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Abstract. With the shift in the medical education curriculum to a competency-

based model, objective proficiency assessment is necessary. In this work, we use 

exploratory factor analysis to assess which primitive metrics convey unique in-

formation about proficiency in point-of-care ultrasound applications. We retro-

spectively validate the proposed methods on three datasets: FAST examination, 

femoral line, and lumbar puncture. We identify a minimal set of metrics for pro-

ficiency assessment in each application. Furthermore, we validate that overall 

proficiency assessment methods are unaffected by the removal of redundant met-

rics. This work demonstrates that proficiency in point-of-care ultrasound appli-

cations is multi-faceted, and that measuring completion time alone is not enough 

and application-specific metrics have added value in proficiency assessment.  
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1 Introduction 

Medical education is undergoing a shift from a traditional time-based model to a com-

petency based model, where trainees graduate only upon achieving a competency 

benchmark. With increasing demands on expert clinician time, this necessitates auto-

matic methods for proficiency assessment. 

Accordingly, there has been a proliferation of methods of objective, automatic tech-

nical proficiency assessment for many clinical applications. These methods perform 

computation on data from a different sources including: hand or tool motion tracking 

data, video data of the surgical field or operating room, surgeon status information from 

wearable sensors (e.g. eye gaze, cognitive load, muscle activity), or quantification of 

resulting tissue. Reviews of methods for proficiency assessment for medical interven-

tions training can be found in [1] and [2]. 

Computing overall proficiency from a combination of primitive performance metrics 

is common practice. This is because primitive metrics are straightforward to compute, 

easy for trainees to understand, and readily interpreted into actionable feedback. Fur-

thermore, they can be used to capture application-specific information that generic as-

sessment methods cannot. Fraser et al. and Stylopoulos et al. first addressed this, pro-

posing a sum of normalized features [3] and a sum of z-scores [4], respectively. Subse-

quently, Allen et al. showed that using support vector machines for overall proficiency 
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classification outperformed either of these methods [5]. Oropesa et al. confirmed that 

support vector machines likewise outperform linear discriminant analysis and adaptive-

neuro fuzzy inference for classification overall proficiency classification [6]. Modern 

machine learning techniques have also been applied to this problem [7]. 

It is interesting to consider which metrics are critical for overall proficiency assess-

ment and which metrics are redundant. Primarily, metrics must be valid for distinguish-

ing novices from experts. Several valid metrics used in the assessment, however, may 

measure the same aspect of proficiency and correlate strongly, while others may ad-

dress different aspects of proficiency. Redundant metrics may be removed to reduce 

system complexity without reducing assessment accuracy or feedback quality. Metrics 

addressing different aspects of proficiency, on the other hand, must remain to achieve 

a complete assessment with feedback specific to each aspect of proficiency.  

In this work, we seek to evaluate which primitive metrics are sufficient and neces-

sary for a complete assessment of technical proficiency in point-of-care ultrasound ap-

plications. In particular, we address whether simply measuring completion time is suf-

ficient for overall proficiency assessment and the role of application-specific metrics. 

2 Methods 

2.1 Primitive Metric Validity 

While most primitive metrics are designed to measure a clinically important quantity, 

it must still be show that they correlate with proficiency. To this end, we examined 

primitive metrics from both novices and experts, and assessed whether there is a differ-

ence between metrics for the two groups. Metrics which did not show evidence of va-

lidity were removed from subsequent analysis. 

First, we used the Mann-Whitney U test (α=0.05) to determine if there is a statisti-

cally significant difference between the two groups for each metric. We used Cliff’s Δ 

to quantify the effect size. Additionally, we measured the information gain associated 

with splitting on each metric. The information gain indicates how well splitting the data 

improves the groups’ purity, where large information gain indicates that a metric dis-

tinguishes novices from experts effectively. We further assessed if the split produced 

significantly different groups using Fisher’s exact test (α=0.05). 

2.2 Primitive Metric Redundancy 

Metric redundancy is most commonly computed using correlation, where a strong cor-

relation indicates a high likelihood of redundancy. As an initial check, we computed 

the correlation between each pair of metrics. 

 Subsequently, we performed Exploratory Factor Analysis (EFA) on the primitive 

metric values. EFA expresses each primitive metric as a linear combination of some set 

of latent factors. Two primitive metrics which are similar linear combinations of the 

latent factors would be considered redundant. Furthermore, when combined with expert 

knowledge, the latent factors can be interpreted as aspects of technical proficiency and 

their importance can be identified. For this study, we used the principal components 
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methods and chose the smallest number of factors explaining at least 90% of the vari-

ance in the data. Two primitive metrics were considered redundant if they both had 

loading factors greater than 0.90 on the same latent factor. 

2.3 Assessment Using Non-Redundant Primitive Metrics 

Once we identified which metrics were redundant using EFA, for each set of redundant 

metrics we chose one “representative” metric. This metric was chosen to be the metric 

with the best loading on each of the latent factors. We then computed an overall profi-

ciency classification for each participant using the “representative” metrics for both the 

traditional sum of z-scores method [4] and the support vector machine method [5]. For 

the sum of z-scores method we used equal weighting. For the support vector machine 

method, we normalized the data on the range [0, 1] and used the radial basis function. 

We compared the proficiency classification accuracies achieved using the “repre-

sentative” set of primitive metrics with the accuracies achieved using all primitive met-

rics. The area under the receiver-operator characteristics curves was computed for each 

metric set for each of the sum of z-scores method and the support vector machine 

method. We determined whether the areas under the curves was different for the metric 

sets using the Hanley-McNeil test (α=0.05). 

2.4 Datasets 

We retrospectively analyzed datasets from three point-of-care ultrasound training ap-

plications: FAST ultrasound examination, femoral line insertion, and freehand lumbar 

puncture. In each case, we used previously computed metric values based on tool track-

ing data. In each case, the metrics were specifically designed by experts to capture rel-

evant information on proficiency while performing the intervention. 

 In the FAST ultrasound training dataset, a group of fourteen novices and fifteen in-

termediates performed a complete FAST examination on a healthy volunteer on each 

of the four regions of interest (hepatorenal, splenorenal, pericardial, and pelvic regions) 

[8]. The ultrasound probe was tracked relative to the volunteer, and the following prim-

itive metrics were computed: completion time, percentage of expert-defined points of 

interest missed, and ultrasound probe path length. 

The femoral line insertion dataset included ten novices and four experts performing 

an ultrasound-guided insertion on a commercially available simulation phantom [9]. 

The motion of the operators’ hands was tracked relative to the phantom model, and the 

following primitive metrics were computed: completion time, probe hand path length, 

needle hand path length, probe hand rotational actions, needle hand rotational actions, 

probe hand translational actions, and needle hand translational actions. 

The lumbar puncture dataset included twenty-three novices and five experts per-

forming freehand lumbar puncture on a commercially available lumbar spine model 

[10]. The pose of the operators’ hands and needle was tracked relative to the phantom 

model, and the following primitive metrics were computed: completion time, left hand 

path length, right hand path length, needle tip path length, tissue damage caused by 

needle, needle tip path length in tissue, and needle tip time in tissue. 
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3 Results 

3.1 Primitive Metric Validity 

For the FAST dataset, all metrics were significantly different between novices and in-

termediates, thus all metrics were kept for subsequent analysis. For the femoral line 

dataset, probe hand and needle hand rotational actions were not significantly different 

between novices and experts, thus these two metrics were removed. All other femoral 

line metrics were kept. For the lumbar puncture dataset, all metrics were significantly 

different between the novice and expert groups, thus all metrics were kept (Table 1). 

Table 1. Validity of metrics for each dataset. MW indicates the p-value for the Mann-Whitney 

test; Δ indicates the non-parametric effect size; F indicates the p-value for Fisher's exact test; IG 

indicates the maximal information gain associated with splitting on that metric. 

Dataset Metric MW Δ F IG 

Completion time (s) <0.001 0.40 <0.001 0.10 

Points missed (%) <0.001 0.58 <0.001 0.21 

Probe path length (mm) <0.001 0.44 <0.001 0.08 

Completion time (s) 0.002 1.00 <0.001 0.60 

Probe hand path length (mm) 0.024 0.80 0.015 0.33 

Needle hand path length (mm) 0.024 0.80 0.011 0.36 

Probe hand rotational actions 0.056 0.68 0.070 0.26 

Needle hand rotational actions 0.607 0.20 0.221 0.16 

Probe hand translational actions 0.006 0.93 0.005 0.42 

Needle hand translational actions 0.002 1.00 <0.001 0.60 

Completion time (s) <0.001 1.00 <0.001 0.47 

Left hand path length (mm) 0.001 0.93 <0.001 0.32 

Right hand path length (mm) 0.007 0.79 0.003 0.22 

Needle tip path length (mm) 0.006 0.81 0.001 0.23 

Tissue damage (mm2) 0.010 0.76 0.001 0.25 

Needle path in tissue (mm) 0.026 0.65 0.026 0.14 

Needle time in tissue (s) 0.022 0.67 0.008 0.15 

3.2 Primitive Metric Redundancy 

The correlation matrices for each dataset are shown in Fig. 1. Using EFA, two latent 

factors were found for the FAST dataset, accounting for 91% of the variance. Two 

latent factors were found for the femoral line dataset, accounting for 98% of the vari-

ance. Three latent factors were found for the lumbar puncture dataset, accounting for 

93% of the variance. The loading plots for each dataset are present in Fig. 2. 

For the FAST dataset, completion time and probe path length both primarily load on 

one latent factor, and points missed loads primarily on the other latent factor. We inter-

pret the first latent factor to be “efficiency” and the second latent factor to be “thor-

oughness”. For the femoral line dataset, needle hand path length loads primarily on one 
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latent factor and probe hand translational actions loads primarily on the other latent 

factor. We conjecture the first latent factor to be “needle hand efficiency” and the sec-

ond latent factor to be “probe hand efficiency”. All other primitive metrics cross-load 

on the two latent factors. For the lumbar puncture dataset, tissue damage caused by 

needle, needle tip path length in tissue, and time needle in tissue load primarily on one 

factor, left hand path length and right hand path length load primarily on another, and 

needle tip path length loads primarily on a third factor. Completion time cross-loads. 

We hypothesize these three latent factors to be respectively “needle insertion effi-

ciency”, “landmarking efficiency”, and “needle placement efficiency”. 

 

 

Fig. 1. Correlation matrices for metrics in the FAST (top), femoral line (left), and lumbar punc-

ture (right) datasets. White indicates high correlation; black indicates low correlation. 

Based on the primitive metric loadings, the following metrics were kept as “repre-

sentative” metrics. For the FAST dataset, completion time and points missed were kept. 

For the femoral line dataset, needle hand path length and probe hand translational ac-

tions were kept. For the lumbar puncture dataset, right hand path length, needle tip path 

length, and tissue damage were kept. 

3.3 Assessment Using Non-Redundant Primitive Metrics 

Differences in the areas under the curves using all primitive metrics and using a “rep-

resentative” set were insignificant for all datasets using both the sum of z-scores and 

support vector machine methods (Table 2). The greatest change in area under the curve 

was 0.052, for the lumbar puncture dataset using the z-score method (Fig. 3). 
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Fig. 2. Loading plots for metrics onto presumed factors in the FAST (top), femoral line (left), 

and lumbar puncture (right) datasets. 

Table 2. Area under the curve (AUC) for each method of overall proficiency assessment. All 

AUC indicates the area under the curve using all metrics, and Rep. AUC indicates the area under 

the curve using only the "representative metrics". p-value indicates the p-value for the Hanley-

McNeil test. 

Dataset 

Sum of Z-Scores Support Vector Machine 

All 

AUC 

Rep. 

AUC 
p-value 

All 

AUC 

Rep. 

AUC 
p-value 

FAST 

 
0.84 0.83 0.45 0.84 0.84 0.44 

Femoral 

Line 
1.00 1.00 0.50 1.00 1.00 0.50 

Lumbar 

Puncture 
0.97 0.91 0.31 1.00 0.96 0.25 

4 Discussion & Conclusion 

In each dataset, the majority of the reported metrics were determined to be valid. There 

were strong correlations between many of the metrics, and exploratory factor analysis 

indicated that the metrics were associated with two to three latent factors. We inter-

preted the meaning of these latent factors using domain-specific knowledge. Taking 

only the most representative metrics for each factor, we achieved accuracies for overall 
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proficiency assessment that were not significantly different from accuracies using all 

metrics. This indicates that many of the metrics could be removed; however, comple-

tion time cannot be used alone to measure proficiency. Furthermore, it shows applica-

tion-specific primitive metrics have added value in proficiency assessment. 

 

 

Fig. 3. Receiver operator characteristic curves for overall proficiency assessment for the FAST 

(top), femoral line (left), and lumbar puncture (right) datasets. Black lines indicate all metric were 

used; red lines indicate only "representative" metrics were used. Solid lines indicate the sum of 

z-scores method was used; dashed lines indicate the support vector machine method was used. 

This study, however, is not without limitations. Primarily, for the femoral line and 

lumbar puncture datasets, the sample size is limited with the expert group including 

four and five participants respectively. This can be especially problematic for EFA. The 

other main limitation is that we have used experience as a proxy for ground-truth pro-

ficiency. This does not account for experts who have developed bad habits or have an 

“off day”. Ideally, ground-truth proficiency should be determined by a panel of experts 

using a valid objective assessment tool. Finally, our analysis assumes a monotonic re-

lation between each metric and proficiency, which may not always be the case.  

We suggest that these results will extend to other ultrasound-guided and freehand 

interventions. Here we have tested three different interventions, and our metric reduc-

tion techniques seem to apply well to each application, yielding less than six percent 

difference in proficiency classification for all datasets. We suggest this analysis could 

be used in other point-of-care ultrasound applications to identify which primitive met-

rics may be removed to reduce setup complexity and factors contributing to proficiency. 

Finally, for each of these datasets, we have more than one latent factor contributing 

to proficiency. In particular, the application-specific metrics have added value and com-

pletion time alone is insufficient for assessing these factors. In fact, there may be addi-

tional factors which are not measured by the primitive metrics we chose. One should 
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be aware of all such factors when computing an overall proficiency score. We suggest 

that providing a report card that addresses each of these factors may better allow train-

ees to understand which aspects of their intervention require the most improvement. 
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