3D Surface Scanning for Tumour Localization in Non-Melanoma Skin Cancer

Anna Ilina1, Csaba Pinter1, Andras Lasso1, Ingrid Lai2, Chandra Joshi2, Kevin Alexander2, L. John Schreiner2, Timothy Hanna2, Gabor Fichtinger1

1Laboratory for Percutaneous Surgery, School of Computing & Department of Surgery, Queen’s University, Kingston, ON
2Department of Physics, Engineering Physics, and Astrophysics, Queen’s University, Kingston, Canada

Introduction

• Non-melanoma skin cancer is characterized by shallow tumours visible at the surface of the skin.
• Orthovoltage radiation therapy (ORT) is commonly used to treat patients with skin cancer, and can produce cosmetically favourable results compared to surgical excision [1].
• Currently, there is no commercially available treatment planning system for ORT. The first step of treatment planning is localizing the tumour in a computed tomography (CT) scan of the patient [2]. Since superficial skin tumours are not visible in CT scans, another method must be used to localize these tumours.

![Fig 1. Different types of skin cancer](image1.png)

Fig 1. Different types of skin cancer

Fig 2. An orthovoltage machine

Objective

• Localize superficial skin cancer on CT volumes using optical 3D surface scanning, for radiation therapy treatment planning.

Methods

• A male plastic head and neck mannequin was used as a phantom. A red sticker was placed on the nose representing a skin lesion.
• A coloured, textured 3D mesh of the mannequin’s face was obtained using 3D surface scanning.
• The phantom’s head and neck were segmented from a CT image using thresholding based on image intensity. The resulting segmentation was cropped to keep just the head.
• Five fiducials were placed on the nose tip, inner corners of eyes, and ears to preregister the surface scan model to the model segmented from CT. The Iterative Closest Points (ICP) algorithm was used to yield the final registration.
• The tumour was segmented from the surface scan and saved with the CT image for treatment planning.

Conclusion

• 3D surface scanning allows for a quick workflow for localizing a tumour at the surface of the skin, eliminating the need for more complex procedures.
• This project is the first step towards a free open-source treatment planning system for orthovoltage radiation therapy. This will be especially useful for planning radiotherapy treatment in areas with complex geometries, such as the ear or nose.

Acknowledgement

This work was funded in part by CANARIE’s Research Software Program.

Reference

