Reducing Cost and Complexity in Computer-Assisted Training for Breast Lumpectomy

Matthew S. Holden¹, Zsuzsanna Keri¹, Tamas Ungi², Justine Ring², Caitlin T. Yeo³, Gabor Fichtinger¹,³, Boris Zevin³

¹Laboratory for Percutaneous Surgery, School of Computing, Queen’s University
²School of Medicine, Queen’s University
³Department of Surgery, Kingston Health Sciences Centre, Queen’s University

Introduction

• Breast lumpectomy is a common procedure often learned without any deliberate practice in a simulation laboratory
• We designed a training setup with objective technical skills assessment for lumpectomy [1] based on Perk Tutor (www.perktutor.org)

Objective

• We wish to reduce setup cost and complexity by removing sensors

Methods

Performance Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion time</td>
<td>Time required to complete all phases</td>
</tr>
<tr>
<td>Path length</td>
<td>Total distance travelled by the cautery, probe, left hand, right hand, and tumour</td>
</tr>
<tr>
<td>Rotational/translational actions</td>
<td>Number of rotational/translational actions of each hand, delineated by periods of rest</td>
</tr>
<tr>
<td>Tumour punctures</td>
<td>Number of times the cautery punctures the surface of the tumour</td>
</tr>
<tr>
<td>Tumour zones</td>
<td>Time the cautery tip is <0mm, 0mm – 5mm, …, 25mm – 30mm, >30mm away from the tumour during excision</td>
</tr>
</tbody>
</table>

Representative Metric Formulation

1. Determine which metrics distinguish novices from experts

2. Determine representatives for the factors underlying each metric

Validation

• Analyze 16 novice and 14 expert trials of simulated lumpectomy
• Compare accuracy of skill assessment via two methods using all metrics versus only representative metrics

Results

• The proposed metrics measure three aspects of technical skill

<table>
<thead>
<tr>
<th>Aspect of Technical Skill</th>
<th>Representative Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excision efficiency inside safety margin</td>
<td>Tumour zone: 0mm – 5mm</td>
</tr>
<tr>
<td>Palpation efficiency</td>
<td>Tumour path length</td>
</tr>
<tr>
<td>Excision efficiency outside safety margin</td>
<td>Tumour zone: 20mm – 25mm</td>
</tr>
</tbody>
</table>

Fig 1. Breast lumpectomy training setup.

Fig 2. Loading plots of metrics onto factors identified with domain knowledge.

Fig 3. ROC curves for overall proficiency assessment using the z-score (black) and SVM (red) methods with all (solid) or representative (dashed) metrics.

Conclusion

• Our results show that we can reduce cost and complexity in image-guided interventions training setups
• Hand sensors may be removed from the lumpectomy training setup; this does not compromise skill assessment quality

References & Acknowledgements

This work was funded, in part, by NIH/NIBIB and NIH/NIGMS via grant 1R01EB021496-01A1 - Slicer+PLUS: Point-of-Care Ultrasound and by CANARIE’s Research Software Program. Matthew S. Holden is supported by the NSERC Canada Graduate Scholarship and the Link Foundation Fellowship in Modelling, Simulation, and Training. Gabor Fichtinger is supported as a Cancer Care Ontario Research Chair in Cancer Imaging.