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Abstract. PURPOSE: Point-set registration for interventional tools requires 

well-defined points to be present on these tools. In this work, an algorithm is 

proposed which uses planes, lines, and points for registration when point-set 

registration is not feasible. METHODS: The proposed algorithm matches 

points, lines, and planes in each coordinate system, uses invariant features for 

initial registration, and optimizes the registration iteratively. For validation, 

simulated data with known ground-truth and real surgical tool registration data 

using point-set registration as ground-truth were created to evaluate the algo-

rithm’s accuracy. RESULTS: The proposed algorithm is equally as accurate as 

point-set registration, and the difference between the registrations is less than 

the noise in the tracking system. CONCLUSION: The proposed algorithm is a 

viable alternative when point-set registration cannot be performed. 
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1 INTRODUCTION AND BACKGROUND 

Introduction. Registration is an integral part of all surgical navigation systems, and is 

used to display interventional tools (including needles, ultrasound probes, phantoms, 

etc.) and images from multiple modalities in a common navigation space. For exam-

ple, in surgical simulators with augmented reality, instruments and phantoms must be 

registered to a common coordinate frame to view them in the augmented reality dis-

play [14]. Alternatively, in surgical planning, the plan (and possibly preoperative 

planning image) must be registered into the same coordinate system as the interven-

tional tools or robots for the procedure [8]. 

Typical computer-assisted interventions use point-set registration using landmark 

points identified in both coordinate frames with known correspondence. In most 

cases, however, landmark points do not naturally occur on physical objects such as 

interventional tools, robotic devices, or calibration fixtures, and estimating landmarks 

point positions is insufficiently accurate. Due to engineering constraints, it is more 

common that an object will have a set of well-defined lines or planes, which could be 

conveniently and accurately collected and used for registration instead (see, for 

example, [12] and [15] for instances of such interventional tools). 

The objective of this work is to develop and validate a registration algorithm that 

uses points, lines, and planes (collectively referred to as “linear objects”) for 

registration problems such as those encountered in surgical simulation [14] and 

planning [8]. The algorithm is designed to provide a convenient alternative when 

point-set registration is infeasible. Such an algorithm should work for any set of linear 



objects that uniquely defines the registration and should be guaranteed to converge an 

approximately optimal solution in polynomial time. Additionally, the algorithm 

should work even when one set of linear objects is a permuted subset of the other. 

Although the proposed algorithm is validated by registering man-made objects 

with linear features that can be localized with a pointing device, the algorithm has 

further applications in image registration, which could be performed using linear 

features extracted from images of interventional tools (which has previously been 

shown to be a fruitful endeavour [10]). 

 

Background. Many point-set registration methods have been proposed for points 

with unknown correspondence based on Besl and McKay’s [1] iterative closest point 

algorithm. Several methods proposed to improve convergence to the global optimum 

include: using symmetry to achieve a better initial guess [6], "Lipschitzizing" the 

error function [9], or using a Levenberg-Marquardt method [4]. Regardless, a global 

optimum can only be guaranteed with great computational expense.  

Alternative approaches use invariant features in both coordinate frames to find the 

correspondences and then apply a closed-form solution. Thirion [13] used the extreme 

points of the dataset to determine correspondences. Xiao et al. [16] matched surface 

properties of local point clouds to determine correspondences. Similar feature 

extraction techniques are also used in many image registration algorithms. 

Unfortunately, most of these methods rely on having a complete set of points 

collected in both coordinate frames, which is unavailable in many situations. 

Several works provide algorithms which satisfy some criteria for solving the 

problem outlined above. Jain et al. [7] use points, lines, and ellipses for registration of 

C-arm images. Their work, however, uses specific features of C-arm imaging and is 

not guaranteed to converge. Lee et al. [8] also perform image registration using 

fiducial lines and their cross-sectional images. Their work does not consider the case 

of fiducial planes or points, and thus, does not apply in all scenarios examined here. 

The work of Meyer et al. [10] used a combination of points, lines, and planes (i.e. 

linear objects) with known correspondence for image registration. For each linear 

object, they calculate the projection of the centroid onto it and the direction vector 

from the projection to the centroid. The coordinate frames are registered using these 

points with known correspondence. Our proposed algorithm improves upon their 

algorithm by automatically determining linear object correspondence, not requiring 

points to define the centroid, and offering an iterative method for convergence. 

Olsson et al. [11] provide a branch and bound method for registering a set of points 

to their corresponding points, lines, and planes. They provide an algorithm which is 

guaranteed to converge to the optimal solution for any configuration. Though our  

proposed algorithm only guarantees convergence to a near globally optimal solution, 

it has the advantage of being polynomial time, rather than exponential time. 

Overall, the proposed algorithm extends previous work [10] by providing 

automatic linear object matching, solutions to a wider range of configurations, and 

offering an iterative convergence method. In contrast to [11], the proposed algorithm 

runs in polynomial time. Furthermore, an open-source implementation of the 

proposed algorithm is provided through the SlicerIGT (www.slicerigt.org) extension 

http://www.slicerigt.org/


for 3D slicer (www.slicer.org), thus providing an accessible medical registration tool. 

2 METHODS 

2.1 Linear Object Registration Algorithm (LORA) 

Point-to-Point, Line-to-Line, Plane-to-Plane Registration. This represents the most 

important component of the proposed algorithm: a method for simultaneously 

registering points to points, lines to lines, and planes to planes. The solution is 

guaranteed to be approximately optimal and the algorithm runs in polynomial time. 

To this end, the centroid of a set of linear objects X  is defined as the point for 

which the sum of squared distances to all linear objects X  is minimized. 
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In practice, the centroid can be calculated by finding the least-squares solution X  

to the below equation, where each linear object has some point b


 that lies on it and 

some orthonormal basis n


 to its orthogonal subspace. 
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The method for simultaneously registering points to points, lines to lines, and 

planes to planes follows as below, assuming registration of linear objects in 

coordinate frame A  to linear objects in coordinate frame B . 

1. Calculate the linear object centroid for linear objects in frame A  and the linear 

object centroid for linear objects in frame B . 

2. In both coordinate frames, translate the linear objects such that the centroid lies at 

the origin of the coordinate frame. 

3. For each coordinate frame, respectively, denote Ay


 and By


as the set of closest 

points on each linear object to the origin. 

4. For each line and plane, add the direction or normal vector to the set Ay


 or By


 as 

applicable. 

5. Calculate the point-set registration between the sets Ay


 and By


. 

 

Linear Object Matching. Automatically determining correspondence is an important 

component of the proposed algorithm in terms of usability. Ideally, intrinsic features 

that are invariant between the two sets of linear objects could be used. By considering 

the counterexample of registering three equidistant points (for which the registration 

is unique given correspondence), however, it can readily be seen that any matching 

http://www.slicer.org/


will produce a solution with the same fiducial registration error. Thus, some external 

feature must be used to determine linear object correspondence. 

The chosen external feature is a set of fiducials which have invariance between the 

two coordinate frames, which shall be called “references”. These are not used for 

registration directly, but are used to determine the correspondence between linear 

objects. These references need not be collected with high accuracy, however, since 

they are not used directly for registration. A linear object’s signature is defined as the 

vector of distances to the set of references  KrrR ,...,1 . 

       KrLDrLDLsignature ,,...,, 1  (3)  

Linear objects in the two coordinate frames can be matched by comparing their 

signatures. Linear objects whose signatures cannot be matched (to within some 

threshold) are discarded. The matching threshold is calculated as the product of the 

noise associated with collecting the linear objects and the number of references.  

 

Reconstructing Linear Objects from 

Point Sets. In practice, linear objects 

may be collected discretely. Thus, rather 

than points, lines, and planes, one set of 

linear objects may look like a set of 

points clustered about points, lying on 

lines, and/or lying on planes (see Fig. 1). 

It is assumed that point-sets are 

delineated such that each subset 

describes precisely one linear object. 

Then, the principal component analysis 

for each subset may be calculated, where the eigenvectors associated with non-zero 

eigenvalues represent direction vectors on the linear object. These derived linear 

objects may be subsequently used for linear object registration. 

Moreover, these initial points used to extract the linear objects may be used to 

improve the registration result. Given an initial registration and known 

correspondence, the registration between a set of linear objects in coordinate frame 

A  , and a set of points  nbbb ,...,1  in frame B can be calculated as follows. 

1. Transform each point ib in coordinate frame B  by the current transform T . 

2. For each transformed point iTb , find the closest point ia on its corresponding 

linear object in coordinate frame A . 

3. Shift the sets ia  and ib  such that their centroids a  and b  lie at the origin. 

4. Calculate the pure rotational registration R  between ia  and ib . 

5. Recalculate the current transform. Its rotation is R  and its translation is bRa  . 

6. Iterate until some convergence criteria is met (for example, the change in fiducial 

registration error is below some threshold). 

 

Fig. 1. Illustration of a point, line, and plane 

(blue) reconstructed from a set of points (red). 



Linear Object Registration Algorithm. In summary, LORA proceeds as follows. 

1. Reconstruct linear objects from collected points, as applicable. 

2. Compute linear object correspondences using references. 

3. Perform point-to-point, line-to-line, and plane-to-plane registration. 

4. Use the result from step 3 as an initial transform in an iterative point-set to linear 

object registration. 

Step 3, being the key step in the algorithm, offers a closed-form solution to the 

point-to-point, line-to-line, and plane-to-plane registration. It produces an exact 

solution to a finite version of the linear object registration problem which is globally 

optimal for the inifinite version in the case of no noise. This means that in practical 

cases where there is noise, step 3 produces an approximate solution. Step 4 is 

guaranteed to converge to a local minimum (by extension of the proof of convergence 

from [1]), so the entire solution is guaranteed to be approximate. 

2.2 Algorithm Validation 

Simulated Data. As an initial form of validation, LORA’s feasibility was tested on 

simulated data. The objective of the simulation was to generate random linear objects 

and to create random points on these linear objects, transformed by a known 

transformation matrix. Since the ground-truth transformation is known, the 

algorithm’s accuracy can be readily evaluated. 

A random transformation matrix can be generated by generating a random rotation 

and a random translation separately and combining the results. To generate a random 

rotation R , any matrix M with randomly generated elements and its singular value 

decomposition may be used. 

 TUDVM   (4)  

 TUVR   (5)  

The translation d


is generated by picking each component randomly. 

1. Generate a random number of each type of linear object (with random position and 

orientation) in coordinate frame A . Generate four references with random position 

in coordinate frame A . 

2. For each linear object L in coordinate frame A , generate a set of random points 

 naaa ,...,1 lying on L . 

3. Generate a random transformation matrix T  (by above described method).  

4. Apply the random transformation matrix to each random point iTa , and add 

Gaussian noise in each dimension. 

This algorithm generates random linear objects in coordinate frame A  and simulates 

point collection in frame B  on the linear objects. Thus, this simulated data can be 

used to test the feasibilty of LORA by comparing its result to the ground-truth. 

 



Real Data. As interventional tools in the general sense, 

three previously developed surgical navigation phan-

toms were used for validation of LORA: an fCal ultra-

sound calibration phantom (Fig. 2a) [3], a lumbar spine 

phantom (Fig. 2b) [14], and a LEGO® ultrasound cali-

bration phantom (Fig. 2c) [15]. Though these are not 

traditional interventional tools, the validation results 

apply equally to registration of tracked tools such as 

ultrasound probes or scalpels. The objective was to find 

the transformation between the phantoms’ sensor’s 

coordinate frame and the navigation system coordinate 

frame. This form of registration is required in surgical 

simulators to display all the objects in a common navi-

gation space [14].  

For each phantom, the set of linear objects in the 

phantom coordinate frame was defined. Both 

ultrasound calibration phantoms had a box-like 

exterior. Each face of this box was defined as a linear 

object. The lumbar spine phantom sits on a rectangular 

prism base. Each face of the base was defined as a 

linear object. Also, the vertebrae are mounted on a 

block that is attached to the base. The lines where this 

block attaches to the base were defined as linear objects. 

The fCal and lumbar spine phantoms already had points machined on them for 

point-set registration purposes. Using these points, point-set registration for each 

phantom was performed and used as ground-truth against which LORA was 

compared. The LEGO® phantom did not have points machined on it, so LORA was 

validated by comparing target registration errors and point reconstruction accuracies 

[2] from point-set registration (using approximate fiducial positions) and LORA. 

For validation, all linear objects defined on each phantom were used, and two 

reference points were chosen from the set of points used for point-set registration. A 

0.9mm stylus, tracked using the Ascension TrakStar electromagnetic tracking system 

(www.ascension-tech.com), was used to collect points on each linear object. The 

stylus was placed with its tip at each point, the stylus tip was traced back and forth 

along each line, and the stylus tip was slid over the entire extent of each plane. All 

data was collected, annotated, and saved using 3D Slicer (www.slicer.org). 

3 RESULTS 

To compare two transformations, the translational error metric was calculated as the 

norm of the difference between the two translations: 

 21 ddE NTRANSLATIO


  (6)  

The rotational error metric was calculated as the angle (from the axis-angle repre-

Fig. 2. Photographs of a user 

collecting points on a) fCal [3], 

b) lumbar spine [14], and c) 

LEGO® [15] phantoms. 

http://www.ascension-tech.com/


sentation) of rotation of the quotient of the two rotation matrices: 

    21arccos 2
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Simulated Data. To demonstrate the robustness of LORA in simulation, the average 

translational and rotational error over fifty trials associated with the registration 

(compared to the ground-truth) is plotted for varying levels of Gaussian noise (Fig. 2). 

Most importantly, the error increases linearly with the noise, demonstrating the ro-

bustness of LORA. 

The Ascension TrakStar 

electromagnetic tracking 

system (www.ascension-

tech.com) reports 1.4mm root-

mean-square tracking accuracy. 

Using this level of simulated 

noise, the algorithm exhibits 

0.085° rotational error and 

0.21mm translational error. 

To demonstrate the required 

number of references, simulated 

data was generated using 

varying number of references. The linear object matching was successful over 90% of 

the time when there was one reference. For two or more references, matching was 

successful in every simulation trial (up to 10.0mm of root-mean-square noise), 

indicating that two references are sufficient for practical linear object registration. 

 

Real Data. For all three phantoms, the linear object registration had smaller average 

root-mean-square error than the traditional point-set registration (1.22mm vs. 2.13mm 

for the fCal ultrasound calibration phantom, 1.14mm vs. 1.33mm for the lumbar spine 

phantom, and 0.45mm vs. 0.53mm for the LEGO® phantom). 

The error between the ground-truth (calculated as the mean transform from the 

point-set registration) and the transformation calculated using LORA is displayed in 

Table 1. The variability in the results produced by each algorithm is shown in Table 2. 

This provides a measure of each algorithm’s precision. 

Translational variability for the lumbar spine phantom was the only significantly 

different reported variability (two-tailed t-test, p = 0.003) between the two algorithms. 

Metric fCal Phantom Lumbar Spine Phantom 

Rotational Error (°) 1.49 0.76 

Translational Error (mm) 0.74 1.15 

Table 1. Error metrics for linear object registration using the fCal and lumbar spine phantoms. 

Error is calculated as the mean difference between the linear object registrations and the mean 

point-set registration. The rotational and translational errors are averaged over all registrations. 

The target registration errors and point reconstruction accuracies for the LEGO® 

phantom are shown for each algorithm in Table 3. The point reconstruction accuracies 

Fig. 3. Plot of translational error (red) and rotational 

error (blue) in the calculated transformation as a function 

of root-mean-square noise in the simulated data. 



are so large due to noise in the electromagnetic tracking system; however, LORA still 

produces significantly better accuracies than point-set registration. Both metrics are 

significantly smaller for LORA (by two-tailed t-test), with medium-large effect size 

using Cohen’s d statistic (p = 0.005, effect size 0.57 for target registration error; p < 

0.001, effect size 0.68 for point reconstruction accuracy). 

fCal Phantom 

Metric Point-Set Registration Linear Object Registration 

Rotational Precision (°) 0.46 0.43 

Translational Precision (mm) 0.45 0.37 

Lumbar Spine Phantom 

Metric Point-Set Registration Linear Object Registration 

Rotational Precision (°) 0.29 0.42 

Translational Precision (mm) 0.35 0.76 

Table 2. Rotational and translational precisions for each registration algorithm for the fCal and 

lumbar spine phantoms. The precision is calculated as the mean difference between each 

registration and the mean registration. 

Target Registration Error 

Metric Point-Set Registration Linear Object Registration 

Mean (mm) 1.34 1.18 

Standard Deviation (mm) 0.31 0.22 

Point Reconstruction Accuracy 

Metric Point-Set Registration Linear Object Registration 

Mean (mm) 3.98 3.46 

Standard Deviation (mm) 0.64 0.80 

Table 3. Target registration error and point reconstruction accuracy for point-set registation and 

LORA on the LEGO® ultrasound calibration phantom 

For our current Matlab implementation, LORA took on average 34s with 9,816 

collected points for the fCal phantom, 71s with 11,969 collected points for the lumbar 

spine phantom, and 57s with 10,380 collected points for the LEGO® phantom. For 

surgical simulation and planning, registrations are typically performed offline; thus, 

this temporal performance is adequate for practical use. In all instances, point-set 

registration took less than 1s to complete, but uses fewer than ten points. These per-

formance results contrast with results from Olsson et al. [11], which took up to 30s 

with fewer than twenty collected points. With our dataset, which contains up to 

10,000 collected points per registration, their algorithm could take impractically long. 

4 DISCUSSION & CONCLUSION 

Fitzpatrick et al. [5] prove that target registration error decreases with distance to the 

centroid and with larger fiducial configurations. This implies that linear objects 



should encompass relevant structures, and points should be collected on the entirety 

of linear objects. For example, for both ultrasound calibration phantoms, the linear 

objects should encompass the calibration wires, and for the lumbar spine phantom, the 

linear objects should encompass the intervertebral spaces. Linear objects are usually 

completely defined by the surgical tool itself, however, and should not need to be 

modified for registration. The results from the simulated data using random geometry 

suggest that LORA is robust to the arrangement of linear objects.  

Additionally, Fitzpatrick et al. [5], show that target registration error also decreases 

as more points are collected for registration. Thus, the number and range of collected 

points on each linear object should be maximized to improve the accuracy of LORA.  

Some sets of linear objects are insufficient to specify the transformation between 

the tool sensor coordinate frame and the surgical tool coordinate frame completely. 

Importantly, LORA has the property that it will calculate the transformation between 

the two coordinate frames for any sufficient set of linear objects. 

One less robust aspect of LORA is matching. Although simulated results show that 

two references is sufficient, it can be inconvenient to collect many references. One 

possibility is to enforce that the user manually match the linear objects. Alternatively, 

geometrical constraints on the defined references and linear objects could be enforced 

to ensure unambiguous matching. 

The results reported here are strictly from surgical tool registration applications, 

however, the algorithm extends to related applications, for which limited further 

validation is required. Other applications for LORA include image registration. 

LORA offers a general method to register imaged points, lines, or planes with 

interventional tools including robots, or Z-frame and N-wire phantoms, without 

requiring development of a new registration algorithm. Validation of the proposed 

algorithm for surgical planing and image registration is a clinical setting is required. 

Of course, not all interventional tools consist of well-defined linear objects. LORA 

could be extended to registration of any parametrically defined surfaces or curves. 

This, however, may be problematic since parametrically defined objects do not 

necessarily have the properties of linear objects used by LORA. 

The proposed algorithm has been made available through the open-source 

SlicerIGT (www.slicerigt.org) extension for 3D Slicer (www.slicer.org). This 

provides a convenient interface for users to collect linear objects and use LORA. 

Further usability and temporal performance studies for the module are planned. 

In conclusion, an algorithm (LORA) for surgical tool registration using linear 

objects has been developed, implemented, and validated. The algorithm does not 

impose the constraint of well-defined points that point-set registration algorithms 

impose. The algorithm works on a principle of extracting corresponding points from 

the linear objects in the two coordinate frames using geometric invariants and 

performing point-set registration on these, following by an iterative algorithm to 

converge to an optimum, which is guaranteed to be close to the global optimum. This 

algorithm was validated on simulated data by showing that the error in the registration 

increases linearly with noise in the data. The algorithm was validated using three 

different surgical navigation objects. Results showed that LORA performs practically 

identically to ground-truth point-set registration and it demonstrates more favorable 

http://www.slicerigt.org/


registration error metrics while it is significantly more convenient to apply in practice. 
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