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ABSTRACT 
Automatic registration of ultrasound (US) to computed tomography (CT) datasets is a challenge of considerable interest, 
particularly in orthopaedic and percutaneous interventions.  We propose an algorithm for group-wise volume-to-volume 
registration of US to CT images of the lumbar spine. Each vertebra in CT is treated as a sub-volume and transformed 
individually. The sub-volumes are then reconstructed into a single volume.  The algorithm dynamically combines 
simulated US reflections from the vertebrae surfaces and surrounding soft tissue in the reconstructed CT, with scaled CT 
data to simulate US images of the spine anatomy.  The simulated US data is used to register preoperative CT data to 
intra-operative US images.  Covariance Matrix Adaption – Evolution Strategy (CMA-ES) is utilized as the optimization 
strategy.  The registration is tested using a phantom of the lumbar spine (L3-L5).  Initial misalignments of up to 8 mm 
were registered with a mean target registration error of 1.87±0.73 mm for L3, 2.79±0.93 mm for L4, 1.72±0.70 mm for 
L5, and 2.08±0.55 mm across the entire volume. To select an appropriate optimization strategy, we performed a volume-
to-volume registration of US to CT of the lumbar spine, allowing no relative motion between vertebrae.  We compare the 
results of this registration using three optimization strategies: simplex, gradient descent and CMA-ES.  CMA-ES was 
found to converge slower than gradient descent and simplex, but was more robust for rigid volume-to-volume 
registration for initial misalignments up to 20 mm. 
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1. INTRODUCTION 
Spinal injections for back-pain management are carried out on a frequent basis. Currently, these procedures are 
performed under fluoroscopy or CT guidance in specialized interventional radiology facilities, and thus incur a major 
burden on the healthcare system. Another drawback with the current practice is patient and surgeon exposure to X-ray 
radiation. Furthermore, in cases where fluoroscopy is used, the surgeon accumulates significant exposure to radiation 
over time. The goal of this research is to design a spine intervention system with ultrasound image guidance, requiring 
only a single preoperative CT or MRI scan.  This would greatly reduce the exposure of both the patient and the physician 
to ionizing radiation and allow the procedure to be performed outside of a specialized facility. 

An essential component of such a system is the ability to reliably register an US scan of the spine with a preoperative 
CT volume.  In this regard, many point- and surface-based registration methods have been proposed in the literature1,2.  
However, these techniques normally need manual intervention and require segmentation of US data which is time 
consuming and susceptible to errors.  To avoid these problems, we chose to focus on intensity-based registration 
methods.  In orthopaedic applications of US, the tissue occlusion caused by bone-soft tissue interfaces means there 
cannot be a direct correspondence between US intensities and CT intensities unless the CT data is modified to more 
accurately represent what is visible in US.  Brendel et al. (2002) propose to define the bone surface in CT that is visible 
in an US image, with the similarity calculated as the US pixel intensities overlapping the surface4,5.  The limitation of 
this method is that it requires a prior knowledge of the direction and orientation of the US probe. Penney et al. (2006) 
propose defining, for each pixel in CT and US, a probability that it is a bone edge3.  These probability images are then 
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registered using normalized cross correlation.  In order to have clinically relevant probabilities, a large dataset of CT and 
US images would have to be segmented.    Wein et al. (2007, 2008) propose a registration method in which density 
information from CT data is used to iteratively simulate an US image throughout the registration process, thereby 
optimizing the simulation as the registration proceeds6,7.  This has the benefit of not requiring any previous knowledge of 
the orientation of the US probe.  This algorithm was designed for registration of soft tissue and does not account for the 
shadowing caused by an US beam reflecting at a soft tissue-to-bone interface.  While the simulation simplifies the 
physics behind ultrasound beam propagation, it is accurate enough to bring the two modalities of CT and US closer 
together for registration purposes, and is also computationally efficient4.  Shams et al. (2008) have built upon this 
algorithm to create a more realistic simulation for training physicians and technicians in the use of US imaging8.  This 
technique requires preprocessing to create a scatter volume of the CT data using the Field II simulator9,10, which remains 
computationally expensive.   

In this paper, we propose an algorithm that extends the registration algorithm presented by Wein et al. (2007, 2008) 
to account for group-wise registration of vertebrae. The algorithm accounts for bone shadowing and the occlusion of 
tissue in the US image.  We utilize the algorithm for rigid volume-to-volume registration and compare the results of three 
optimization strategies: simplex, gradient descent and Covariance Matrix Adaption – Evolution Strategy (CMA-ES).  
The registration algorithm applies a transform to the CT volume, simulates an US image from the transformed CT and 
then calculates an image similarity metric.  This process iterates until convergence.  We then present the algorithm for 
group-wise volume-to-volume registration.  This approach allows free motion between the vertebrae in the CT data to 
account for the changes in patient posture between collection of the preoperative and intraoperative data. This algorithm 
is similar to the previous approach, but transforms each vertebra individually and reconstructs the sub-volumes into a 
single volume before calculating the simulated ultrasound.  Initial and final target registration errors (TRE) are compared 
individually for each vertebra and across the entire volume.  Finally, we discuss the strengths of the registration 
technique, sources of error in the computation and the direction of possible future work.  

2.  METHODS 

A high-resolution CT volume (0.46 mm x 0.46 mm x 0.625 mm) and an US volume were acquired from a lumber spine 
(L3 to L5) phantom (Figure 1).  The US volume was reconstructed from a freehand sweep using an SP10-60 wide-band 
linear-array transducer (General Electric Canada, Mississauga, ON, Canada) operating at 6.6 MHz with a depth of 5.5 
cm.  The probe was tracked using a Optotrack Certus Tracking System (Northern Digital Inc., Waterloo, ON, Canada) 
and calibrated using an N-wire US phantom11.  All registrations were performed on a Dell Precision 690, with 2×2.33 
GHz Intel Xeon Quad-core CPU and 16GB of RAM.   

 

 
Figure 1. Surface model of the lumbar spine phantom.  From left to right are the L3, L4 and L5 vertebrae. 
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2.1 Rigid Volume-to-Volume Registration 

The US and CT volumes were initially aligned using the gold standard for registration calculated from fiducial markers 
implanted on the phantom.  The CT volume was then perturbed by a random transform chosen from a uniform 
distribution of ±10 mm translation along each axis and ±10° rotation about each axis.  The misaligned CT volumes were 
then registered back to the US volume using our US simulation-based registration algorithm.  Accuracy was determined 
by the ability of the registration to recover to the fiducial-based gold standard and is reported as the mean target 
registration error (TRE) calculated as the misalignment of the four corners of the volume.  One hundred such 
registrations were performed using our registration technique and a simplex optimization strategy.  The registrations 
were repeated using gradient descent and Covariance Matrix Adaption – Evolution Strategy (CMA-ES)12 as the 
optimizer. 

2.2 Group-wise Registration 

Next, the registration process was extended to simultaneously register three independently transformed lumbar vertebrae 
to a single US volume.  CMA-ES was used as the optimization strategy to calculate the 18 rigid-body registration 
parameters: individual rotations and translations for each vertebra piece.  The volume was cut into three sub-volumes, 
each containing a single vertebra.  There was some overlap between sub-volumes, as the vertebrae overlap.  Any pixels 
in the sub-volumes corresponding to bone from an external vertebra were masked.  First, the entire volume was 
transformed, similar to Section 2.1, using the same set of random transformations; next, the individual vertebra sub-
volumes were randomly transformed using a uniform distribution of ±5 mm translation along each axis and ±5° rotation 
about each axis. The former random transformation was applied to initially misalign the entire CT volume, while the 
latter was applied to simulate the deformation in the spine anatomy which could happen between pre-operative imaging 
and intra-operative intervention phases. After the individual transforms were applied, the pieces were stitched into a 
single volume.  The maximum intensity was taken of any overlapping voxels across the sub-volumes, thus preserving 
bone structure in the final volume.  Gaps were filled with a default value that approximates the intensity of soft tissue in 
CT.  The US simulation was then applied to the reconstructed volume and the similarity with the US volume was 
calculated.  It is important that the pieces be stitched together before the simulation is applied, as shadowing from the 
bone may occlude tissue from another piece.  The TRE was calculated and reported individually for each piece along 
with the TRE for the entire volume. 

2.3 US Simulation 

Our simulation builds upon that presented for a linear probe in Wein et al. (2007, 2008)6,7.  Their simulation was 
designed for registration of soft tissue and does not directly translate to simulation of US images containing bone.  This 
is due to the full reflection of the US beam at a soft-tissue/bone interface and occlusion of all tissue in the US image past 
the interface.  We have made several modifications to the simulation algorithm to account for this.  A brief overview of 
the Wein et al. (2007, 2008)6 algorithm, for the case of a linear probe, is presented, along with an explanation of our 
additions.  The simulation can be divided into three calculations:  Simulation of the US reflection from CT, mapping of 
the CT values to those found in US, and weighting of the simulated reflection, mapped CT and a bias to best represent 
the US image.  A diagram of the simulation procedure with example images is shown in Figure 2. 

In calculating the simulated US reflections, we model an ultrasound beam as a ray passing through each column in 
the CT image.  Each ray begins with an intensity, I, of 1 and the reflection and transmission are calculated at each pixel 
using the following equations: ∆ݎሺݔ, ,ݕ ݀ሻ ൌ ൫்݀ߤ׏ሺݔ,  ఓሺ௫,௬ሻ|൫ଶఓሺ௫,௬ሻ൯మ  ,           (1)׏| ሻ൯ݕ

,ݔሺݐ∆ ሻݕ ൌ 1 െ ൬|׏ఓሺ௫,௬ሻ|൫ଶఓሺ௫,௬ሻ൯൰ଶ
,ݔሺݎ (2)             , ሻݕ ൌ ,ݔሺܫ  ݕ െ 1ሻ∆ݎሺݔ, ,ݕ ݀ሻ ,            (3) ܫሺݔ, ሻݕ ൌ  ൜  ܫሺݔ, ݕ െ 1ሻ∆ݐሺݔ, , ሻݕ ,ݔሺߤ׏| |ሻݕ ൏ ,ݔሺߤ׏|                                   , 0߬ |ሻݕ ൒ ߬  ,          (4) 
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where ݀ is the direction of the US beam, ߤ is the intensity of the CT image, ∆ݎ is reflection coefficient, ݎ is the 
simulated reflection intensity, ∆ݐ is the transmission coefficient, τ is the threshold for full reflection and I is the intensity 
of our simulated US beam.  The equations are presented as two-dimensional for the sake of simplicity, but can be easily 
extended to three dimensions.   Additionally, we apply the condition where any gradient value greater than a set 
threshold (450 h.u. in our simulations) causes full reflection of the US beam intensity at that point, setting the incoming 
US beam intensity for all subsequent points on the scan line to zero.  The threshold value is the approximate gradient at 
soft tissue to bone interface in the CT images of our phantom and thus, simulates occlusion below this interface. To 
amplify the impact of the intensities of small reflections, a log-compression is applied to the simulated reflection image, ݎሺݔ, ሻݕ ൌ  ୪୭୥൫ଵା௔௥ሺ௫,௬ሻ൯ ୪୭୥ሺଵା௔ሻ  ,             (5) 

To map the CT intensities to values closer to those corresponding to the tissues in the US data, we approximate the 
curve presented in Wein et al. (2007) 5 and use the following equation, ݌ሺݔ, ሻݕ ൌ ,ݔሺߤ1.36  ሻݕ െ 1429.            (6)  

 
 

Figure 2. Workflow for US to CT Registration.
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The final step of the US simulation is the weighting of the simulated US reflection, the mapped CT and a bias term.  
Assuming overlapping pixels in the US and CT datasets correspond, we use a least-squares optimization method to 
calculate the weights, such that the simulation values best correspond to the real US image.  The final simulation is 
calculated as, 

 ݂ሺݔ, ሻݕ ൌ  ൜  ݌ߙሺݔ, ሻݕ ൅ ,ݔሺݎߚ ሻݕ ൅ ,ݔሺܫ        , ߛ ሻݕ ൐ ,ݔሺܫ                                                  , 0  0 ሻݕ ൌ 0   ,         (7) 

where f is the simulated US image and ߙ, ,ߚ  are the weights for their respective images. In our algorithm, the weights ߛ
are calculated across the entire volume.  We do not include any pixels that are occluded in the simulation as part of the 
weight calculation.  This emphasizes the alignment of bone between the two modalities in the registration process.  
When the bone is misaligned, pixels in the US image that are occluded are included in the weight calculation, reducing 
the accuracy of the simulation.  When the bone is properly aligned, only US pixels corresponding to soft tissue are 
included in the weight optimization (Figure 3). Occluded pixels are identified as any pixel where the intensity of the 
incoming simulated US beam is zero.  In the final US simulation, all occluded pixels are set to zero.  

2.2 Similarity Metric 

The US simulation is updated at each step of the registration.  Similarity between the actual US image and simulated US 
image is calculated using the Linear Correlation of Linear Combination (LC2) metric suggested by Wein et al. (2007)6 
and derived by incorporating the US and simulation values into a Correlation Ratio framework13, ܥܮଶ ൌ  ∑൫௎ሺ௫,௬ሻି௙ሺ௫,௬ሻ൯ మேൈ௏௔௥ሺ௎ሻ   ,             (8) 

where N is the number of overlapping pixels between the US and CT images, and U is the actual ultrasound image 
intensity.   

 
 

 

 

 

Figure 3. Example of pixels excluded in weight calculation for misaligned (Top) and aligned (Bottom) slices.  Displayed 
are the CT slice (Left), simulated US reflections (Center Left), occluded pixel mask (Center Right) and the US slice 
overlaid with the occluded pixel mask (Right).  Red pixels are not included in the weight calculation. 
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3.  RESULTS AND DISCUSSION 

Examples of misaligned and registered volumes are shown in Figures 4 and 5.  Results for rigid volume-to-volume 
registration using simplex, gradient decent and CMA-ES optimization are displayed in Figure 6.  Simplex registration 
resulted in a mean TRE of 3.39 mm and a standard deviation of 3.80 mm.  For gradient decent optimization, the mean 
TRE was 3.27 mm with standard deviation of 3.48 mm.  Using CMA-ES optimization resulted in a mean TRE of 2.26 
mm and standard deviation of 0.50 mm.  CMA-ES proved to be a more robust optimization strategy and was able to 
reliably register misalignments up to an initial TRE of 20 mm.  Simplex and gradient descent optimization began to fail 
when initial misalignment approached 14 mm and 8 mm, respectively.  CMA-ES was the most computationally 
expensive with a mean runtime of 258 seconds, while gradient descent was slightly faster with a mean runtime of 246 
seconds. Simplex was the fastest, with a mean of runtime of 66 seconds.  

  
As can be seen in Figure 6, no registration was able to achieve a final misalignment of less than 1 mm and all the 

misaligned registration converged to roughly the same position.  This is most likely due to the US probe calibration error 
(~ 0.6 mm) and the gold standard registration error (0.62 mm).  Another possible source of error is introduced when we 
reconstruct the US slices into a single volume.  We must assume that the angle of the US probe is directly down along 
the y-axis of the volume and not along the actual plane of the US image that was acquired.  However, we believe that the 
error introduced by this assumption is minimal.  The data was collected with the probe in a vertical position and the 
collection was dense enough, ~ 2 frames/mm, that the direction of the US signal across the entire volume should be very 
close to vertical. 

The results for the group-wise registration can be found in Figure 7, with individual results for each vertebra (Top 
Left, Top Right and Bottom Left) and for the overall volume (Bottom Right).  Registration resulted in a mean TRE of 
2.21 ±1.20 mm for L3, 3.28 ±1.10 mm for L4, 2.04 ±1.27 mm for L5, and 2.58 ±0.78 mm across the entire volume.  The 
capture range of the registration was much lower than rigid volume-to-volume registration and the algorithm was able to 
reliably register vertebrae with an initial misalignment of 8 mm.  Registrations with initial TRE of less than 8 mm 
resulted in a mean TRE of 1.87 ±0.73 mm for L3, 2.79 ±0.93 mm for L4, 1.72 ±0.70 mm for L5, and 2.08 ±0.55 mm 
across the entire volume.   

 
Figure 4. Transverse (Left), Sagittal (Center) and Coronal (Right) slices of the original US volume overlaid with the simulated 

US reflections of a misaligned CT volume (Top) and the volume after rigid volume to volume registration (Bottom). 
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As the same dataset was used in the rigid volume-to-volume registration, the same sources of error apply.  In 

addition, the largest difficulties presented by the algorithm are found in the overlapping of bone, causing occlusion and 
the fact we do not penalize collision of bone segments. This seems to be a problem in the registration of L4 and L5, 
where one vertebra would align with the US and the other would collide with the first.  The type of alignment does not 
cause a significant decrease in the similarity metric, making it difficult for the algorithm to identify this as a poor 
registration.   

  

 
Figure 6. Results for volume-to-volume registration using simplex (Top Left), gradient descent (Top Right), and CMA-ES 

(Bottom Center) as the optimization strategy.  Final target registration error (TRE) is plotted against the initial TRE. 

 
Figure 5. A sagittal slice from the US volume (Top) overlaid on the extracted surface of an example misaligned (Middle) 

and registered (Bottom) CT volume, using rigid volume-to-volume registration. 
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4.  CONCLUSION AND FUTURE WORK 
In this work, we presented an extended version of registration technique presented by Wein et al. (2007)6 designed for 
registration of vertebrae in US and CT data sets.  Using tissue density from CT intensities, we simulated US images and 
automatically identified visible bone surfaces and occluded tissue.  We tested the registration by randomly misaligning 
the CT volume within the intervals of ±10 mm translation along each axis and ±10° rotation about each axis.  We 
compared the results of the registration using three optimization strategies: simplex, gradient descent and CMA-ES.  Our 
algorithm was able to successfully register initial misalignments of up to 20 mm.  We found CMA-ES optimization to be 
more robust than both simplex and gradient descent, though it was less computationally efficient than simplex.  
Additionally, we presented a novel group-wise registration method incorporating the US simulation.  This registration 
experiment randomly transformed the CT volumes containing individual vertebra and subsequently reconstructed the 
sub-volumes to a single volume.  US simulation was then applied to the volume, which was then used to register the CT 
dataset to the US volume.  We chose to use CMA-ES as the optimization strategy since CMA-ES was found to be the 
most robust in our rigid volume-to-volume registration.  This registration required a better initial alignment, but was still 
able to reliably register misalignments in individual vertebrae of up to an initial TRE of 8 mm.  The middle vertebra (L4) 
was the source of the largest error in the registration.  This is likely due to the occlusion of tissue at the overlap of the 
vertebrae and the lack of penalty for collision of bone in the sub-volumes.  

In our future work, we plan to explore methods of improving the registration runtime.  As suggested in Shams et al. 
(2008) the nature of this type of simulation lends itself well to multithreading and could see great improvements in 
computation time with a GPU-based implementation8.  We are currently working on combining a biomedical model of 
the lumbar spine with the registration algorithm to constrain the relative motions of the vertebrae to biologically realistic 
orientations. 

 
Figure 7. Results for group-wise volume-to-volume registration using CMA-ES as the optimization strategy.  Final target 

registration error (TRE) is plotted against initial TRE for L3 (Top Left), L4 (Top Right), L5 (Bottom Left), and for 
the entire volume (Bottom Right). 
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