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Abstract. Dynamic dosimetry is becoming the standard to evaluate the quality 
of radioactive implants during brachytherapy. It is essential to obtain a 3D visu-
alization of the implanted seeds and their relative position to the prostate. For 
this, a robust and precise segmentation of the seeds in 2D X-ray is required. 
First, implanted seeds are segmented using a region-based implicit active con-
tour approach. Then, n-seed clusters are resolved using an efficient template 
based approach. A collection of 55 C-arm images from 10 patients are used to 
validate the proposed algorithm. Compared to manual ground-truth segmenta-
tion of 6002 seeds, 98.7% of seeds were automatically detected and declustered 
showing a false-positive rate of only 1.7%. Results indicate the proposed meth-
od is able to perform the identification and annotation processes of seeds on par 
with a human expert, constituting a viable alternative to the traditional manual 
segmentation approach. 

1   Introduction 

With an estimated 240,890 new cases in 2011, prostate cancer is the most common 
cancer among men in the United States, accounting for 29% of their cancers [1]. 
Brachytherapy, a definitive treatment for early stage prostate cancer, demonstrates 
excellent long-term disease-free survival and is chosen by over 60, 000 men annually. 
The brachytherapy procedure entails permanent implantation of small radioactive 
seeds, such as 125I, 103Pd, or 137Cs, into the prostate to eliminate the cancer via radia-
tion. Before the operation, the seed positions are planned using a transrectal ultra-
sound (TRUS) volume. The goal of the planning is to cover the target gland with a 
prescribed dose of radiation, while sparing the healthy surrounding tissue such as 
urethra and rectum. In current brachytherapy interventions, seed placement is per-
formed under visual guidance from TRUS and further assessed with the acquisitions 
of multiple C-arm fluoroscopy images. Intraoperative dynamic dosimetry, the fusion 
of both TRUS and fluoroscopy data, would enable physicians to account for devia-



tions from the initial seeds placement plan and tailor the remaining dose so as to erad-
icate the cancer while minimizing harm to the surrounding healthy tissues [2].  
 
1.1 Intra-operative dynamic dosimetry workflow 

The following workflow closely reflects intraoperative dosimetry analysis and opti-
mization (see Figure 1). The oncologist will acquire a number of transrectal ultra-
sound images until they feel it is time to verify implant position and dosimetric val-
ues. At that point, the acquired slices are compounded into a 3D volume. A C-arm 
fluoroscopy device is moved near the patient table and several X-ray images are ac-
quired showing implant position. The C-arm images are pre-processed and the precise 
seed segmentations can be calculated using segmentation techniques. Next, seed cor-
respondence between the acquired C-arm images is performed and subsequent 3D 
reconstruction of the seeds is realized as in [11]. The 3D ultrasound volume is then 
registered to the 3D seed reconstruction using a state-of-the art method as in [12, 13]. 
The oncologist can visually assess the multimodal fused data and determine whether 
there are under-dosed regions (cold spots) or regions with high risk of over-radiation. 
Lastly, dynamic dosimetry is inherently executed since the oncologist could change 
the planned position of the remaining seeds and add new seeds if required. To achieve 
suitable dynamic dosimetry intraoperatively precise seed segmentation must be 
achieved. Unfortunately, modern C-arm images are still afflicted with low signal-to-
noise ratios and are characterized by illumination inhomogeneity [3].  Using thresh-
olding algorithms would yield poor results [4]. Lastly, since many implants overlap— 
as many as five seed clusters in some scenarios— techniques to resolve these clusters 
into their constituent components need further investigation. 
 

 
Figure 1.  Dynamic dosimetry outline. (a): Several  ultrasound images of the prostate. 
(b): 3D ultrasound volume. (c): C-arm images showing seeds. (d): Seeds reconstruct-
ed in 3D. (e): Registered seeds overlaid on the US volume. Seeds are shown as red 
capsules Image taken from the authors in [12]. 
 
  



1.2 Existing segmentation algorithms of implants  

Brachytherapy seed segmentation in C-arm fluoroscopy images is a well-known topic 
in research practice [3-6]. For brevity, we summarize some of the key contributors in 
this topic. In Lam et al. [3], it is possible to observe the usage of a spoke transform to 
facilitate seed segmentation. In Tubic et al. [4], the morphological top-hat transform 
was used to normalize image illumination, in order to prepare the image for threshold-
ing which was achieved through the bidimensional entropy method. Grouped pixels, 
thus potential seeds clusters, were identified using area, width, and length statistics of 
the clusters and subsequently declustered using a simulated annealing type algorithm. 
In Kuo et al. [5], a top-hat by reconstruction algorithm followed by thresholding via 
Otsu's method was employed. Overlapping seeds were identified- but not separated- 
by calculating the sum of the intensities of each pixel group and comparing it to the 
median sum. In the most recent state-of-the-art method, Moult et al. [6] used top-hat, 
Gaussian and Kirsch filters in combination. Afterwards, they used an implicit active 
contour algorithm to produce an image showing only the seeds. Finally, a declustering 
algorithm to decompose only two-seed clusters was introduced via a template-based 
scheme. All of the above works suffer from distinct limitations: (i) in [5] the authors 
consider only palladium seed segmentation, (ii) in all algorithmic steps require manu-
al intervention for image cropping and definition of algorithm parameter thresholds 
and (iii) only n=2 seed clusters were accounted for which significantly reduces accu-
racy of seed reconstruction.  

 
1.3 Contributions 

According to Radiotherapy in Practice Brachytherapy: “[t]he most frequently used 
isotope for permanent seed implantation in brachytherapy is iodine-125 [10].” Differ-
ent implants require different segmentation schemes due to their shape and size— 
thus 103Pd, or 137Cs segmentation algorithms cannot be applied to iodine seeds which 
are longer in size. Consequently, the existing two-cluster solutions cannot be reduced 
for general clinical practice. It is clinically unacceptable to perform manual segmenta-
tion on the seeds, intra-operatively during the procedure, for every C-arm image of an 
implant (i.e. almost 5 seeds/C-arm image in [6]). This results in long procedure times 
and invites human operator errors. Clinical experience proves that n-cluster seed seg-
mentation is required for a viable clinical implementation of intra-operative implant 
reconstruction and dosimetry. In this paper, a template matching technique that allows 
for fast and accurate n-seed cluster decomposition is proposed.  

2   Implicit active contours and initial preprocessing 

To segment the iodine brachytherapy implants, a region-based implicit active contour 
model by Li et al. [7] is used. Generally medical images have intensity inhomogenei-
ty; hence the model proposed by Li et al. is suitable as it accounts for variances in 
image illumination and additionally eliminates the re-initialization process making 
this algorithm automatic. The initial segmentation can be summarized by the follow-
ing four steps: 
 



STEP 1: the X-ray image is filtered producing a processed image on which the active 
contour will be evolved. In this step, a morphological top-hat filter with rectangular 
structuring element is applied. The structuring element has dimension 12×2 pixels 
with longer y-axis length.  We made the fitting assumption that implanted seeds in X-
ray are rectangular in shape and closer to an upright orientation. It is impossible to 
insert and deposit a seed horizontally when guiding needle insertion using the needle 
template during brachytherapy. 
 
STEP 2: the image that is used to initialize the active contour is generated here there-
by eliminating the need for a manually defined ROI. This initialization image is 
formed using a top-hat filter, blurring the original X-ray with a Gaussian filter and 
employing a Kirsch edge filter [8]. For all trials the Kirsch filter threshold was t0 = 5. 
Once the binarized edge image is formed, black-white (BW), the initial level set func-
tion  0 is defined as: 
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where c0 = 2 as indicated in [7]. 
  
STEP 3: evolves the level set function for 70 iterations, after which a resulting binary 
image is obtained containing the seeds and possibly some lingering noise. For all 
trials, the energy functional parameters were set as those defined by the author in [7].  
 
STEP 4: eliminates any remaining noise in the image. Connected regions < 20 pixels 
are discarded since their areas are below the assumed area of an implanted seed. Also, 
if the region width is larger than the region length, we discard as well, since implants 
are always closer to an upright position. Mean statistics are subsequently calculated 
similar to the state-of-the art method of [6].  Mean pixel area is determined by the 
number of pixels contained in all clusters. This value is divided by the number of 
connected components in the X-ray image. Lastly, regions of the image that deviate 
significantly from the mean statistics are removed. The statistics were formulated by 
analyzing the mean pixel area (MPA) of seed groups within X-ray images. The pixel 
groupings in this paper were set to [0.5, 5] times MPA. A value of five suggests at 
most 5 seed clusters whereas a value of ½ suggests the lower limit possibility of a 
region being a seed. This resulting image is used when applying the declustering algo-
rithm described in the following section.  

3 Declustering n-connected components 

In the image, it is expected to find certain pixels that define two or more seed clusters. 
This fact motivates the introduction of seed declustering techniques to resolve such 
groupings. First, we briefly describe a method to reduce the search space as proposed 



in [4, 6]. Second, we outline the steps involved in discerning the n-seed clusters based 
on area and length measures.  Lastly, a general n-seed declustering scheme is out-
lined. 
 
3.1 Search space reduction and cluster-discerning criteria 

In order to make the declustering algorithm faster, a technique to reduce the search 
space within the C-arm images is introduced. The declustering technique is based on 
matching a set of template seeds to the overlapping seed group of interest [4]. The 
problem of this method is prohibitively large search space, hence to overcome this 
limitation, translation of the model template is not allowed and instead a set of 3 an-
chor points uniformly spaced in the shortest side of the pixel group is considered. This 
produces a search space reduced by over 99.96% [6]. In this paper, the clusters are 
identified and discriminated based on the area and length statistics of the clusters. We 
calculated the mean pixel area A (i.e. the area that a single seed should approximately 
have), calculated the mean pixel length L (i.e. the length that a single seed should 
approximately have and equal to the major axis length of the minimal enclosed 
bounding ellipse of the connected region). Then, we carefully selected the parameters 
n1 < n2 < n3 < n4 < n5   R and m1 < m2 < m3 < m4 < m5  R such that 
 
 [(if A ≥ n1·A) and (A < n2·A)] or [(l ≥ m1·l) and (l < m2·l) ] – two seed cluster 
 [(if A ≥ n2·A) and (A < n3·A)] or [(l ≥ m2·l) and (l < m3·l) ] – three seed cluster 
 
The same reasoning is used to discern clusters of four and five seeds. In the imple-
mented procedure the choice of values was determined empirically by analyzing a 
subset of C-arm images: n1=m1= 1.3; n2= m2= 1.9; n3=m3= 3.1; n4=m4= 4.0; 
n5=m5=4.5. Through these values all possible cluster shapes can be accounted for (i.e. 
Y-shape, etc.). We randomly selected a subset of 5 images to train and arrive at the 
above values. A visual inspection of the subset of images revealed seed projections 
having ‘close enough’ geometric similarities capturing population variability.  

Template Seeds for matching: A template seeds are a rectangle of size 5 × 22 pix-
els (i.e. 1.0 x 4.4 mm using a pixel spacing equal to 0.2013mm) determined empirical-
ly by visualizing a sub-sample of projected seeds in the C-arm images. To achieve 
improved precision not just one template fixation point is used, but three, lying on the 
shortest side of the seed. A set of possible rotations R = {k· (/16)  k  0, . . . , 15} 
is also considered and the templates which have the highest intersection with the pixel 
cluster is selected as the matching one. 
 
3.2 n-seed declustering framework 

The graphical outline of the procedure can be seen in Figures 2-3. The pixels of the n-

seed cluster are labelled with the number c. The pixels  and  are defined as the 
most distant ones in the cluster (Figure 2a). Using the two-seed declustering algorithm 

in [6], the pixels   and  belong respectively to two different seeds clusters  and 

. The pixels belonging clusters  and  are detected (Figure 2b) and only the ones 

belonging to   and relabelled with the number c + 1. The remaining pixels 
belonging to the original cluster stay untouched and the cluster is now composed of (n 



− 1) seeds (Figure 3a). Before starting the next iteration just the connected component 
of the cluster is selected, (see Figure 4). The two-seed declustering algorithm is 

applied on the connected component of the cluster, and the pixels  and  belong 

respectively to two different seeds of the cluster  and .  

 
Figure 2. (a) Cluster of n seeds, the points   and  are the most distant in the clus-
ter, they belong respectively to seed   and . (b) Seeds   and are detected. 
 

The pixels belonging to  are detected and relabelled with the number c + 2. At 

step k, seed  and  will be detected with the two-seed declustering algorithm, 

and only  is relabelled with number c + k. This procedure is repeated n − 1 

times.  In the last step k = n – 1, the most distant pixels  and   belong respectively 

to the last two seeds of the cluster  and (see Figure 3b). Consequently, the two-
seed declustering can be used and the original n-seed cluster has been successfully 
declustered.  

We observe that seed  has been detected n − 1 times using template matching 
and this is an unwanted side-effect of the algorithm and leaves open space for further 
improvements. In this paper, this problem does not affect the computational cost as 
we consider only cases in which n ≤ 5.  An improved version of the generalized n-
seed declustering algorithm follows. In every iteration k of the algorithm, the pixels 
belonging to seeds   and  are relabeled with numbers c + 2k − 1 and c + 2k. 

 In each step, 2 seeds are extracted from the cluster enabling only  iterations. 
The last step will be different for the case of n being an even or odd number: if n is 
odd, there is only one remaining seed labeled with c  end algorithm; n is even signi-
fying there are two seeds remaining labeled with c apply the two-seed algorithm. 
For brevity, the workflow of a three-seed declustering framework is presented in Fig-
ure 4 and shown iteratively using a preprocessed clinical scenario.  

 



 
Figure 3. (a) Seed   is relabeled and the cluster is formed only from seeds  to 

.  The most distant points in the cluster are now  and . (b) The procedure 
is applied until only two seeds remain at which point [6] is applied. 

 

 
Figure 4. Declustering workflow for a three-seed grouping. (1) A three-seed cluster 
where the two most distant seeds are detected using a two-seed clustering technique. 
(2) One of the seeds is relabeled (i.e. it does not belong to the cluster anymore). (3) 
The most distant points u* and v* are wrongly selected. (4) The most distant points 
u* and q* are now correctly selected considering just the connected component of the 
pixel cluster. (5) The two-seed algorithm is applied again. (6) The three-seed declus-
tering is now complete. 

4 Evaluation and Results 

Datasets: We validated the proposed segmentation and declustering method on 55 
clinical images from 10 patients. One observer segmented the iodine seeds in the 
clinical images. As per all manual segmentation tasks, the general rule was to select 
the center point of a seed to the best of their ability. A total of 6002 seed centroids 
were manually segmented and these are considered the ground-truth seed coordinates 
for comparison.  



Processing: The algorithm was prototyped in a MATLAB/C++ environment having a 
runtime of 50 seconds per C-arm image using an Intel®CoreTM i7 computer. 

Results: In total, 5918 seeds were automatically segmented using our method which 
results in a 98.7% detection rate. Our calculations using a 95% confidence interval, 
with p<0.05, returns 0.448. Thus, the high and low intervals around our mean detec-
tion rate are [98.14, 99.04]. The proposed n-seed declustering algorithm found 554 
two-seed clusters, 68 three-seed clusters, 2 four-seed clusters and 1 five-seed cluster. 
These results were compared to the ground truth clusters, that were respectively 511 
two-seed clusters, 56 three-seed clusters, 3 four-seed clusters and 0 five-seed cluster, 
confirming that the presented method responds quite well for overlapping iodine 
seeds. In order to evaluate the precision of our algorithm the mean centroid error was 
calculated. The overall mean centroid error between ground-truth manual and auto-
matic segmentations was 1.2 pixels, or 0.24mm when considering our pixel spacing of 
0.2013mm. Due to the GUI used for the seed centroid extraction, manually segmented 
seeds could only be placed at the centers of the image pixels. Since the distance from 
the center of a pixel to one of its corner is equal to sqrt (0.5), we define this value as 
the pixel uncertainty associated with the manual segmentations. However, these re-
sults re-affirm the efficacy of the proposed algorithm.  

 

 
Figure 5. Clinical example showing successful declustering in two- and three-seed 
clusters. (Left) the input X-ray image on the left is displayed, in red the three seed 
cluster is highlighted, in green the two-seed cluster. (Right) the detection of the seeds 
belonging to the three- and two- seed clusters respectively. 
 
Clinical Implications: In reference to the D90 values—the minimum dose received 
by 90% of the prostate volume—Su et al. [9] state “[t]he 95% confidence interval 
(CI) of estimated D90 values differ by less than 5% from the actual value when 95% 
or more seeds are detected, or approximately a 7 Gy difference in the D90 value for a 
prescription dose of 144 Gy.” They concluded that accurate dose estimation can be 
achieved if 95% or more seeds are detected. Thus, our mean automatic detection rate 
of 98.7% surpasses clinical standards. Regarding segmentation, 84 seeds were not 
detected by our algorithm yielding an average of only 1.5 missed seeds per patient-
image. Our results demonstrate a viable solution in the workflow of dynamic dosime-
try (Figure 1) that ensures subsequent seed reconstruction in 3D and registration to 
TRUS data.  



 

 
Figure 6. Clinical examples depicting successful declustering of four-seed cluster on 
the left image and a false clustering of five-seeds in the right image.  
 
Drawbacks: 103 seeds were erroneously segmented, leading to a 1.7% false positive 
rate. This signifies that these were recognized by our algorithm as seeds; however 
they had no associated manual segmentation ground-truth. Here, it is observed that 
some identified clusters are not true clusters but a result from errors in the level set 
evolution (Figure 6-right), there is in fact two distinct clusters and not a five-seed 
cluster‒ a two- and three seed group).   

Future Work: We aim at investigating filtering techniques, such as the homomorphic 
filter, that improves the original contrast of a newly acquired C-arm image during 
brachytherapy. We want to provide an initial image that optimizes the chances of the 
level set algorithm to lock onto seeds instead of noisy pixels. A natural extension of 
our algorithm is regarding the segmentation of other implants, such as 103Pd or 137Cs, 
which are used in prostate brachytherapy procedures. Also, color-coding the grayscale 
C-arm image which depicts individual or clustered seeds may facilitate seed corre-
spondence between images for subsequent 3D reconstruction (Figure 7). 

5 Conclusions  

In this work we have presented a practical technique to robustly segment prostate 
brachytherapy iodine implants thereby making an important contribution to both re- 
search and clinical practice. We have improved current state-of-art algorithms by 
proposing an n-seed declustering scheme for iodine seeds and positively validated the 
technique on patient datasets.  



 
Figure 7. C-arm imaged of the same patient showing clusters and individual seeds. A 
side benefit from colored segmentations: simplified seed correspondence. 
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