classification parameters as
in previous sub-sections. Moreover, the ROC curves generated
using the best subsets of RF time series is plotted in Fig. 6 as
black dash-dotted. The area under the ROC curve is 0.91 as
presented in Table II.

D. Effects of ROI Size and RF Time Series Length

Effect of ROI size: The cross-validation accuracies achieved
for three strategies using the best selected RF time series
features are listed in Table III. From this table, it is clear
that original size ROIs (size-2 ROIs), result in the highest
classification accuracies for leave-one-out tissue sample cross
validation. In addition the results using this size of ROIs
are more consistent for all three cross-validation evaluations
compared to other sizes of ROIs.

Effect of RF time series length: The classification accuracies
using the best common subsets of RF time series features with
three lengths of time series are presented in Table IV for
leave-one-out tissue sample, intra-tissue sample, and pooled
tissue sample evaluations. We show that by reducing the time
series length from 128 to 64 samples, classification accuracy
for leave-one-out tissue sample evaluation decreases slightly,
while intra-tissue sample and pooled tissue sample evaluation
results do not change significantly. However, a substantial
change in the length of the RF time series (to 16 frames of
the RF signal) reduces the classification results substantially.
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TABLE V
CLASSIFICATION ACCURACIES, AND THE AREA UNDER THE ROC CURVE
USING THE BEST COMMON SUBSET OF SPECTRAL FEATURES OF A SINGLE

RF FRAME.

Average mean Average area
and STD of under

classification accuracies ROC curve
Leave-one-out tissue sample 55.73±10.27% 0.60
Intra-tissue sample 57.13±11.25% 0.63
Pooled tissue sample 55.03±1.35% 0.58

E. Characterization of Ablation Using a Single RF Frame

We compare the performance of the identified RF time
series feature set with the best subset of spectral features of
a single RF frame for classifying ablated regions. The best
subset of spectral features from a single RF frame common
to all leave-one-out tissue sample evaluations are spectral
features 12 and 13, computed from an exhaustive search.
The histograms for these two features across all 12 tissue
samples, prior to and following ablation, are shown in Fig. 8.
The classification accuracies for 12 leave-one-out tissue
sample evaluations vary from 44% to 73% with an average
of 55.73% for the best spectral features of a single RF frame
as presented in Table V. The results achieved by the RF
time series for leave-one-out tissue sample evaluation show
statistically significant improvements over the classification
results obtained by the spectrum of a single RF frame
(p = 10−9) using a two-tailed t-test analysis with 95%
confidence interval. Furthermore, the classification results for
12 intra-tissue sample evaluations are in the range of 33-68%
with an average of 57.13% for the best spectral features
of a single RF frame. When performing the classifier on a
larger context of data in pooled tissue sample evaluation,
the classification accuracy achieved using the best spectral
features of a single RF frame is 55.03±1.35%.

IV. DISCUSSION AND CONCLUSION

This paper presents characterization of ablated tissue re-
gions, using RF ultrasound time series, in a detailed cross-
validation and classification framework. An average classifi-
cation accuracy of above 84%, and an area under ROC curve
of 0.91 are achieved using a subset of only four RF time series
features. These results are obtained by training a classifier on a
selected group of tissue samples and extending its predictions
to a never-before-seen tissue sample. The best subset of RF
time series features are selected exhaustively from the 10 cal-
culated features. This combination of RF time series features
demonstrates the capability of the amplitude spectrum (fea-
tures 2, 3, and 5), and the mean central frequency of the power
spectrum density (feature 10) of the RF time series signal for
characterization of ablated tissue regions across 12 leave-one-
out tissue sample evaluations. From the histograms of these
four features, and given the high classification accuracies, the
combinatorial power of the features for tissue differentiation
appears to be important. High classification accuracies and
areas-under-ROC-curves for intra-tissue sample and pooled
tissue sample evaluations demonstrate the consistency of RF

Fig. 9. (a) In situ liver ablation and data acquisition setup. Four prongs
enter the tissue: the ablator in the middle, and thermocouples at distances
of 1.5, 1, and 1 cm. (b and c) Ablated slices of the tissue corresponding to
the ultrasound imaging planes. The planes of ultrasound images are shown as
blue rectangles.

time series features for each tissue sample individually, and in
the larger context of all tissue samples.

Tissue classification results also show that ablated tissue
classification obtained by the RF time series features sub-
stantially outperforms that of the spectral features of a single
RF frame. Adding spectral features of a single RF frame to
the best subset of time series features did not improve the
classification results. As the histograms of the spectral features
of a single RF frame show, these features do not substantially
change after ablation.

While our ex vivo evaluations are highly promising and
demonstrate the potential of the RF time series approach for
thermal ablation monitoring applications, the performance of
the method is yet to be determined in in vivo conditions.
Towards this goal, we carryout a feasibility in situ experiment.

In situ evaluation: We perform in situ ablation experiments
on porcine liver in the operating room immediately after an
animal is sacrificed. We ablat two spatially distinct locations
of the liver in the animal using the USITT applicator (referred
as two independent tissue samples in the remainder of this
sub-section). As depicted in Fig. 9 (a), the ablator is inserted
in the liver and three sets of thermocouples asre placed at 1.5
cm, and 1 cm on each side of the applicator. The placement
of the thermal sensors is similar to our ex vivo experiments.
Ultrasound imaging is performed using a mechanically fixed
transducer in a plane perpendicular to ablation, similar to our
previous experiments. The ablator is configured to transmit
non-focused acoustic energy in the form of longitudinal pres-
sure waves of 15 Watts, using two cylindrical piezoelectric
transducers. Ablation-induced heating increases the thermal
dose to the tissue, until at least the equivalent minute dose
corresponding to the location of one sensor reaches 106.

The ablation regions for these experiments are shown in
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Fig. 9 (b and c). We calculate the same four RF time series
features that we used to classify the ex vivo tissue samples,
from the ablated and non-ablated ROIs in the in situ data.
The classification results for training and testing using ROIs
picked from the same ablation location (equivalent to intra-
tissue sample evaluation in the ex vivo experiment) are 96%
and 98% within each ablation location. When training the
classifier on features extracted from the ROIs of one ablation
location and testing on the ROIs of the other ablation location
(equivalent to leave-one-out tissue sample evaluation in the
ex vivo experiments), the classification accuracies are 77%
and 93% (an average of 85%). Using the feature reduction
approach described in Section II.E, we exhaustively search
for the feature subset that leads to the best leave-one-out
tissue sample classification results for in situ experiments. We
determine that a combination of features 1 and 2 (i.e., the
sum of the absolute spectrum in the first and second quarters)
provide the highest classification rate of 85% and 100% in the
two tissue locations. From our experiments, it appears that the
best feature subset for classification is tissue specific and is
different between the ex vivo chicken breast study, and the in
situ porcine liver study.

Although these experiments more closely mimic in vivo
conditions, two factors are still not taken into account: in-
plane and out-of-plane motion due to respiration, perfusion
or other reasons. To minimize the effect of in-plane motion,
deformable intra-frame registration could be used [45]. Reduc-
ing the ultrasound acquisition time while monitoring breathing,
could also potentially mitigate the respiration-induced motion.
Ultrasound acquisition time can be reduced by increasing
the frame rate, or decreasing the total number of acquired
frames. The specific frame rate required to minimize the effect
of tissue motion is dependent on the beam profile of the
transducer, the rate of tissue motion and the inhomogeneity
of the underlying tissue. We further investigated the effect of
the number of frames in the time series on tissue classification
to determine the minimum number of required frames. We
show that RF time series lengths as short as 64 frames may
be sufficient for accurate tissue characterization. Obtaining a
time series of 64 frames can be typically completed in less than
two seconds using clinical settings on the ultrasound machine.

In ex vivo experiments, the main predicted zones of ablation
generated from the selected RF time series features of a
limited number of ROIs, and extended to the entire imaging
planes closely resemble the gross pathology, but are not perfect
matches in all cases for the following reasons: i) there is a
misregistration between the ultrasound image and the gross
pathology due to tissue deformation; ii) outlines of ablation are
not necessarily visible in gross pathology; we have determined
the ablation region based on the tissue color change rather than
the microscopic pathology, iii) the number of selected ROIs
for training may not be sufficient to perfectly extrapolate tissue
differentiation to the entire tissue, and iv) there is no reliable
ultrasound data from the shadows underneath the ablator,
which would affect the classifier output for those regions.

It should be noted that the characterization capabilities of
RF time series have been successfully demonstrated elsewhere
with different users, transducers and systems, and extensive

parameter ranges, for differentiation between various ex vivo
animal tissue types and identification of prostate cancer in ex
vivo human prostate [33], [37], [46]. We plan to extend this
study to assess the effect of various ultrasound transducers.

Future work will focus on more extensive in situ ex-
periments, predicting tissue ablation in vivo, and expanding
the current method for ablation monitoring. In particular,
large scale studies should be performed to determine the
best combination of features for specific clinical applications.
Moreover, we are investigating more accurate registration of
the gross pathology to ultrasound images by using external
fiducial landmarks. If the proposed method is to be used
for ablation monitoring, we need to overcome the challenge
of identifying a ground truth during the ablation process.
In the current study, where we report the results of the
feasibility experiments on ex vivo tissue samples, substantial
consideration was made to avoid any macroscopic motion
while tissue coagulation progressed. For in vivo experiments,
to reduce the effect of tissue motion, several considerations
include: substantially increasing ultrasound acquisition frame
rate through imaging only a region of interest in the tissue,
deformable registration for motion compensation, and focusing
on ablation applications where breathing artefacts and other
movements generate minimal motion.

ACKNOWLEDGMENT

The authors would like to acknowledge the help of Lance
Frith and Bruce Komadina for preparing the mechanical com-
ponents used in the in situ experiments, and assisting with
the experiments. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Canadian Institutes of Health Research
(CIHR). Research reported in this paper was also supported
in part by the National Cancer Institute of the National
Institutes of Health under grant numbers R44CA112852 and
R44CA134169. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the National Institutes of Health.

REFERENCES

[1] C. Maleke, and E.E. Konofagou, “Harmonic motion imaging for focused
ultrasound (HMIFU): a fully integrated technique for sonication and
monitoring of thermal ablation in tissues,” Physics in Medicine and
Biology, vol. 53, no. 6, pp. 1773–93, 2008.

[2] Y. Lau, T.W.T. Leung, S.C.H. Yu, and S.K.W. Ho, “Percutaneous Local
Ablative Therapy for Hepatocellular Carcinoma: A Review and Look Into
the Future,” Annals of Surgery, vol. 237, no. 2, pp. 171–179, 2003.

[3] T.S. Ravikumar, and R.N Kaleya, “Cyrotherapy for liver tumors,” in Liver
and Biliary Tract Surgery, 2000, pp. 1576–1606.

[4] R. Adam, P. Majno, D. Castaing, R. Giovenardi, and H. Bismuth,
“Treatment of irresectable liver tumours by percutaneous cryosurgery,”
British Journal of Surgery, vol. 85, no. 11, pp. 1493–4, 1998.

[5] S.M. Lee, J.Y. Won, D.Y. Lee, K.-H. Lee, K.S. Lee, Y.H. Paik, and
J.K Kim, “Percutaneous cryoablation of small hepatocellular carcinomas
using a 17-gauge ultrathin probe,” Clinical Radiology, vol. 66, no. 8, pp.
752–759, 2011.

[6] B.W. Dong, P. Liang, X.L. Yu, X.Q. Zeng, P.J. Wang, L. Su, X.D.
Wang, H. Xin, and S. Li, “Sonographically guided microwave coagulation
treatment of liver cancer: an experimental and clinical study,” American
Journal of Roentgenology, vol. 171, no. 2, pp. 449–54, 1998.

[7] R. Martin, C. Scoggins, and K. McMasters, “Safety and Efficacy of
Microwave Ablation of Hepatic Tumors: A Prospective Review of a 5-
Year Experience,” Annals of Surgical Oncology, vol. 17, no. 1, pp. 171–
178, 2010.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 10

[8] P. Haigron, J.L. Dillenseger, L. Limin, and J.L. Coatrieux, “Image-Guided
Therapy: Evolution and Breakthrough [A Look At],” IEEE Engineering
in Medicine and Biology Society, vol. 29, no. 1, pp. 100–104, 2010.

[9] C.M. Pacella, G. Bizzarri, G. Francica, A. Bianchini, S. De Nuntis, S.
Pacella, A. Crescenzi, S. Taccogna, G. Forlini, Z. Rossi, J. Osborn, and
R. Stasi, “Percutaneous Laser Ablation in the Treatment of Hepatocel-
lular Carcinoma with Small Tumors: Analysis of Factors Affecting the
Achievement of Tumor Necrosis,” Journal of vascular and interventional
radiology, vol. 16, no. 11, pp. 1447–1457, 2005.

[10] A. Schindl, M. Schindl, H. Pernerstorfer-Schon, and L. Schindl, “Low
intensity laser therapy: A review,” Journal of Investigative Medicine, vol.
48, no. 5, pp. 312–326, 2000.

[11] F. Brunello, A. Veltri, P. Carucci1, E. Pagano, G. Ciccone, P. Moretto,
P. Sacchetto, G. Gandini, and M. Rizzetto, “Radiofrequency ablation
versus ethanol injection for early hepatocellular carcinoma: A randomized
controlled trial,” Scandinavian Journal of Gastroenterology, vol. 43, no.
6, pp. 727–735, 2008.

[12] K.T. Brown, and L.A. Brody, “Percutaneous methods for ablation of
hepatic neoplasms,” in Liver and Biliary Tract Surgery, 2000, pp. 1565–
1576.

[13] J. Mclaughlan, I. Rivens, T. Leighton, and G.T. Haar, “A study of bubble
activity generated in ex vivo tissue by HIFU,” Ultrasound in Medicine
and Biology, vol. 36, no. 8, pp. 1327–44, 2010.

[14] C.J. Diederich, R.J. Stafford, W.H. Nau, E.C. Burdette, R.E. Price, and
J.D. Hazle, “Transurethral ultrasound applicators with directional heating
patterns for prostate thermal therapy: in vivo evaluation using magnetic
resonance thermometry,” Medical Physics, vol. 31, no. 2, pp. 405–13,
2004.

[15] E.C. Burdette, D.C. Rucker, J.M. Croom, C. Clarke, P. Stolka, P.
Prakash, T. Juang, C.J. Diederich, E.M. Boctor, and R.J. Webster, “The
ACUSITT ultrasonic ablator: first steerable needle with an integrated
interventional tool,” in SPIE Medical Imaging, 2010, pp. 76290V1–V10.

[16] E. Boctor, M. deOliveira, M. Choti, R. Ghanem, R. Taylor, G. Hager,
and G. Fichtinger, “US Monitoring of Tissue Ablation Via Deformation
Model and Shape Priors,” in MICCAI, 2006, pp. 405–412.

[17] B. Quesson, C. Laurent, G. Maclair, B.D. deSenneville, C. Mougenot,
M. Ries, T. Carteret, A. Rullier, and C.T. Moonen, “Real-time volumetric
MRI thermometry of focused ultrasound ablation in vivo: a feasibility
study in pig liver and kidney,” NMR in Biomedicine, vol. 24, no. 2, pp.
145–153, 2010.

[18] R. Chopra, J. Wachsmuth, M. Burtnyk, M.A. Haider, and M.J. Bronskill,
“Analysis of factors important for transurethral ultrasound prostate heating
using MR temperature feedback,” Physics in Medicine and Biology, vol.
51, no. 4, pp. 827–44, 2006.

[19] S.V. Esser, M.V.D. Bosch , P.J.V. Diest, W.T.M. Mali, I. Rinkes, and
R.V. Hillegersberg, “Minimally invasive ablative therapies for invasive
breast carcinomas: An overview of current literature,” World Journal of
Surgery, vol. 31, no. 12, pp. 2284–2292, 2007.

[20] S. Siebers, M. Schwabe, U. Scheipers, C. Welp, J. Werner, and H.
Ermert, “Evaluation of Ultrasonic Texture and Spectral Parameters for
Coagulated Tissue Characterization,” in IEEE International Ultrasonics,
Ferroelectrics, and Frequency Control, 2004, pp. 1804–1807.

[21] R. Yang, K.K. Kopecky, F.J. Rescorla, C.A. Galliani, E.X. Wu, and
J.L. Grosfeld, “Sonographic and computedtomography characteristics
of liver ablation lesions induced by high-intensity focused ultrasound,”
Investigative Radiology, vol. 28, no. 9, pp. 796–801, 1993.

[22] B.J. ODalya, E. Morrisb, G.P. Gavinc, J.M. OByrnea, and G.B. McGuin-
ness, “High-power low-frequency ultrasound: A review of tissue dis-
section and ablation in medicine and surgery,” Journal of Materials
Processing Technology, vol. 200, no. 1–3, pp. 38–58, 2008.

[23] X. Zheng, and S. Vaezy, “An acoustic backscatter-based method for
localization of lesions induced by high-intensity focused ultrasound,”
Ultrasound in Medicine and Biology, vol. 36, no. 4, pp. 610–622, 2010.

[24] N.L. Bush, I. Rivens, G.R.T. Haar, and J.C. Bamber, “Acoustic properties
of lesions generated with an ultrasound therapy system,” Ultrasound in
Medicine and Biology, vol. 19, no. 9, pp. 789–801, 1993.

[25] S. Zhang, M. Wan, H. Zhong, C. Xu, Z. Liao, H. Liu, and S. Wang,
“Dynamic changes of integrated backscatter, attenuation coefficient and
bubble activities during high-intensity focused ultrasound (HIFU) treat-
ment,” Ultrasound in Medicine and Biology, vol. 35, no. 11, pp. 1828–
1844, 2009.

[26] B. Mehrabani, V. Tavakoli, M.D. Abolhassani, J. Alirezaie, and A.
Ahmadian, “An efficient temperature estimation using optical-flow in
ultrasound B-mode digital images,” in Engineering in Medicine and
Biology Society, International Conference of the IEEE, 2008, pp. 86–89.

[27] H. Zhong, M.X. Wan, Y.F. Jiang, and S.P. Wang, “Monitoring imaging of
lesions induced by high intensity focused ultrasound based on differential

ultrasonic attenuation and integrated backscatter estimation,” Ultrasound
in Medicine and Biology, vol. 33, no. 1, pp. 82–94, 2007.

[28] P.D. Bevan, and M.D. Sherar, “B-scan ultrasound imaging of thermal
coagulation in bovine liver: log envelope slope attenuation mapping,”
Ultrasound in Medicine and Biology, vol. 27, no. 3, pp. 379–87, 2001.

[29] S. Siebers, U. Scheipers, M. Ashfaq, J. Hansler, M. Frieser, D. Strobel,
E. Hahn, and H. Ermert, “In Vivo Imaging of Coagulated Tissue,” in
IEEE Ultrasonics Symposium, 2006, pp. 1762–1765.

[30] R.E. Kumon, Y. Zhou, K. Yang, and C.X. Deng, “Spectral Analysis of
Ultrasound Backscatter for Characterization of HIFU Lesions in Cardiac
Tissue with High-Frequency Imaging,” in IEEE International Ultrasonics
Symposium Proceedings, 2009, pp. 244–247.

[31] H. Rivaz, I. Fleming, L. Assumpcao, G. Fichtinger, U. Hamper, M.
Choti, G. Hager, and E. Boctor, “Ablation Monitoring with Elastography:
2D In-vivo and 3D ex vivo Studies,” in MICCAI, 2008, pp. 458–466.

[32] B.J. Fahey, K.R. Nightingale, D.L. Stutz, and G.E. Trahey, “Acoustic
radiation force impulse imaging of thermally and chemically-induced le-
sions in soft tissues: preliminary ex vivo results,” Ultrasound in Medicine
and Biology, vol. 30, no. 3, pp. 321–8, 2004.

[33] M. Moradi, P. Abolmaesumi, and P. Mousavi, “Tissue typing using
ultrasound RF time series: Experiments with animal tissue samples,”
Medical Physics, vol. 37, no. 8, pp. 4401–13, 2010.

[34] M. Aboofazeli, P. Abolmaesumi, M. Moradi, E. Sauerbrei, R. Siemens,
A. Boag, and P. Mousavi, “Automated detection of prostate cancer using
wavelet transform features of ultrasound RF time series,” in SPIE Medical
Imaging, 2009, pp. 72603J1–J8.

[35] F. Imani, P. Mousavi, M.I. Daoud, M. Moradi, and P. Abolmaesumi,
“Tissue classification using depth-dependent ultrasound time series analy-
sis: in-vitro animal study,” in SPIE Medical Imaging, 2011, pp. 79680F1–
79680F7.

[36] F. Imani, M. Wu, A. Lasso, E C. Burdette, M.I. Daoud, G. Fichtinger,
P. Abolmaesumi, and P. Mousavi, “Monitoring of tissue ablation using
time series of ultrasound RF data,” in MICCAI, 2011, pp. 379–86.

[37] M. Moradi, P. Abolmaesumi, R. Siemens, E. E. Sauerbrei, A. H. Boag,
and P. Mousavi, “Augmenting detection of prostate cancer in transrectal
ultrasound images using SVM and RF time series,” IEEE Transactions
on Biomedical Engineering, vol. 56, no. 9, pp. 2214–24, 2009.

[38] E. Feleppa, A. Kalisz, J.B. Sokil-Melgar, F. Lizzi, T. Liu, A.L. Rosado,
M.C. Shao, W.R. Fair, Y. Wang, M.S. Cookson, V.E. Reuter, and W.
Heston, “Typing of prostate tissue by ultrasonic spectrum analysis,” IEEE
Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol.
43, no. 4, pp. 609–619, 1996.

[39] C. A. Perez, and S. A. Sapareto, “Thermal dose expression in clini-
cal hyperthermia and correlation with tumor response/control,” Cancer
Research, vol. 44, no. 10, pp. 4818s–25s, 1984.

[40] A. Accardo, M. Affinito, M. Carrozzi, and F. Bouquet, “Use of the
fractal dimension for the analysis of electroencephalographic time series,”
Biological Cybernetics, vol. 77, no. 5, pp. 339–50, 1997.

[41] E.J. Feleppa, C.R. Porter, J. Ketterling, P. Lee, S. Dasgupta, S. Urban,
and A. Kalisz, “Recent developments in tissue-type imaging (TTI) for
planning and monitoring treatment of prostate cancer,” Ultrasonic Imag-
ing, vol. 26, no. 3, pp. 163–72, 2004.

[42] E.J. Feleppa, F.L. Lizzi, D.J. Coleman, and M.M. Yaremko, “Diagnostic
spectrum analysis in ophthalmology: a physical perspective,” Ultrasound
in Medicine and Biology, vol. 12, no. 8, pp. 623–31, 1986.

[43] S. Siebers, M. Schwabe, U. Scheipers, C. Welp, J. Werner, and H.
Ermert, “Evaluation of ultrasonic texture and spectral parameters for
coagulated tissue characterization,” in IEEE Ultrasonics Symposium,
2004, pp. 1804–1807.

[44] S. Siebers, U. Scheipers, J. Hnsler, M. Frieser, D. Strobel, C. Welp,
J. Werner, E. Hahn, and H. Ermert, “Classification of thermally ablated
tissue using diagnostic ultrasound,” Acoustical Imaging, vol. 28, pp. 295–
300, 2007.

[45] C. Leung, K. Hashtrudi-Zaad, P. Foroughi, and P. Abolmaesumi, “A real-
time intra-subject elastic registration algorithm for dynamic 2D ultrasound
images,” Ultrasound in Medicine and Biology, vol. 35, no. 7, pp. 1159–
76, 2009.

[46] M. I. Daoud, P. Mousavi, F. Imani, R. Rohling, and P. Abolmaesumi,
“Computer-aided tissue characterization using ultrasound-induced thermal
effects: analytical formulation and in-vitro animal study,” in SPIE Medical
Imaging, 2011, pp. 79680G1–79680G6.


