Ultrasound Bone Segmentation Using
Dynamic Programming

Pezhman Foroughi*, Emad Boctor*, Michael J. Swartz!, Russell H. Taylor*, and Gabor Fichtinger*i
*Computer Science Department, Johns Hopkins University, Baltimore, USA
TRadiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, USA
tSchool of Computing, Queen’s University, Kingston, Canada

Abstract—Segmentation of bone surface in ultrasound images
has numerous applications in computer aided orthopedic surgery.
A robust bone surface extraction technique for ultrasound images
can be used to non-invasively probe the bone surface. In this
work, we present early results with an intuitive and compu-
tationally inexpensive bone segmentation approach. The prior
knowledge about the appearance of bone in ultrasound images
is exploited toward achieving robust and fast bone segmentation.
Continuity and smoothness of the bone surface are incorporated
in a cost function, which is globally minimized using dynamic
programming. The performance of this method is evaluated on
ultrasound images collected from two male cadavers. The images
are segmented in about half a second making the algorithm
suitable for real-time applications. Comparison between manual
and automatic segmentation shows an average accuracy of less
than 3 pixels (0.3 mm).

I. INTRODUCTION

The application of ultrasound in Computer Assisted Ortho-
pedic Surgery (CAOS) has been limited due to poor quality
of bone appearance in ultrasound compared to CT/MR. Non-
linear characteristics of ultrasound, low signal-to-noise ratio,
speckles, and reverberations make it exceedingly difficult to
accurately and reliably determine the bone surface.

In CAOS, ultrasound bone segmentation is mostly employed
to collect sample points from the bone [1] or to extract the
full 3D bone surface [2], which can be used for registration to
other modalities specially pre-operative CT. Segmentation of
scaphoid for percutaneous pinning [1], femur and pelvis [3],
[4] are a few examples. In these applications, segmentation
is usually carried out manually or semi-automatically. Since
a large number of ultrasound images can be collected in a
matter of seconds, manual segmentation is extremely time-
consuming and might limit the number of the images that can
be processed. A fast and robust segmentation overcomes such
limitations.

As discussed in [5], exploiting the knowledge about the
physics of ultrasound has proved to be successful for segmen-
tation tasks. The bony anatomy creates a specific response
in the B-mode ultrasound images [6]. High reflection and
shadowing effect are two of the well-known and prominent
features that are mainly utilized for this purpose.

In this paper, we exploit the prior knowledge about the ap-
pearance of bone in ultrasound images toward achieving robust
and fast bone segmentation. For each pixel, the probability of
being on the surface of bone is calculated by a score combining
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effects of both the shadow under the bone and reflection on
the surface of the bone. The shadow is modeled as the sum
of the pixel intensities in the shadow region weighted by a
Gaussian function. The reflection effect manifests itself in high
pixel intensity where the surface is near perpendicular to the
direction of propagation of the ultrasound wave. The product
of scores thus computed for shadowing and intensity is used as
probability of being a bone surface pixel. A binary threshold
mask excludes the parts of the image that are considered not
to be bone, thereby increases the speed of the algorithm.

A cost function incorporating continuity and smoothness is
then “globally” minimized using dynamic programming which
is fast and eliminates the threat of local minima. This function
determines where the bone starts and ends in the images as
well. It is assumed that for each scan line, there is at most
one pixel representing the bone surface.

Although the algorithm is introduced as a “hard segmen-
tation”, which results in a binary output, “soft segmentation”
can be achieved by updating the bone probability map with
this binary outcome.

II. METHOD

Our segmentation method involves two major steps. First,
the bone surface is enhanced in the ultrasound image using the
image intensities and the shadow effect. A number between 0
and 1 is calculated and assigned to each pixel. This number
is interpreted as the probability of being on the surface of the
bone. In the next step, dynamic programming is employed to
minimize a cost function. This cost function determines the
existence of the bone in the image and its location.

To increase the speed, the pixels with very low intensity
values (lower than 0.125) are not processed. A binary mask
is computed from the smoothed ultrasound image for this
purpose. The mask also excludes 2 mm of the top part of
the image. In this area, the bone cannot be reliably detected
since it is very close to the ultrasound transducer. Basically, the
thickness of the soft tissue between the bone and the transducer
is required to be more than 2 mm.

The bone surface creates a strong reflection where the
surface is near perpendicular to the direction of the ultrasound
wave. This reflection appears as a bright ridge with some
thickness [6]. Therefore, the pixels that belong to stripes
of high intensity have larger probability to be on the bone
surface. To model this, the Laplacian of Gaussian (LoG) of the
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(a) Ultrasound image

(d) Shadow value

Fig. 1.
the top part of the images.

ultrasound image is calculated. Since only negative values of
LoG are of our interest, the positive values are set to zero, and
the rest is negated. This is then added to the blurred version
of the image, and the result, referred to as the “reflection
number”, is normalized between zero and one (see Figures
1(b) and 1(c)).

Another feature caused by bone surface in addition to
strong reflection is the shadow effect. Due to large impedance
mismatch, a very small portion of ultrasound energy passes
through the bone surface. Hence, the area beneath the bone
appears to be dark in the ultrasound image. The bone shadow
is known to be one of the most invariant features available
[4] and is the key to distinguish between the bone surface and
other high intensity ridges.

The shadow below a pixel is quantified by weighted sum-
mation of the intensity values of all pixels beneath as follows:

S, Gl —b)I(a,))
S, G(j—b)

where SH(p(a,b)) is the shadow value for pixel p at row
a and scan line b of the image. H indicates the number
of rows in the image. G(.) and I(.) represent the Gaussian
weighting function and pixel intensity respectively. The Gaus-
sian weighting function models the transition of high intensity
pixels close to bone surface to the dark pixels deeper under
the bone. Figure 1(d) shows the shadow map calculated for the
ultrasound image of Figure 1(a). In this Figure, high intensity

SH(p(a,b)) = , (1)
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(b) Blurred image

(e) Bone probability

(c) Reflection number
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(f) Segmented image

Intermediate images of the segmentation algorithm. A binary mask is applied to c),d) and e) excluding the very low intensity values and 2 mm of

represents a stronger shadow effect. As described before, the
masked pixels are set to zero.

The shadow value is normalized, and its product with the
reflection number is defined as the bone probability (assuming
the independence of these values). Figure 1(e) depicts one
example of the resulting image. It should be noted that any
other metric or bone enhancement algorithm such as the one
described in [7] could also be inserted for estimation of the
bone probability.

It is assumed that for each scan line of ultrasound image,
only one pixel is on the bone surface at maximum. In order
to segment the bone surface, for each scan line, existence of
the bone edge and its location should be determined. The goal
of segmentation would be to find a path C(s) parametrized
by s that minimizes a cost function. The path may consist
of up to three different regions namely the “bony” region,
the “boneless” region, and the “jump” section as shown in
Figure 2. Similar to the snakes, the cost function of each path
consists of internal and external energy components. However,
it is formulated in a recursive format as shown below which
is suitable for dynamic programming minimization:

mmC(z, ]) = Eint (Z7 j) +mkln{mmC(l<:, .7 - 1) +Eert (kv J)}v
(2)

where minC/(i, j) is the minimum cost of moving from first
scan line to the jth scan line at ith row with E;,; and E..;
representing the internal and external energies. The internal
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energy, E;,,: (4, j), is defined as one minus the bone probability.
The internal energy selected for the “boneless” area acts as a
threshold for the bone probability. The proper selection of this
value and its effect on segmentation is discussed in Section
1.
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Fig. 2. The bone segmentation represented as a curve C'(s). The curve may
consist of three parts: the bone surface (“bony” region); the area without bone
(“boneless” region); and the “jump” between the two regions.

The external energy, E.,;, incorporates connectivity, and
smoothness of the bony anatomy. The external energy is
defined separately for each of the three portions of the seg-
mentation path as follows:

2 .
a| P+ BIGEI? +~  if bony
JumpClost if jumping
aD? + 3D3 if boneless

Eezt(k7 ]) =

3)

The constants, o and 3, control the smoothness and curva-
ture calculated from the first and the second derivative. 7 is
a small negative scalar and encourages larger connected bone
curves by reducing the cost function. To further emphasize
connectivity, frequent jumps between “bony” and “boneless”
regions are penalized by the addition of the JumpCost
constant. For the “boneless” region, the first and second order
derivatives are assigned to be constants D; and D» (in our
implementation D; = Dy = 1). This reduces the overall
sensitivity of the algorithm to the parameters a and 3.

For the dynamic programming optimization, the minimum
index calculated from Equation (2) is recorded in an index ma-
trix minl(.) (memoization). The following equation illustrates
the memoization step:

minl (i, j) = argmin{minC(k,j — 1) + Bee(k.J)}. 4)

The last step of the optimization would be to trace back the
optimal path from the last scan line as shown below:

NB,
minl(s+1,Cop(s + 1)),

s=W
s=1---W-1

Copt(s) = { _
(%)
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where C,,,; is the computed optimal path, and /N B is the index
of an additional row (for example H + 1) used for “boneless”
region. The path start from and ends in this region. W indicates
the number of scan lines.

This formulation yields global optimization only if the
parameter 3 in Equation (3) is set to zero. This is because
three consecutive samples of C(s) are required in order to
compute the second order derivative. However, the effect of
the second derivative is local for a small 3, and the optimal
path would be close to a smoothed version of the “global”
optimal path with § = 0.

The axial resolution of ultrasound images is much higher
than the lateral resolution. The scan lines of B-mode ultra-
sound are normally interpolated inside the ultrasound system
to construct a square pixel. In our implementation, the original
number of scan lines are recovered approximately by down-
sampling the B-mode image in the axial direction in order to
reduce extra processing of the interpolated data and increase
the speed of optimization.

III. RESULTS

Ultrasound images from two cadaver experiments were
obtained to evaluate the segmentation. The images were col-
lected using SonoSite portable ultrasound system with a high
frequency transducer. B-mode images were digitized using a
capture card connected to the s-video output of the ultrasound
machine. The size of the images were 378x378 pixels where
each pixel was a square with 0.1 mm side.

To construct a ground truth, the bone surfaces in 40 images
were manually segmented using ANALYZE (Mayo Clinic,
Rochester, Minn.). The automatic segmentation was then com-
pared to the manual segmentation. Table I shows the results of
the comparison with different threshold values. As described
before, the images are not directly thresholded; instead, the
threshold value (the internal energy selected for the “boneless”
region) affects the cost function. A higher threshold value,
decreases the cost of “boneless” path discouraging “bony”
area, and vice versa. Therefore, with a very high value, the
whole bone might remain undetected. The number of images
in which no bone is detected, despite the presence of the
bony anatomy in the image, is listed under “detection failure”
column in Table I.

TABLE I
COMPARISON OF AUTOMATIC SEGMENTATION WITH MANUAL
SEGMENTATION.

Avg. Error | False Positive | False Negative | Detection
Threshold (;%ixels) Rate Rateg failure
0.40 2.67 9.23% 3.10% 0
0.45 2.63 6.30% 5.12% 0
0.50 2.60 4.76% 10.68% 0
0.55 2.62 2.95% 17.47% 3
0.60 2.51 1.40% 21.72% 13
0.65 2.10 1.36% 23.38% 28

The average error is computed for the overlapping region
where both manual and automatic segmentations detected the
bone surface. The table shows that the average error is almost
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Segmentation results of ultrasound images obtained from pelvises and femurs of the cadavers. Red and green colors represent manual and automatic

segmentation respectively. The segmentation lines are thickened for better visualization.

independent from the threshold value. This means that when
the bone is correctly detected, the localization is accurate.
False positive rate is defined as the width of the segment
falsely detected as bone over the total width of bone from
either manual or automatic segmentation. False negative rate
is defined similarly.

Smaller false positive rate represents lower chance of out-
liers. This is important since usually lower number of outliers
is favored specially for registration applications. However, very
large threshold increases the false negative rate. The right value
for the threshold should be selected based on the tolerance to
the outliers. We have successfully used this algorithm (with
the threshold value of 0.55) to extract bone surface sample
points for an application where the extracted sample point are
registered to pre-operative data.

Figure 3 shows the segmentation results for four ultrasound
images. Red and green lines depict manual and automatic
segmentation respectively. Figure 3(d) shows one example of
disagreement between manual and automatic segmentation.
Because of the strong shadow, the algorithm has extended the
bone surface to the right which is not correct knowing the
geometry of the scanned bone (pelvis in this case).

The algorithm is currently implemented in MATLAB, and
the dynamic programming optimization is written as a MAT-
LAB “mex” function. With this implementation, a 378x378
image is segmented in about 0.55 second. This time could be
improved using code optimization and full C++ implementa-
tion.

IV. CONCLUSION AND FUTURE WORK

In this paper, a bone segmentation method for ultrasound
images was presented. The method can rapidly segment the
bone surface in ultrasound images using bone features such
as shadow effect and high intensity. The smoothness and con-
tinuity of the bone surface was incorporated in a cost function.
Dynamic programming was used for fast optimization of the
cost function. The algorithm was evaluated using ultrasound

of the segmentation is acceptable even when a high-end
ultrasound machine is not used.

The segmentation can be improved in numerous ways
including the addition of other bone enhancement metrics. It
might be possible to incorporate the prior knowledge about
the shape of the bony anatomy in the algorithm to reduce the
chance of outliers. The speed of segmentation can also be im-
proved by optimizing the code. In order to achieve a thorough
conclusion on accuracy and robustness of algorithm using
the comparison between manual and automatic segmentation,
the variations of manual segmentation among different users
should be studied. Finally, rigorous experiments are required
for a complete validation of the method possibly using other
ground truth alternatives.
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