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Abstract 14 

Objective: Currently, there is a worldwide shift towards competency-based medical education. This 15 
necessitates the use of automated skills assessment methods during self-guided interventions 16 
training. Making assessment methods that are transparent and configurable will allow assessment 17 
to be interpreted into instructional feedback. The purpose of this work is to develop and validate 18 
skills assessment methods in ultrasound-guided interventions that are transparent and 19 
configurable. 20 
Methods: We implemented a method based upon decision trees and a method based upon fuzzy 21 
inference systems for technical skills assessment. Subsequently, we validated these methods for 22 
their ability to predict scores of operators on a 25-point global rating scale in ultrasound-guided 23 
needle insertions and their ability to provide useful feedback for training. 24 
Results: Decision tree and fuzzy rule-based assessment performed comparably to state-of-the-art 25 
assessment methods. They produced median errors (on a 25-point scale) of 1.7 and 1.8 for in-plane 26 
insertions and 1.5 and 3.0 for out-of-plane insertions, respectively. In addition, these methods 27 
provided feedback that was useful for trainee learning. Decision tree assessment produced 28 
feedback with median usefulness 7 out of 7; fuzzy rule-based assessment produced feedback with 29 
median usefulness 6 out of 7.  30 
Conclusion: Transparent and configurable assessment methods are comparable to the state-of-31 
the-art and, in addition, can provide useful feedback. This demonstrates their value in self-guided 32 
interventions training curricula.  33 
 34 
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Introduction 1 

Globally, skills training for medical interventions is transitioning from a time-based model 2 
to a competency-based model. Under the old time-based model, trainees would practice an 3 
intervention for a fixed amount of time, at which point they would be deemed competent and 4 
graduate, or they would be deemed incompetent and have to undertake significant remediation. 5 
Under the new competency-based model, trainees practice until they achieve a predefined 6 
competency benchmark. This scheme allows each trainee to practice the precise amount of time 7 
they need to achieve competency. The drawback of this method is that trainees’ competency 8 
needs to be continually monitored. 9 

Expert-based methods for skills assessment include checklists, global rating scales, and 10 
entrustments scores. Checklists are application-specific rubrics which assess whether the operator 11 
performs each step in the intervention correctly [1]. Global rating scales (GRS) offer application-12 
independent assessment of interventions across several different facets [2]. Entrustment scores 13 
assess to what degree a supervisor trusts the trainee to complete each face of the intervention [3]. 14 
While these methods provide reliable assessment, in particular when combined [4], they rely on 15 
experts. With increasing medical class sizes and demands on expert time, it is not feasible to 16 
implement expert-based assessment on a wide scale. Instead, skill assessment should be 17 
automated. 18 

Automated skills assessment can be applied to many different interventions (e.g. 19 
laparoscopy, open surgery, needle insertion, etc.), and can use data from many sources (e.g. 20 
instrument tracking, video, surgeon status, patient monitors) [5], [6]. Perhaps the most common 21 
method for automated skills assessment is metrics-based assessment. Under this paradigm, clinical 22 
experts specify what aspects of the intervention are relevant to operator skill. Subsequently, these 23 
can be implemented into a set of performance metrics: quantities that are understandable to 24 
trainees and clinicians and can be readily computed from measurable data. From these 25 
performance metrics, an overall skill level can be derived using pattern recognition or machine 26 
learning approaches. 27 

Metrics-based overall skills assessment was initially addressed as an optimization 28 
problem, where each metric is treated as a cost and the most skillful operator is the one who best 29 
minimized the weighted sum of costs [7], [8]. Since, pattern recognition approaches have been 30 
used to achieve improved reliability in assessment. Chmarra et al. showed that linear discriminant 31 
analysis reliably distinguishes novices from intermediates from experts in laparoscopic training 32 
tasks [9]. Likewise, Allen et al. showed that support vector machines outperform cost-based 33 
approaches for skill classification in laparoscopic training tasks [10]. Oropesa et al. also 34 
demonstrated that support vector machines outperform linear discriminant analysis and adaptive-35 
neuro fuzzy inference systems for laparoscopic training tasks [11]. Ahmidi et al. use support vector 36 
machines for skill classification for several difference types of performance metrics in septoplasty 37 
[12]. Fard et al. contrasted support vector machines with k-nearest neighbors and logistic 38 
regression for identifying novices and experts in robotic suturing tasks on real patients [13]. Kramer 39 
et al. have suggested learning vector quantization and self-organizing maps for assessment in 40 
simulated vascular surgery [14]. Neural network-based approaches have seen some success [15]. 41 
Fuzzy pattern recognition approaches have also gained some traction, including rule-based 42 
methods [16], [17] and adaptive fuzzy inference systems [18]. 43 

In consultation with clinical experts, we suggest two criteria which metrics-based skills 44 
assessment methods should meet in order to be clinically useful: transparency and configurability. 45 
A machine learning approach is considered transparent if both the model is easy to interpret and 46 



the principal of the method is easily understood [19], [20]. A machine learning approach is 1 
considered configurable if it has parameters which can be configured to improve performance 2 
based on domain-knowledge from a domain expert (Chiticariu et al. consider this a component of 3 
transparency [20]). In interventional skills assessment, transparency allows both the supervisor 4 
and trainee to understand why the trainee received a particular score and to interpret their results 5 
into actionable strategies to improve performance. Configurability allows the expert to adjust the 6 
assessment to their particular training scenario or to emphasize particular skills. 7 

Of course, there are other methods for interventional skills assessment that are not based 8 
on performance metrics. In particular, temporal modelling [21], process monitoring [22], and end-9 
to-end deep learning approaches [23] have shown some promise for skills assessment. 10 
Unfortunately, these methods do not provide adequate transparency to allow trainees and 11 
supervisors to interpret results into actionable feedback to improve performance. Crowd-sourcing 12 
can also provide accurate skills assessment and is effectively automated [24], but cannot provide 13 
immediate feedback.  14 

The objective of this work is to develop and validate methods for overall skills assessment 15 
in percutaneous interventions. The methods should be transparent, configurable, and conducive 16 
to self-guided training. Subsequently, we evaluated (1) the accuracy of the proposed methods 17 
compared to state-of-the-art computer-assisted assessment and (2) the usefulness of the feedback 18 
provided by our proposed methods. 19 

A preliminary version of this work has been reported [25]. 20 

Methods 21 

Skills Assessment Algorithms 22 
We aim to implement skills assessment algorithm which are transparent and 23 

configurable. Transparency and configurability are inherently subjective and fuzzy. In a review of 24 
common machine learning techniques, Kotsiantis identified three techniques as highly 25 
transparent: decision trees, naïve Bayes, and rule-based learners [19]. Naïve Bayes is more 26 
applicable for classification, and performs poorly for regression tasks [26]. This leaves decision 27 
trees and rule-based learners as transparent and configurable machine learning approaches for 28 
interventional skills assessment. Each skills assessment method takes a set of performance metrics 29 
as input (i.e. feature vector) and computes an overall skill level as output.  30 

Decision Tree Assessment 31 
For transparent and configurable assessment using decision trees, we use importance-32 

aided decision trees [27] (Figure 1). This method is intended to incorporate domain-knowledge 33 
into decision trees, especially in lower levels of the decision tree when training data is limited. 34 

In decision tree learning, a split is made based on the attribute and value which optimizes 35 
some measure of purity of each branch. In our case, for regression, we choose the within-branch 36 
variance as the attribute selection score. Following Al Iqbal et al., for an attribute 𝑥, we create a 37 
new attribute selection score 𝑆 based on a linear combination of the within-branch variance score 38 
𝑆𝑣 and the attribute’s weight 𝑊 [27]. 39 

𝑆(𝑥) = (1 − 𝜌)𝑆𝑣(𝑥) + (𝜌)𝑊(𝑥) 40 
We select the attribute and split point which optimizes this new attribute selection score 41 

𝑆. The coefficient in the linear combination 𝜌 grows inversely with the proportion of remaining 42 
training samples in the branch [27]. The splitting is stopped once the within-branch variance 43 
decreases beyond a certain threshold. At this point, all training instances in the branch will 44 



effectively have the same skill level. We observe that in the case of equal attribute weights, this 1 
functions in the same way as a classical decision tree. 2 

As identified by Kotsiantis, this method is transparent [19]. The user is presented with the 3 
traversal of the decision tree and the splitting criteria. As actionable feedback, we can identify the 4 
metrics associated with splits in the traversal where the branch center changed most. The 5 
feedback “well done” is provided when all splits in the traversal result in positive change in the 6 
branch center.  This method is configurable in that the weights associated with each attribute can 7 
be adjusted. As demonstrated by Al Iqbal et al., incorporating this domain-knowledge into the 8 
decision tree can improve the accuracy of assessment [27].  9 

Fuzzy Rule-Based Assessment 10 
 For rule-based assessment that is transparent and configurable, we use a set of fuzzy 11 
inference rules (Figure 1). In particular, we choose to use rules of the form: IF <metric> is <skill 12 
level> THEN operator is <skill level>. For example, IF elapsed time is expert THEN operator is 13 
expert. Such a rule is defined for each metric and skill level pair. 14 
 In practice, this requires us to define a membership function for each skill class and a 15 
membership function for each metric for each skill class. We define the skill class membership 16 
functions as symmetrical triangular functions on the range [0, 1] overlapping such that 17 
membership over all classes sums to one [16], [17]. The metric membership function for each skill 18 
class is computed empirically from the training data by Gaussian kernel density estimation, using 19 
the Silverman rule-of-thumb to estimate the bandwidth [28]. Importantly, each training instance 20 
may have membership in multiple skill classes and contribute with different weight to multiple 21 
metric membership functions. 22 
 We use clipping based on the membership in the input function to compute the output 23 
membership function for each rule. The set of fuzzy rules is combined and defuzzified by 24 
computing the mean of the maximum of the output membership functions. 25 
 This rule-based assessment method is transparent [19]. The user is presented with the 26 
rules that were applied and their strengths. As actionable feedback, we can identify the metrics 27 
for which the net influence of all associated fuzzy rules is the strongest. The feedback “well done” 28 
is provided when for each metric the net influence of all rules associated with that metric is 29 
positive. This method can be configured by allowing the weights associated with each rule to be 30 
adjusted or fuzzy rules to be added or removed. In particular, experts can add more sophisticated 31 
rules based on their domain-knowledge for improved accuracy. 32 

Validation of Assessment Accuracy 33 
 We validated our assessment methods on both in-plane and out-of-plane needle 34 
insertions on a vascular access phantom (CAE Healthcare), following the setup used in Xia et al. 35 
[29]. We recorded 19 trainees and 5 experts performing in-plane insertions and 19 trainees and 5 36 
experts performing out-of-plane insertions. Trainees were recorded at two points during a training 37 
curriculum (Figure 2). Experts were each recorded once. Operators used a Telemed MicrUs linear 38 
ultrasound probe (Telemed Medical Systems). We recorded videos of participants’ hands and 39 
tracked the needle and ultrasound probe. Tools were tracked with the Ascension trakStar 40 
(Northern Digital Inc.), and data was recorded using the PLUS Toolkit (www.plustoolkit.org) [30] 41 
and Perk Tutor (www.perktutor.org) [31]. We computed eight metrics for in-plane insertions and 42 
seven metrics for out-of-plane insertions (Table 1) [29]. These metrics were designed based on 43 
consultation with clinical experts, and they are intended to cover all relevant aspects of the 44 
ultrasound-guided needle insertion tasks. 45 

http://www.plustoolkit.org/
http://www.perktutor.org/


 As ground-truth assessment, we did not use participants’ level of training. Instead, we 1 
recruited three clinical experts to assess participants’ performance via anonymized hand motion 2 
videos using a previously validated global rating scale [32], [33]. The mean overall expert 3 
assessment provides a ground-truth skill level out of 25. 4 
 To determine the weight associated with each metric, we interviewed the same three 5 
clinical experts who provided ratings on the global rating scale, and we asked them to rate the 6 
importance of each metric for skills assessment on a seven-point Likert scale. We linearly scaled 7 
these ratings onto the interval [0, 1]. 8 
 Subsequently, we validated the performance of our proposed assessment methods using 9 
leave-one-user-out cross-validation. We computed difference in the output of the proposed 10 
assessment methods with the mean expert rating. We then compared these results with the 11 
results achieved from several standard methods: (1) zero-rule regression (i.e. always guessing the 12 
mean scores), (2) linear regression, an empirically optimal version of the sum of z-scores method 13 
[8], (3) support vector machine regression, which has been shown to achieve state-of-the-art 14 
results in several assessment tasks [10]–[13], (4) nearest-neighbor regression with sequential 15 
forward feature selection, which achieves highly accurate assessment in suturing and knot tying 16 
[34], [35], (5) random regression forests, a generalization on decision tree regression. To compare 17 
the methods, we used a Friedmann test with pairwise Dunn’s post hoc tests with Bonferroni 18 
correction (α=0.05). To determine whether our assessment methods are comparable to these 19 
other methods, we performed non-inferiority sign-rank tests (α=0.05) with the pooled standard 20 
deviation in expert ratings as the non-inferiority margin. 21 
 To determine the added value of expert-configured assessment, we used Bonferroni-22 
corrected sign-rank tests (α=0.05) to compare unconfigured assessment with expert-configured 23 
assessment. We tested: (1) assessing the mean expert-assigned score using the mean expert 24 
configuration and (2) assessing each expert-assigned score using each expert’s respective 25 
configuration.  26 

Validation of Feedback Accuracy 27 
 To assess the quality of feedback provided by our methods, we mapped each metric to a 28 
plain-language description (Table 2). This was done in consultation with our clinical experts to 29 
ensure the vocabulary covers all possible feedback an expert might provide to trainees during in a 30 
typical training scenario. Subsequently, we asked one expert to review each trainee’s post-training 31 
video (as this was identified by experts as the most useful stage for feedback). At the end of each 32 
video, we showed the expert all the different feedbacks and asked them to rate the usefulness of 33 
each one on a seven-point Likert scale (1 = strongly disagree that feedback was useful; 4 = neutral; 34 
7 = strongly agree that feedback was useful).  35 

We compared the usefulness of the feedback provided by the proposed methods with 36 
the usefulness of the 𝑘th most useful feedback by sign-rank test (α=0.05), for all 𝑘. We report the 37 
smallest 𝑘 for which the predicted feedback is significantly more useful than the 𝑘th most useful 38 
feedback provided by the expert. This provides evidence of the usefulness of the proposed 39 
methods relative to expert feedback, without being skewed by the fact that experts found the 40 
majority of feedbacks to be useful. We also report confusion matrices for the truly most useful 41 
feedback compared to the predicted feedback.  42 



Results 1 

Assessment Accuracy 2 
 For ground-truth skill, the average measures intraclass correlation coefficient was 0.90 3 
for the in-plane insertions and 0.93 for the out-of-plane insertions, indicating good reliability. For 4 
decision tree assessment and fuzzy rule-based assessment respectively, the median errors were 5 
1.7 and 1.8 for in-plane insertions and 1.5 and 3.0 for out-of-plane insertions (Figure 3). Post hoc 6 
tests revealed decision tree assessment significantly outperformed all methods except support 7 
vector machine assessment (Table 3). 8 
 Decision tree assessment was non-inferior to all other assessment methods  for both in-9 
plane and out-of-plane insertions. Fuzzy rule-based assessment was non-inferior to all other 10 
assessment methods for in-plane insertions. For out-of-plane insertions, however, significance was 11 
not achieved. In fact, for out-of-plane insertions, fuzzy rule-based assessment was non-inferior to 12 
only zero-rule and nearest neighbor with sequential forward feature selection. 13 
 Reliability in the mean expert-defined weights was poor. The average measures intraclass 14 
correlation coefficient was 0.49 for in-plane insertions and 0.32 for out-of-plane insertions. When 15 
we used the expert-defined weights in the configurable assessment methods, the change in 16 
accuracy was insignificant (Figure 4).  17 

Feedback Accuracy 18 
The usefulness of the feedback was rated a median 7 out of 7 and a mean 5.8 out of 7 on 19 

a Likert scale for decision tree assessment. Likewise, the usefulness of the feedback was rated a 20 
median 6 out of 7 and a mean 5.3 out of 7 on a Likert scale for fuzzy rule-based assessment (Figure 21 
5). Decision tree assessment produced useful feedback 74% of the time, and fuzzy rule-based 22 
assessment produced useful feedback 63% of the time (feedback rated 5, 6, or 7 out of 7 on a 23 
Likert scale). Furthermore, both methods produced significantly better than neutral feedback. 24 
Confusion matrices illustrate the most commonly misclassified feedback (Figure 6). 25 

Compared to expert feedback, we found that for in-plane insertions, both decision tree 26 
assessment and fuzzy rule-based assessment produced significantly better feedback than the 5th 27 
best expert feedback. For out-of-plane insertions, decision tree assessment produced significantly 28 
better feedback than the 3rd best expert feedback, and fuzzy rule-based assessment produced 29 
significantly better feedback than the 5th best expert feedback. In all cases, the feedback produced 30 
by the proposed methods was better than the median expert feedback, but this was significant 31 
only for decision tree assessment in out-of-plane insertions. 32 

Discussion 33 

 The results show that transparent and configurable assessment methods (1) perform 34 
comparably to state-of-the-art methods and (2) provide useful feedback for training. In particular, 35 
decision tree assessment performed the most accurately and provided the most useful feedback 36 
for our dataset. We did not observe a significant change in assessment accuracy when experts 37 
configured the proposed methods based on their domain knowledge [36], [37]. We believe the 38 
lack of significant improvement in the presented results may be due to our definition of ground-39 
truth skill as a sum of global rating scale scores, without considering the importance of each aspect. 40 
Furthermore, the experts found all the metrics that were defined to be useful on average (rated 41 
as 5 or higher out of 7), and thus, the expert configurations are not substantially different from the 42 
default configuration. 43 



 We have identified our methods as transparent and identified methods such as support 1 
vector machines as opaque. While we have followed the work of Kotsiantis in identifying machine 2 
learning techniques as transparent [19], these classifications are inherently fuzzy. Although there 3 
is ongoing work in introspection in deep learning [38] allowing users to gain some understanding 4 
of how the deep model reached the result, it is unclear how well such methods will be accepted 5 
into practice [39]. 6 

One of the limitations of our feedback is the finite nature of our feedback vocabulary. While 7 
our feedback vocabulary was generated in consultation with experts to cover every aspect of the 8 
intervention, it does not allow feedback to be tailored to a particular trainee, as preceptors would 9 
do in practice. We observed that experts rated the top feedback as a median of 7 out of 7, 10 
indicating they agreed that the feedback from the vocabulary was indeed useful. 11 

Another challenge of this work was determining the weights for each feature. We used a Likert 12 
scale to capture experts’ opinion about the importance of each aspect of the intervention, and 13 
linearly scaled these responses to weights. But we observed that there was poor consistency 14 
between experts. This indicates that each expert may value different aspects of ultrasound-guided 15 
insertions. Our methods would allow the assessment to be tailored to each expert individually. 16 

Although there are five experts and nineteen trainees for each of in-plane and out-of-plane 17 
insertions, we observe that ground-truth global rating scores cluster towards the higher end of the 18 
scale. This creates a problem of unbalanced regression and may affect the reported results. 19 

We observed that in 8% and 29% of cases, “well done” was incorrectly predicted as the most 20 
useful feedback, for decision tree and fuzzy rule-based assessment, respectively. But the feedback 21 
“well done” may not be the most instructive for trainees. The proposed methods could be adapted 22 
to provide this feedback less frequently. For decision tree assessment, this could be achieved by 23 
requiring all splits in the traversal to have a change in branch center above a certain threshold. 24 
Analogously for fuzzy rule-based assessment, the could be achieved by requiring the net influence 25 
of all rules associated with each metric to be above a certain threshold. The threshold value could 26 
be tuned to optimize a sensitivity and specificity criterion.  27 

We have shown that the proposed methods work effectively for skills assessment and 28 
feedback in both in-plane and out-of-plane ultrasound-guided needle insertions. Our setup has 29 
shown evidence for face and content validity [29]. Because the overwhelming majority of 30 
ultrasound-guided interventions use one of these approaches, we suggest the results will apply to 31 
most ultrasound-guided interventions. Recent work has shown it takes approximately 85 practice 32 
attempts to reach proficiency in ultrasound-guided needle insertions [40]. Our experts believe that 33 
the feedback provided by our system will be most applicable after 10 practice attempts when the 34 
trainee has fully understood the basics of the intervention.  35 

Our results are consistent with other work demonstrating the utility of metrics-based 36 
assessment of interventional skills [7], [8]. In the context of ultrasound-guided needle insertions, 37 
we have shown that transparent and configurable methods are comparable to state-of-the-art 38 
methods for assessment but, in addition, can provide useful feedback. 39 

In the future, we suggest further study into how the proposed methods perform in specific 40 
ultrasound-guided interventions (e.g. biopsy, epidural, central line) and how they may be extended 41 
to other types of interventions. It has been previously shown that generic performance metrics 42 
may not be equally applicable to all interventions [41] and application-specific metrics provide 43 
added value over generic metrics [42]. Thus, in order to extend these methods to other 44 
interventions, it is necessary to develop application-specific performance metrics and a feedback 45 
vocabulary in consultation with expert clinicians. These are the only places where we have infused 46 
application-specific knowledge into the proposed methods. 47 



We also suggest a future longitudinal study examining the effect of providing the proposed 1 
computer-generated feedback on trainee learning. Such a study could better identify the added 2 
value of the proposed feedback methods over self-guided training without feedback. Prior work 3 
has shown that feedback through 3D visualization can improve ultrasound-guided interventions 4 
learning [43], but has not evaluated the impact of targeted feedback. 5 

We make the proposed methods available to the community through Perk Tutor 6 
(www.perktutor.org) [31]. 7 

Conclusion 8 

We have demonstrated that transparent and configurable skills assessment methods are 9 
comparably accurate to state-of-the-art methods. In contrast to state-of-the-art methods, 10 
however, transparent and configurable methods were shown to provide useful feedback for 11 
training. Importance-aided decision tree assessment provided the most accurate assessment with 12 
feedback. 13 

Thus, transparent and configurable assessment methods can be adopted into practice to 14 
provide feedback without compromising accuracy. We have also demonstrated that they can be 15 
customized by experts to suit the particular application or emphasize particular skills. 16 

We envision these methods could be employed in an ultrasound-guided interventions 17 
training curriculum. They would monitor trainee learning curves and provide automated 18 
instructions during self-directing learning. This would serve to supplement supervision and 19 
assessment from expert preceptors. 20 
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  1 

Figure 1. Illustration of importance-aided decision tree assessment (left) and fuzzy rule-based 2 
assessment (right) in ultrasound-guided needle insertion assessment using performance metrics. 3 

  4 



 1 

 2 

Figure 2. Photograph of a trainee participant performing an ultrasound-guided in-plane needle 3 
insertion (top) and schematic diagram of setup (bottom). The electromagnetic pose trackers used 4 
are attached to the base of the needle, base of the ultrasound probe, and exterior of the phantom. 5 
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 1 

Figure 3. Error in assessment for the decision tree (DT), fuzzy rule-based (FRB), zero-rule (ZR), linear 2 
regression (LR), support vector machine (SVM), nearest neighbor with sequential forward feature 3 
selection (SFFS-NN), and random forest (RF) assessment methods for in-plane insertions (left) and 4 
out-of-plane insertions (right). Data from 24 users over 43 trials. 5 
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 2 
Figure 4. Error in assessment for decision tree (DT) and fuzzy rule-based (FRB) assessment methods 3 
with or without expert-defined weights for in-plane insertions (left) and out-of-plane insertions 4 
(right). Top row shows results from predicting the mean expert-assigned score using the mean 5 
expert configuration; bottom row shows results from predicting each individual expert-assigned 6 
score with each expert’s respective configuration. Data from 24 users over 43 trials. 7 
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 1 
Figure 5. Usefulness of feedback produced by the decision tree (DT) and fuzzy rule-based (FRB) 2 
assessment methods for in-plane insertions (left) and out-of-plane insertions (right). Red line 3 
indicates median. Data from 24 users over 43 trials. 4 
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 2 
Figure 6. Confusion matrices illustrating errors in predicted feedback for in-plane (top) and out-of-3 
plane (bottom) ultrasound-guided needle insertions using importance-aided decision tree (left) 4 
and fuzzy rule-based (right) assessment. Ties are distributed across all tied labels. Labels 5 
correspond to feedback vocabulary. Blue shading indicates correct predictions; red shading 6 
indicates incorrect predictions. Intensity of shading indicates higher concentration. Data from 19 7 
users over 19 trials. 8 
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Table 1. Description of performance metrics for in-plane and out-of-plane insertions. 1 

In-Plane Metrics 

Elapsed Time (s) 
Total time from the start of the insertion to the end of the 
insertion 

Needle path length (mm) Total distance travelled by the tip of the needle 

Probe path length (mm) Total distance travelled by the foot of the ultrasound probe 

Needle path efficiency (%) 
Ratio of the needle’s path length to the distance between 
the needle’s start and end points 

Average needle to ultrasound 
plane distance (mm) 

Average orthogonal distance between the needle tip and the 
ultrasound plane 

Maximum needle to ultrasound 
plane distance (mm) 

Maximum orthogonal distance between the needle tip and 
the ultrasound plane 

Average needle to ultrasound 
plane angle (°) 

Average angle between the needle and the ultrasound plane 

Maximum needle to ultrasound 
plane angle (°) 

Maximum angle between the needle and the ultrasound 
plane 

Out-of-Plane Metrics 

Elapsed Time (s) 
Total time from the start of the insertion to the end of the 
insertion 

Needle path length (mm) Total distance travelled by the tip of the needle 

Probe path length (mm) Total distance travelled by the foot of the ultrasound probe 

Needle path efficiency (%) 
Ratio of the needle’s path length to the distance between 
the needle’s start and end points 

Maximum distance needle is 
past ultrasound plane (mm) 

Maximum orthogonal distance the needle tip travels past 
the ultrasound plane  

Total time needle is past 
ultrasound plane (s) 

Total time spent with the needle tip past the ultrasound 
plane 

Average rotation from needle to 
ultrasound plane normal (°) 

Average angle between the needle and the plane orthogonal 
to the ultrasound marked-unmarked vector 
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Table 2. Plain-language feedback associated with each performance metric for in-plane and out-1 
of-plane insertions. 2 

In-Plane Metrics 

Elapsed Time (s) 
F1. Keep practicing with proper technique to improve your 
time efficiency. 

Needle path length (mm) 
F2. Look at the depth of your target, and try to estimate the 
correct angle of needle insertion. 

Probe path length (mm) 
F3. Get a longitudinal ultrasound image of the middle of the 
vessel and stabilize the probe using your hand/finger against 
the gel surface. 

Needle path efficiency (%) 
F4. Try to focus on a smooth, straight needle path while 
inserting the needle as close to the ultrasound plane as 
possible. 

Average needle to ultrasound 
plane distance (mm) 

F5. Start with the needle in the middle of the ultrasound 
probe and try to keep it aligned with the ultrasound plane 
during needle insertion. 

Maximum needle to ultrasound 
plane distance (mm) 

Average needle to ultrasound 
plane angle (°) 

F6. Do not change the angle between the needle and the 
ultrasound plane during needle insertion. This will make sure 
that there is perfect alignment. 

Maximum needle to ultrasound 
plane angle (°) 

 F7. Well done. 

Out-of-Plane Metrics 

Elapsed Time (s) 
F1. Keep practicing with proper technique to improve your 
time efficiency. 

Needle path length (mm) 
F2. Look at the depth of your target, and try to estimate the 
correct angle of needle insertion. 

Probe path length (mm) 
F3. Do not move the probe when advancing the needle. 
Advance the probe very slightly when the needle appears in 
the ultrasound image. 

Needle path efficiency (%) F4. Insert the needle in a straight, smooth path. 

Maximum distance needle is 
past ultrasound plane (mm) 

F5. Keep the ultrasound plane slightly ahead of the needle. 
If you see the needle tip on the screen, move the ultrasound 
slightly ahead until the needle disappears and then continue 
needle insertion until the needle appears again. 

Total time needle is past 
ultrasound plane (s) 

Average rotation from needle to 
ultrasound plane normal (°) 

F6. Start with the target in the middle of the ultrasound 
screen, with the needle in the middle of the probe at 90° to 
the probe and 45° to the gel surface. Do not change this 
angle during the needle insertion. 

 F7. Well done. 

 3 
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Table 3. Results of post hoc testing for differences in decision tree (DT), fuzzy rule-based (FRB), 1 
zero-rule (ZR), linear regression (LR), support vector machine (SVM), nearest neighbor with 2 
sequential forward feature selection (SFFS-NN), and random forest (RF) assessment. Mean ranks 3 
indicates the mean rank of accuracy for the method when compared to the other methods. 4 
Significant indicates which methods were significantly different, and whether the method was 5 
more accurate (<) or less accurate (>). 6 

In-Plane 

Assessment Method Mean Rank Significant 

Decision Tree 3.09 <ZR 

Fuzzy Rule-Based 4.40 >RF 

Zero-Rule 5.74 >DT, LR, SVM, SFFS-NN, RF 

Linear Regression 3.63 <ZR 

Support Vector Machine 4.09 <ZR 

SFFS-Nearest Neighbor 4.21 <ZR 

Random Forest 2.84 <FRB, ZR 

Out-of-Plane 

Assessment Method Mean Rank Significant 

Decision Tree 3.19 <FRB, ZR, SFFS-NN 

Fuzzy Rule-Based 4.63 >DT, SVM, RF 

Zero-Rule 5.81 >DT, LR, SVM, RF 

Linear Regression 3.88 <ZR 

Support Vector Machine 3.21 <FRB, ZR 

SFFS-Nearest Neighbor 4.60 >DT, RF 

Random Forest 2.67 <FRB, ZR, SFFS-NN 
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