Creating patient-specific anatomical models from highly elastic materials using 3D-printed molds

Anna Ilina¹, Andras Lasso¹, Matthew A. Jolley², Brittny Wohler², Alex Nguyen², Adam Scanlan², Zachary Baum¹, Frank McGowan², Gabor Fichtinger¹

¹Laboratory for Percutaneous Surgery, School of Computing & Department of Surgery, Queen’s University, Kingston, ON (perk.cs.queensu.ca)
²The Children’s Hospital of Philadelphia, Philadelphia, USA

Introduction

- Realistic physical models or ‘phantoms’ of anatomical structures are useful for simulating surgery and other medical procedures.
- Creating soft-tissue-mimicking patient-specific models allows for practicing rare or difficult procedures for which no generic models are available, such as heart surgery for pediatric patients with congenital heart disease.
- Volumetric images are good for visualization, and direct 3D printing is good for recreating shape, but 3D-printable materials are not flexible enough to simulate certain procedures.

Objective

- Workflow demonstrated on heart valve phantoms for three rare pediatric cases¹.
- Heart valve tissue: Dragon Skin® silicone - good elasticity, cuts and holds sutures well.
- This silicone is also suitable for creating ultrasound phantoms².
- Six pediatric cardiac surgeons practiced suturing on the silicone valve models.
- All six surgeons considered the models to be useful for training for cardiac surgery and practicing difficult cases.
- 3D Slicer software was used to design the 3D-printable mold.³ [Segment editor, scissors effect] (www.slicer.org)
- For very thin or detailed structures such as heart valve leaflets, manually separating the mold into two pieces took 2-5 hours. To speed up the process, we wrote a module in 3D Slicer to automate mold creation for heart valves.
- Contact: ilina.anna@queensu.ca

Methods

- Step 1: Segmentation. Segment the object of interest from 3D image.
- Step 2: Mold design. Create a rectangular prism segment surrounding the object. Separate into two mold pieces. Subtract the object of interest. Add tunnels in top mold segment to allow air bubbles to escape. Save the mold parts as STL files.
- Step 3: Mold printing. 3D print the mold parts using standard hard materials.
- Step 4: Physical model creation. Fill the molds with a highly elastic material such as silicone or PVC and allow to set. Remove the phantom from mold and trim any excess material.

Results

- Workflow demonstrated on heart valve phantoms for three rare pediatric cases¹.
- Heart valve tissue: Dragon Skin® silicone - good elasticity, cuts and holds sutures well.
- This silicone is also suitable for creating ultrasound phantoms².
- Six pediatric cardiac surgeons practiced suturing on the silicone valve models.
- All six surgeons considered the models to be useful for training for cardiac surgery and practicing difficult cases.
- 3D Slicer software was used to design the 3D-printable mold.³ [Segment editor, scissors effect] (www.slicer.org)
- For very thin or detailed structures such as heart valve leaflets, manually separating the mold into two pieces took 2-5 hours. To speed up the process, we wrote a module in 3D Slicer to automate mold creation for heart valves.
- Contact: ilina.anna@queensu.ca

Conclusion

- Custom molds can be designed in the open source 3D Slicer software to create patient-specific models of various anatomical structures. We illustrated this method by creating heart valves for surgical simulation.
- Different materials can be used with the printed mold to create phantoms. Dragon Skin® silicone is well suited to mimicking tissue due to its flexibility and resistance to tearing.

Reference