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ABSTRACT 

PURPOSE: The intraoperative measurement of tracking error is crucial to ensure the reliability of electromagnetically 

navigated procedures. For intraoperative use, methods need to be quick to set up, easy to interpret, and not interfere with 

the ongoing procedure. Our goal was to evaluate the feasibility of using redundant electromagnetic sensors to alert users 

to tracking error in a navigated intervention setup.  

METHODS: Electromagnetic sensors were fixed to a rigid frame around a region of interest and on surgical tools. A 

software module was designed to detect tracking error by comparing real-time measurements of the differences between 

inter-sensor distances and angles to baseline measurements. Once these measurements were collected, a linear support 

vector machine-based classifier was used to predict tracking errors from redundant sensor readings.  

RESULTS: Measuring the deviation in the reported inter-sensor distance and angle between the needle and cautery served 

as a valid indicator for electromagnetic tracking error. The highest classification accuracy, 86%, was achieved based on 

readings from the cautery when the two sensors on the cautery were close together. The specificity of this classifier was 

93% and the sensitivity was 82%.   

CONCLUSION: Placing redundant electromagnetic sensors in a workspace seems to be feasible for the intraoperative 

detection of electromagnetic tracking error in controlled environments. Further testing should be performed to optimize 

the measurement error threshold used for classification in the support vector machine, and improve the sensitivity of our 

method before application in real procedures.  

Keywords: Quality Assurance System, Electromagnetic Tracking Error, Image-Guided Intervention, Image-Guided 

Therapy, 3D Slicer, SlicerIGT, PLUS Toolkit 

 

1. INTRODUCTION 

Electromagnetic (EM) tracking offers continuous localization of medical instruments and patient anatomy without line-of-

sight requirements. However, magnetic field distortions and EM interference can lead to decreased tracking accuracy. 

Therefore, it is important to monitor the reliability of EM tracking systems in clinical environments. In their 2014 literature 

review, Franz et al. have outlined a recommended protocol for validating EM tracked computer-navigated intervention 

systems 1. A good protocol is expected to provide evaluation and analysis of precision, accuracy, dynamic effects, and 

magnetic field distortions. Solutions for monitoring intraoperative EM tracking error must be quick to deploy, easy to use, 

and cause minimal interference to the ongoing procedure. Given these requirements, using large phantoms or robots to 

evaluate tracking error is not suitable for intraoperative use 2, 3.  

Currently, work is being done in the Laboratory for Percutaneous Surgery to develop a multistage solution for monitoring 

EM tracking error for computer-navigated procedures. This solution, termed the Tracking Error Inspector has proven to 

be a useful tool for conducting workspace analysis in both laboratory and operating room environments as part of a 

preoperative quality assurance workflow 4. Optical tracking is unaffected by field distortions, and has been used to collect 

ground truth measurements in previous work 5. Thus, in our application, tracking error readings are computed by 

concurrently tracking a tool both optically and electromagnetically and comparing the measurements between the tracking 

modalities. However, setting up the optical tracker requires additional space, setup time, introduces line-of-sight 

constraints, and in general may be cumbersome in a busy operating room. Moreover, optical trackers are generally more 

expensive than adding an additional EM tracker.  



In order to overcome these challenges, our goal was to develop a proof-of-concept for a system that could detect EM 

tracking error using redundant EM sensors. Jain et al. have described an EM tracking error characterization method using 

redundant EM sensors 6. In their system, multiple sensors are affixed to different locations on a tool. The ground truth tool 

geometry, or distances and angles between sensors without tracking error, can be compared to the measured tool geometry 

to provide a gauge of tracking error in real-time.  

The addition of unobtrusive, intraoperative EM tracking error monitoring represents a natural extension of the Tracking 

Error Inspector system. This extension would be achieved using redundant EM sensors. We propose using redundant EM 

position sensors in the EM field to monitor tracking accuracy throughout the procedure and indicate when errors are 

suspected to have exceeded a safe limit.  

2. METHODS 

2.1 Hardware Design 

We designed an adjustable, rectangular frame using the SolidWorks software (2015 

SP03, Dassault Systèmes, Vélizy, France) to hold four Ascension Model 800 EM 

sensors (Northern Digital Inc., ON, Canada) (Figure 1). The frame is rigid, and has the 

sensors in a fixed geometric arrangement. Thus, any measured deviations in the 

distances and angles between sensors in the frame can be attributed to EM tracking error. 

The frame is designed to surround a specific region of interest within the workspace. 

The design files are available online, free for use and modification without restrictions 

in the PLUS toolkit 3D model catalog (www.plustoolkit.org).  

2.2 Software Design and Computational Details 

We developed a module for 3D Slicer (www.slicer.org) that monitors the deviations in 

the pairwise distances and angles between an arbitrary set of EM position and orientation 

sensors (Figure 2). This platform was also used for developing the other aspects of the 

Tracking Error Inspector. Building upon an open-source platform has the additional 

advantages of allowing for reproducibility and enables other researchers to adapt this system for their needs. The PLUS 

toolkit’s PlusServer application7 was used to connect hardware devices and stream live measurement data to 3D Slicer 
using the OpenIGTLink communication protocol 8. 

Several sensor configurations were specified: mounting sensors on a rigid frame around the region of interest, and on 

tracked tools. The baseline measurements of the distances and angles between sensors were computed with samples 

collected over 30 seconds. This step was completed in a clean field, far from potential error sources. 

From the PLUS toolkit, we can obtain transformations from a sensor’s coordinate frame to the coordinate frame of the EM 

tracker. For two arbitrary sensors A and B, these transformations are 𝑇𝐴→𝑇𝑟𝑎𝑐𝑘𝑒𝑟  from the coordinate frame of sensor A 

{A} to the EM tracker {Tracker} and 𝑇𝐵→𝑇𝑟𝑎𝑐𝑘𝑒𝑟  from the coordinate frame of sensor B {Sensor B} to the EM tracker 

{Tracker}. 

The pairwise distance between sensors A and B was calculated as a Euclidean distance shown in equation (1), where a and 
b represent the position vectors of the sensors obtained from their respective transformations. 

𝑑 (𝐴, 𝐵) = √(𝑏𝑥 − 𝑎𝑥)2 + (𝑏𝑦 − 𝑎𝑦)
2

+ (𝑏𝑧 − 𝑎𝑧)2             (1) 

After the sampling period, the average of the Euclidean distance between pairs of redundant sensors, davg, was calculated. 

Computing the average angle between two sensors required several steps, as shown in equations (2) through (4). First, the 

transformation between two sensors, A and B, was calculated as in equation (2). 

 

Figure 1. Mechanical design 

of the frame to hold 

Ascension EM sensors. 

http://www.plustoolkit.org/
http://www.slicer.org/


𝑇𝐴→𝐵 = (𝑇𝐵→𝑇𝑟𝑎𝑐𝑘𝑒𝑟)−1𝑇𝐴→𝑇𝑟𝑎𝑐𝑘𝑒𝑟                (2) 

Next, the rotation matrix from the 𝑇𝐴→𝐵 transformation (𝑅𝐴→𝐵) was isolated and converted into a quaternion (𝑞𝐴→𝐵). To 

determine the average rotation difference, w, between sensors, the average rotation between the two sensors was first 

computed. This was done as a cumulative moving average taken over all timestamps of recording, using quaternion 

spherical-linear interpolation (SLERP) to determine the average between the previous average rotation, qm, and the new 

rotation sample, qn:   

𝑞𝑖 = [𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖] =
𝑞𝑚𝑠𝑖𝑛((1−𝑡)𝜃)+𝑞𝑛𝑠𝑖𝑛(𝑡𝜃)

𝑠𝑖𝑛𝜃
              (3) 

Where qi represents the interpolated quaternion, qm and qn are the input quaternions, and t is a scalar value between 0.0 

(at qm) and 1.0 (at qn). At each iteration, we take t to be the inverse of one greater than the number of samples used to 

calculate qm. The result of SLERP is an interpolated quaternion. Then, we computed the average angle, aavg, using the wi 

component of the interpolated quaternion as shown in equation (5). 

𝑎𝑎𝑣𝑔 = 2(arccos (𝑤𝑖))                  (4) 

As a quality assurance measure for the baseline measurements, we computed the standard deviation of the pairwise 

distances and angle differences between the sensors. If the standard deviation was high, it suggested that the baseline 

measurement should be retaken.  

Once the baseline distances and angle differences were calculated, real-time tracking error was monitored by comparing 

measurements with the baseline measurements. First, the current position distance between the two sensors is computed 

as in equation (1). To compute the position error, EP, this current distance is then subtracted from the baseline distance 

measurement between the two sensors. Finally, the absolute value of this difference is taken, as shown in equation (5).   

𝐸𝑃 =  |𝑑𝑎𝑣𝑔 − 𝑑 (𝐴, 𝐵)𝐶𝑢𝑟𝑟𝑒𝑛𝑡|                (5) 

Computing the rotation error between sensors involved several steps. First, the transformation between current positions 

of the two sensors, A and B, was calculated as in equation (2). Then, we computed rotation between the baseline 

transformation, 𝑇𝐵𝐴→𝐵, and current transformation, 𝑇𝐶𝐴→𝐵, between the two sensors. Next, the rotation matrix was isolated 

from the prior calculated matrix product, 𝑀, and orthogonalized to avoid rounding errors as shown in equation (7). Finally, 

the rotational error was computed as an angle using the axis-angle representation shown in equation (8). 

𝑀 = 𝑇𝐵𝐴→𝐵(𝑇𝐶𝐴→𝐵)−1                  (6) 

𝑅𝑀 = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] → �̂�𝑀 =  [

�̂�11 �̂�12 �̂�13

�̂�21 �̂�22 �̂�23

�̂�31 �̂�32 �̂�33

]             (7) 

𝐸𝑅 = 𝑎𝑟𝑐𝑐𝑜𝑠((�̂�11 + �̂�22 + �̂�33 − 1)/2)                             (8) 

After the sampling period, we computed the average and standard deviation of the distance error, EP, and the rotation error, 

ER. 

Finally, as each Ascension sensor contains multiple sensor coils, the tracker provides a ‘quality’ value for each sensor by 

evaluating the consistency between measurements provided by these coils. Quality values were recorded along with 

position and orientation data.  



 

2.3 Experimental Design 

We tested our system in a laboratory setup mimicking EM-navigated breast-conserving surgery, where EM sensors are 

attached to a tissue-locking needle and electrosurgical cautery 9. The cautery and tumor geometry are tracked relative to 

the tissue-locking needle. It is important to assess the tracking accuracy of the needle relative to the cautery, as tracking 

errors between them can lead to an incomplete resection. The tracking error between these two tools is defined as the 

measurement error. 

To examine how various aspects of the navigated breast-conserving surgery workflow affect tracking accuracy, five 

additional sensors were introduced to the setup: four sensors were affixed to a rigid frame around the region of interest, 

and an extra sensor was attached to the cautery (Figure 3). The two sensors on the cautery were tested in two separate 

configurations, one where the sensors were close together (1 cm apart) and one where they were further apart (6 cm apart). 

Although it was predicted that the 6 cm configuration would be more sensitive, we wanted to determine if the difference 

was negligible. The 1 cm configuration was more compact and further away from the cautery’s tip, which may be more 

convenient to use in practice. 

After baseline measurements were obtained with the field generator at different distances and positions, several tests were 

done to determine if increases in the measurement error were induced by various objects in the workspace: a Microsoft 

 

Figure 2. 3D Slicer user interface displaying our designed software module in a setup mimicking EM-navigated 

breast-conserving surgery, further explained in Section 2.3.  



Surface tablet was brought to different distances from the workspace, and a surgical retractor was placed in eight different 

positions around the region of interest (Figure 2 Right). A Microsoft Surface tablet was used to induce error in this 

experiment because it is used in Ungi et al.’s system as a part of the clinical workflow. The retractor was either 

perpendicular to a side of the frame or on one of the corners of the frame at a 45-degree angle. Real-time error monitoring 

took place over periods of 30 seconds, and the averages and standard deviations of the positional tracking error, rotational 

tracking error, and quality values were recorded. It was also explored if the measurement error corresponded to the errors 

reported from the redundant sensors. 

 

  

 

 

 

 

 

 

 

 

 

 

 

2.4 Designing a Predictor  

In our experiment, we could directly ascertain the measurement error of the navigated lumpectomy system. Any 

movements of the needle and cautery could be attributed to tracking error because they were both firmly fixed in the 

wooden block. However, in a real setup, this would not be possible as the needle and cautery are constantly in motion 

relative to each other. Thus, we can only use measurements from the redundant sensors that have been added as an indicator 

for potential EM tracking error in the surgical workspace. In other words, we must use the readings from the redundant 

sensors to predict when there is likely to be measurement error in the system. Due to the sheer volume of data at hand, we 

explored if machine learning could be used to determine a threshold for the errors between a subset of the redundant sensors 

that is also associated with measurement error.  

This problem of designing a predictor is a supervised machine learning problem, as the goal is to infer a function 

representing an error threshold using labelled training data. Due to the complexities of EM tracking and field distortion, 

predicting the actual amount of measurement error expected between the needle and cautery would be exceedingly 

difficult. Thus, a simplification that can be made is that we are only interested in predicting if there is likely to be 

measurement error in the system or not. This simplification reduces our problem to a binary classification problem, where 

the goal of the chosen machine learning algorithm will be to determine the best possible means of differentiating between 

two possible class labels using input attributes. In his “Review of Classification Techniques”, Kotsiantis explores the 

strengths and weaknesses to several supervised machine learning algorithms, including support vector machines (SVMs)  

 

 

Figure 3. Our experimental setup using redundant EM sensors to characterize tracking accuracy of in a 

mock navigated lumpectomy (left). An experiment involving the use of a tablet computer to induce 

tracking error (right). 



10. SVMs are found to perform well when working with multidimensional data and continuous attributes. All our attributes 

are measurements from the redundant sensors, and are thus continuous values. Because of the multitude of possible 

combinations of redundant sensor measurements, our data is multidimensional. Moreover, SVMs perform well when non-

linear relationships exist between the input and output data, which is also expected due to the complexities of EM tracking. 

Based on these reasons, it was believed that SVMs would be a good option for developing a predictor for measurement 

errors in our experimental setup. 

We developed two linear support vector machine-based classifiers to predict measurement error using RapidMiner Studio 

Community Edition (RapidMiner Inc., Boston, MA, USA). One classifier was trained using information gathered from the 

sensors on the frame. Attributes used to train the frame-based classifier included all averages and standard deviations of 

the pairwise distances and angles between sensors, as well as the averages and standard deviations of the quality values 

from the frame. The other classifier was trained with information gathered from the sensors on the cautery. Attributes used 

to train the cautery-based classifier included the average and standard deviation of the difference in distance between the 

two sensors on the cautery, and the averages and standard deviations of the quality values of these sensors. A true 

measurement error was defined when either the position or the orientation error between the needle and cautery exceeded 

1.4 mm or 0.5 degrees, which is the manufacturer’s reported RMS accuracy of the tracker. 

3. RESULTS AND DISCUSSION 

Our experiments showed that the tablet computer had minimal influence on the tracking accuracy, as the largest 

measurement errors observed were under 0.43 mm and 0.46 degrees (Table 1). 

The metal retractor induced considerable measurement error, up to 17.34 mm and 7.71 degrees in certain cases when 

placed around the needle. As expected, the error was largest when the retractor was placed in between the field generator 

and sensors. The error also increased when the retractor was positioned around the needle, as opposed to the cautery or 

other areas. The sensor on the needle was much closer to the retractor in certain positions compared to the sensor on the 

cautery, leading us to believe this caused a greater impact on tracking accuracy of the needle. Because the retractor had a 

large influence on the tracking accuracy depending on its positioning, eliminating the use of ferromagnetic retractors 

altogether during EM navigated procedures could be considered.  

Table 1. A summary of the true positional and rotational measurement errors (reported as the average plus/minus the standard deviation). 

The ‘retractor’ setup is the average of the positional and rotational errors caused by the various positions of the retractor in the workspace. 

The ‘tablet’ setup is the average of the positional and rotational errors caused by the tablet when held by an assistant at distances of 40, 

45, and 50 cm away from the needle and cautery.  

 

 

 

 

 

 

 

The positional and rotational error between the two cautery sensors seemed to be a promising indicator of true measurement 

error. There appeared to be a positive correlation between instances of error from the two sensors on the cautery (the 

predicted error) and the true measurement error (Figure 4). We found no such patterns in the readings from the four sensors 

on the frame. The measurement error was correlated to readings from different sensors on the frame dependent on the 

Setup Field generator 20 cm away Field generator 25 cm away 

 

Field generator 30 cm away 

Clean field 
0.05 ± 0.03 mm 

0.07 ± 0.01 deg 

0.05 ± 0.03 mm 

0.02 ± 0.01 deg 

 

0.05 ±0.02 mm 

0.01 ± 0.00 deg 

Retractor 
2.90 ± 0.03 mm 

2.11 ± 0.00 deg 

2.98 ± 0.04 mm 

2.02 ± 0.01 deg 

 

3.67 ± 0.10 mm 

2.40 ± 0.01 deg 

Tablet  0.08 ± 0.05 mm 

0.45 ± 0.01 deg 
0.07 ± 0.06 mm 

0.29 ± 0.02 deg 

 

0.40 ± 0.06 mm 

0.34 ± 0.01 deg 



location of the error source. For example, placing a retractor near sensors one and two on the frame would cause an 

increased error in measurements related to sensor one or two, while not affecting the other sensors. Thus, determining a 

metric that encompassed multiple readings from the frame in a useful manner proved to be challenging. For example, 

Figure 5 illustrates using the maximum positional or rotational error from all pairwise combinations of sensors as a 

predictor for error. Although the predictor for error could be quite high, for example when the retractors were placed 

directly on a sensor, this did not necessarily mean there would be a measurement error in the system or vice-versa. Due to 

this complication, all inter-sensor positional and rotational errors and the quality values from each sensor on the frame 

were used to train our classifier. There were no discernable patterns in the reported quality values from the sensors that 

warranted developing a classifier solely based on those values. 

 

Figure 4. Scatterplots displaying positional error (left) and rotational error (right) between the predictors for error and true measurement 

errors. The predictors for error are those reported between the two redundant sensors on the cautery.  

 

  

Figure 5. Scatterplots displaying positional error (left) and rotational error (right) between the predictors for error and true measurement 

errors. The predictors for error are the maximum of the pairwise errors between the four sensors of the frame.  

The “leave-one-out” cross-validation technique was used to verify the performance of the classifiers developed in 

RapidMiner. The accuracy of the frame-based classifier (63%) was lower than that of the cautery-based classifier (86%) 

(Table 2). The specificities of both classifiers were over 84%; however, the main issue with both the classifiers was their 

sensitivities, or their ability to avoid false negatives. False negatives are especially important to minimize in this 

application, otherwise the classifier will fail to warn surgeons of true measurement errors that compromise surgical 

outcomes. The sensitivity of the cautery-based classifier increased by 20% when the two sensors were closer together, 
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indicating that this configuration of sensors is better. Thus, the instances where the sensors were close together were treated 

as a separate case in developing the cautery-based classifier.   

A greater volume of data is needed to refine our classification methods and further reduce the false negative error rates. 

However, it does seem feasible to use redundant sensors as predictors of measurement error. Once a suitable error threshold 

is determined, a 3D Slicer module could use it to provide real-time error monitoring feedback during navigated procedures. 

Ultimately, redundant sensors would provide an error monitoring solution that is easy to set up and causes no interference 

to the ongoing surgical procedure—circumventing the limitations of previously mentioned error monitoring methods. 

4. CONCLUSION 

Redundant electromagnetic sensors were added to a navigated intervention setup. Readings from different subsets of these 

redundant sensors were used to train two linear support vector machine-based classifiers to predict tracking error. Although 

the classifiers had sufficiently high specificities to demonstrate a proof-of-concept, their sensitivities were too low for safe 

use within a real procedure. Further experiments will be done with different electromagnetic sensors and in different 

surgical setups to improve our classifier’s performance. Our system is a useful research tool, as it is configurable and open-

source. Upon further refinement, we believe that the presented method can be used for intraoperative quality assurance 

feedback of electromagnetically navigated interventions. 
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Table 2. A summary of the performance of the readings from the frame-based classifier and cautery-based classifier in 

predicting true measurement error. The left-hand column in the confusion matrix refers to the number of predicted cases, while 

the top row refers to the number of actual cases in each category. The sensors on the cautery were close together.  

Frame-Based Classifier Confusion Matrix Cautery-Based Classifier Confusion Matrix 

 Act. False Act. True  Act. False Act. True 

Pred. False 29 22 Pred. False 13 4 

Pred. True 5 16 Pred. True 1 18 

Frame-Based Classifier Performance Measures Cautery-Based Classifier Performance Measures 

Specificity 85% Specificity 93% 

Sensitivity 42% Sensitivity 82% 

Accuracy 63% Accuracy 86% 
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