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Purpose: In prostate brachytherapy, transrectal ultrasound (TRUS) is used to visualize the anatomy,
while implanted seeds can be visualized by fluoroscopy. Intraoperative dosimetry optimization is
possible using a combination of TRUS and fluoroscopy, but requires localization of the
fluoroscopy-derived seed cloud, relative to the anatomy as seen on TRUS. The authors propose to
develop a method of registration of TRUS images and the implants reconstructed from fluoroscopy.
Methods: A phantom was implanted with 48 seeds then imaged with TRUS and CT. Seeds were
reconstructed from CT yielding a cloud of seeds. Fiducial-based ground-truth registration was
established between the TRUS and CT. TRUS images are filtered, compounded, and registered to
the reconstructed implants by using an intensity-based metric. The authors evaluated a volume-to-
volume and point-to-volume registration scheme. In total, seven TRUS filtering techniques and
three image similarity metrics were analyzed. The method was also tested on human subject data
captured from a brachytherapy procedure.

Results: For volume-to-volume registration, noise reduction filter and normalized correlation met-
rics yielded the best result: An average of 0.54 =0.11 mm seed localization error relative to ground
truth. For point-to-volume registration, noise reduction combined with beam profile filter and mean
squares metrics yielded the best result: An average of 0.38*0.19 mm seed localization error
relative to the ground truth. In human patient data, C-arm fluoroscopy images showed 81 radioac-
tive seeds implanted inside the prostate. A qualitative analysis showed clinically correct agreement
between the seeds visible in TRUS and reconstructed from intraoperative fluoroscopy imaging. The
measured registration error compared to the manually selected seed locations by the clinician was
2.86*1.26 mm.

Conclusions: Fully automated registration between TRUS and the reconstructed seeds performed
well in ground-truth phantom experiments and qualitative observation showed adequate perfor-
mance on early clinical patient data. © 2010 American Association of Physicists in Medicine.
[DOLI: 10.1118/1.3416937]
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I. INTRODUCTION

Prostate cancer is a worldwide health problem and the most
commonly diagnosed cancer among men in the US, where
one of every six men receives a positive diagnosis in his
lifetime.! Low dose rate permanent prostate brachytherapy,
or brachytherapy in this paper, entails permanent implanta-
tion of encapsulated radioactive sources (seeds) into the
prostate in order to eradicate the cancer. The seeds are the
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size of a rice grain. Brachytherapy has emerged as a defini-
tive treatment option for patients with early stage prostate
cancer, a group that represents the majority of patients diag-
nosed in the modern era of prostate cancer screening.
Brachytherapy has demonstrated the potential for excellent
cancer control.” The success of brachytherapy relies on the
physician’s ability to tailor the spatial distribution of radia-
tion dose with respect to the prostate and surrounding struc-
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FiG. 1. Typical prostate brachytherapy setup with TRUS and C-arm fluoros-
copy imaging. Note the severely limited rotation angle for the C-arm of
about 20° about the AP axis. (Illustration by Xiao Xiao Ma.)

tures. A treatment plan consisting of precise seed distribution
within the prostate is created prior to the procedure, but the
actual implant shows deviations from the plan due to mani-
fold reasons, including needle misplacement, edema, and mi-
gration of seeds during and after procedure. Suboptimal seed
placement may cause an insufficient dose to the cancer
and/or inadvertent radiation of the rectum, urethra, or blad-
der. The former may result in failure of treatment while the
latter may cause adverse side effects like rectal ulceration,
incontinence, and painful urination. According to a compre-
hensive review by the AAPM TG137 Report,3 interactive
planning represents an improvement over intraoperative pre-
planning, however, in interactive planning the calculated
dose distribution is based on the implanted needle position,
and hence interactive planning might not account for seed
movement after deposition. At the same time, continues the
report, the dose distribution is updated dynamically based on
the actual positions as the seeds are deposited. At this time,
dynamic dose calculation is not available for permanent
prostate brachytherapy because it is difficult to image indi-
vidual seeds on TRUS.

The ability to perform dynamic dose calculation with vi-
sualization of underdosed areas during the procedure could
significantly improve brachytherapy. The clinical usefulness
of the dynamic planning approach has been demonstrated in
limited clinical studies led by Zelefsky et al.t Song et al.?
and most recently by Orio et al.® However, no solution exists
today that would allow for the deployment of dynamic im-
plant dosimetry in average community care setting. In this
paper, we investigate the last standing roadblock to dynamic
brachytherapy implant dosimetry optimization: The registra-
tion between transrectal ultrasound and fluoroscopy.

I.A. Seed localization in ultrasound

Prostate brachytherapy is usually performed under tran-
srectal ultrasound (TRUS) guidance (Fig. 1). While TRUS
provides adequate imaging of the soft tissue anatomy, it does
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FIG. 2. (Top) Transrectal ultrasound shows a faint trace of the prostate con-
tour, some of the implanted seeds, and various imaging artifacts. (Bottom)
C-arm fluoroscopy images are acquired during the intervention to qualita-
tively validate seed positions. The prostate is not visible in fluoroscopy.

not allow for robust localization of the implanted brachy-
therapy seeds. It has been extremely difficult to localize
seeds in TRUS, ™! illustrated in Fig. 2. To date, no clinically
robust and accurate method exists for this task. The difficul-
ties have several root causes. Variable out-of-plane orienta-
tion of the seeds causes variability in acoustic appearance.
Calcifications and other highly reflective objects present in
the field of view and multiple reflections create false positive
(FP) appearances. Seeds may cluster and/or shadow one an-
other, creating false negative (FN) appearances and even
when meticulously hand-segmented, up to 25% of true seeds
may remain hidden in ultrasound.® Recently, Orio et al.® re-
ported that in a study of 25 patients, only 20%—-25% of all
implanted seeds were visually identifiable in TRUS, and in
some cases even less. As false positives and false negatives
are concurrent, it is often impossible to differentiate acousti-
cally similar true and false positives. Despite the unfavorable
odds, significant efforts have been invested in direct localiza-
tion of seeds from TRUS, owing to the particular clinical
significance of the issue.

Semimanual segmentation on postimplant TRUS using
prior knowledge of the position of the seeds from the preop-
erative model has been suggested by Ref. 12. The visible
needle tracks are localized and matched with the preopera-
tive implant model. The visible echoes are then identified as
seeds or spacers from the known sequence of the preopera-
tive model. Seeds that do not produce a visible echo (false
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negatives) are interpolated from the model. This approach
requires a great deal of manual intervention and subjective
judgment leading to unreliable performance for nonstranded
“lose seed” implants. Ding et al.">' also used the needle
location information when seeds were being deposited from
the needle. Unfortunately, as the prostate often deforms or
swells and seeds shift during the procedure, seeds positions
may be altered. Thus, this approach is unsuitable for produc-
ing dosimetry which reflects the end result. Interestingly,
segmentation of seeds in fluoroscopy has met similar ob-
stacles. Prior works used variants of morphological shape-
based approaches,‘l’ls’16 but could not reliably differentiate
true seeds appearances from partial and multiple appear-
ances, especially when applied to images of lower resolution.
Template matching and optimization based techniques have
been suggested in the literature for resolving seed
multiples”’18 but they tend to be computationally intensive
and not quite feasible intraoperatively. In particular,
the problem of image resolution seems to have been
underappreciated.

In exploring more complex TRUS imaging schemes,
McAleavey et al.” suggested an oscillating external mag-
netic field to vibrate brachytherapy seeds that are magnetized
or ferromagnetic. Doppler ultrasound can then detect the vi-
bration of the brachytherapy seeds and differentiate them
from other echo targets. The unique Doppler signature asso-
ciated with the modified brachytherapy seeds in the oscillat-
ing field allows them to be readily distinguished from other
bright scatterers in the prostate. Recently, Mitri et al.” sug-
gested vibroacoustography to vibrate and then detect the
seeds, and demonstrated the concept under idealized circum-
stances in soft silicon gel phantoms. Transurethral ultrasound
has been proposedm’22 to enhance the identification of both
seeds and anatomy. This is an ambitious long-term approach
that would impart a wholesale change in established clinical
hardware and workflow.

I.B. Registration of ultrasound to fluoroscopy

The published history of C-arm fluoroscopy in brachy-
therapy originates23 when it was first used as a solo guidance
modality. Shortly after TRUS emerged as a primary image
guidance modality, fluoroscopy became a secondary tool for
gross visual observation. Mobile C-arms are ubiquitous in
contemporary prostate brachytherapy, with over 60% of the
practitioners using it for qualitative implant analysis during
the plrocedure24 in a setup shown in Fig. 1. Recently, accurate
reconstruction of seeds from fluoroscopy has become
possible,zsf27 but since it cannot show the prostate and soft
tissues (Fig. 2), fluoroscopy alone cannot be used for dosim-
etry. At a few specialized centers, CT imaging is available
during brachytherapy for implant reconstruction.” In all, as
seeds can be reconstructed from fluoroscopy or CT, the re-
maining problem is registration of TRUS with the recon-
structed seeds.

To this end, Zhang et al.” suggested affixing x-ray fidu-
cials onto the TRUS probe. French et al. suggested using
the TRUS probe as a registration fiducial. Jain et al® pro-
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FiG. 3. Intensity-based registration pipeline. TRUS images are filtered and
compounded into a 3D volume. Seeds are reconstructed from either CT or
fluoroscopy, either as a binary volume or set of points. The volumes are
registered via intensity-based registration using mutual information, normal-
ized correlation, or mean squares metrics.

posed mounting a fiducial structure above the abdomen, spa-
tially calibrated with the template. In all the above, the reg-
istration took place through static fiducials and cannot
account for motion of the anatomy between the TRUS and
fluoroscopy sessions. When the TRUS probe is retracted
from the rectum for fluoroscopy imaging, the prostate relaxes
posteriorly. To counteract this problem, Su et al.’! suggested
using a point-based registration between seeds directly re-
constructed between TRUS and ﬂuoroscopy.%’31 This re-
quires exact localization of the seeds in TRUS which, as
mentioned earlier, has not been possible with clinically suf-
ficient accuracy and robustness.

Generally, intensity-based registration tends not to work
between ultrasound and x-ray modalities because in ultra-
sound, anatomical structures are embedded in noisy and low
contrast environment with little distinctive information about
material density measured by x ray. But implanting the pros-
tate with seeds changes this situation advantageously. While
TRUS images of an implanted prostate are hampered by
noise and false positive and negative appearances, seeds
carry enough distinctive information for intensity-based reg-
istration to hone in on the correct transformation. Still, the
apparent straightforwardness of our method should not belie
the investment of effort needed to make a workable clinical
tool, despite the availability of technical components. In this
paper, we report intensity-based registration between TRUS
and seeds reconstructed from intraoperative fluoroscopy and
CT. We present a practical implementation, experimental
analysis on ground-truth phantom, and initial results on pa-
tient data.

Il. MATERIALS AND METHODS
Il.LA. General overview

The registration scheme (Fig. 3) follows several steps. (1)
Reconstruct the implant from fluoroscopy or CT and obtain a
three-dimensional cloud of the seeds. The reconstructed
seeds can be represented as a “3D point set” or as a “binary
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FIG. 4. Ultrasound image processing. (Top) The various filters applied to
transrectal ultrasound volume. In the top row, TRUS image processed using
a noise reduction (U.S.1), phase congruency (U.S.2), and beam width filter
(U.S.3). The bottom row shows the effects of combination filters: Bayesian
(U.S.4), noise reduction then phase congruency (U.S.5), noise reduction
then beam width filter (U.S.6), and lastly noise reduction, then phase con-
gruency and then beam width filter (U.S.7).
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volume.” (2) Filter the TRUS slices and compound them to
volume. One could also reverse the order by compounding
first and filtering second. (3) Initialize an intensity-based reg-
istration scheme, considering the TRUS as the moving vol-
ume and the seed cloud as the fixed volume. (4) Incremen-
tally transform the moving volume until it matches the fixed
volume by minimizing the dissimilarity between the two vol-
umes using (a) mutual information, (b) normalized correla-
tion (NC), or (c) mean squares (MS) as metric.

I.B. Ultrasound and CT filtering

Central to our approach is filtering the TRUS images,
without explicit segmentation of the seeds. We allow false
positives (artifacts masquerading as seeds) and false nega-
tives (shadowed seeds) to remain in the data sets during reg-
istration. A variety of filters were tested to enhance the qual-
ity TRUS images for registration, with the purpose of
reducing noise and enhancing the features of true seeds.
Again, we stress that we did not attempt explicit segmenta-
tion of the seeds and we allowed false positive appearances
and other artifacts to remain in the TRUS.* We explain the
use of three primary filters (noise reduction, phase congru-
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ency, and beam width filters) and different combinations of
these, also listed in Fig. 4. No filtering (U.S.0) was used as
baseline for comparison.

II.B.1. Noise reduction filter (U.S.1)

Based on the intuition that brighter areas in the image are
more likely to contain seeds, successive thresholding is ap-
plied on the U.S. images. First, an average intensity is cal-
culated for pixels within the TRUS image. This is called
Avg,. Then, pixels having value less than Avg; are colored
black (1,). The average intensity of the remaining pixels in I;
is calculated afterwards (Avg,) and the procedure are re-
peated. Equations (1) and (2) show the concept of successive
thresholding where n is the number of pixels within the im-
age and n; is the number of remaining pixels after the first
thresholding.

Avg, = 2 TRUSG)

1= >

Il(l’J)

TRUS(,j) Avg, < TRUS(,))

- ; 1
0 otherwise M
>0 1,(i,j) Aveg, <I,(i,j
Avg, = Zid (i j), L) = 1(0.7) 2 . 1(2.) ,
n 0 otherwise
()
>. .0 N
AVg3 — i, 2(l ]) ) (3)

ny

After the second thresholding, again the average of the re-
maining pixels is calculated (Avg;) by defining n, as the
number of remaining pixels in /. Remaining pixels are di-
vided to separate regions and average intensity value for
each region is calculated. Regions with average intensity less
than 0.5Avg; or less than 0.75Avg; and an area less than 100
pixels are removed. The two threshold values for Avg; were
chosen so as to eliminate regions with high intensity and area
smaller than the acceptable size for a brachytherapy seed.

Il.B.2. Phase congruency filter (U.S.2)

Previously, Hacihaliloglu et al.>® have shown that phase
congruency is an effective tool for detecting the true bone
edge location in U.S. images. Based on this idea, we adapted
phase congruency for processing the U.S. images to enhance
the features of true seeds, i.e., to suppress artifacts and false
positive appearances. The typical approach for edge detec-
tion is to think of edges as being points of high intensity
gradient. An alternative approach is to think of features in the
frequency domain. The image intensity profile can be
thought of as a periodic signal and hence can be presented
with its Fourier series. The phase congruency theory assumes
that features exist at points in an image where the Fourier
components are in phase.

Kovesi®* proposed a method for measuring how in phase
Fourier components are in any point of the signal. The con-
cept can be easily extended to two-dimensional signals by
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FiG. 5. (Left) A Fourier transform of a two-dimensional signal. The illustra-
tion shows the concept of orientation and scale in 2D phase congruency
analysis. The two dashed lines show the span of the filter defined for that
orientation and the dotted lines show the span of each scale along that
orientation. Here, eight orientations and four scales are shown. (Right) The
lateral and elevation filters, respectively, showing one intensity and the over-
all beam width filter in the bottom.

applying the one-dimensional analysis over several orienta-
tions and combining the results. Along each orientation o, a
spread filter is defined determining the area covered by that
orientation. Also, by introducing the scale parameter n, Fou-
rier components can be analyzed independently and then be
combined together in the final calculation of the phase
congruency.

Hence we applied a uniform threshold for all images.34
For extracting the seedlike regions from one B-mode image,
calculating the phase congruency of pixels provides useful
information: The more symmetrical the phase of a region is,
the more likely it is a seed. The number of orientations and
scales were found empirically (Fig. 5, left). We used six ori-
entations and four scales. For the phase congruency filter
implemg:iltation, we used the MATLAB algorithm provided by
Kovesi.

1l.B.3. Beam width filter (U.S.3)

The beam width filter accounts for the fact that the ultra-
sound beam has finite thickness and single focus in the el-
evation plane. The thickness of the beam varies along the
lateral plane, and based on the setting one is using, different
number of focal points along the lateral plane can be
achieved (i.e., two for our experiment).

For finding the lateral beam profile, we take U.S. images
of a nylon wire in different depths. The resulting image of
the wire when the probe is held perpendicular to it is a spot.
U.S. images of the wire are captured at different depths and
in each depth, the width of the spot is considered as the
width of the U.S. beam in the lateral direction. Wherever the
lateral profile has narrower width (meaning the accuracy is
higher), gets more weight. Another experiment is performed
for obtaining the elevation profile of the U.S. beam. In this
experiment, an inclined plane which is made from rubber is
used for evaluating the elevation beam width. If the U.S.
probe is held 45° relative to this plane, the image of the plane
would be a horizontal line, whose thickness is equivalent to
the elevation beam width. Therefore, images of the inclined
plane are captured in different depths to find the elevation
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beam profile. In each depth, the thickness of the line is re-
ported as the elevation beam width for that depth. The exact
protocol can be found in Ref. 35.

The two lateral and elevation filters previously obtained
can be considered each as a probability map, and since they
are independent, the overall probability is obtained by mul-
tiplying them. This filter is applied on the TRUS images in
order to compensate for the uncertainties caused by the U.S.
beam width either in lateral or elevation directions. Pixels
located near the focal point receive more weight and thus
have more effect on the final result (Fig. 5, right).

1l.B.4. Combination filters (U.S.4-U.S.7)

U.S.4 implements a Bayesian combination of noise reduc-
tion, phase congruency, and beam width filter is an image
with intensity between 0 and 255. Since the brighter a pixel
is, the higher is the probability of that pixel being a seed,
results can be rescaled to [0,1] and hence, represent a prob-
ability map. Therefore, the image intensities were normal-
ized and then Bayesian formula [Eq. (4)] was used for each
pixel. Basically, in this formula, each probability map inde-
pendently estimates the “probability seedness” of pixels. We
applied the Bayesian model for combining different prob-
abilities according to Scepanovic et al.*®

Pl(x,)’) X Pz(x,)’)
Py(x,y) X Py(x,y) + (1 = Py(x,y))(1 = Py(x,y))
4)

U.S.5 is a serial filter of noise reduction followed by phase
congruency. U.S.6 is another serial filter made up by noise
reduction followed by beam width filtering. Finally, U.S.7 is
a series of three elementary filters, namely, noise reduction,
phase congruency, and beam width filters.

P(x,y) =

I.B.5. CT filtering

As seeds are prominent in CT, we only clipped a region of
interest and used window-level scaling to create an 8-bit CT
volume. Window-level scaling is a method for mapping a
range of intensity to a different scale. A window is set by a
lower and an upper threshold. Below the lower threshold, all
intensities are mapped to black; above the upper threshold all
intensities are mapped to white, and intensities inside the
window are mapped linearly to 8-bit gray scale. Generally,
CT data has intensity values between —2000 and 4095. In
our case, true seeds (intensities above 1700) were mapped to
the 8-bit gray scale. Then, a suitable threshold of 100 was
applied to suppress all remaining artifacts.

Il.C. Intensity-based registration of volume-to-volume
(vav)

Intensity-based registration techniques do not require
prior segmentation, a distinctive feature offering manifold
advantages over segmentation-based registration that usually
requires some level of manual intervention and is hampered
by segmentation errors. Intensity-based registration uses the
entire volumes and thus both false positive and false negative
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appearances can average out.”’ Generally speaking, V2V is
designed to handle scenarios where seeds are reconstructed
into a continuous gray-scale volume, such as true CT (Ref.
28) or cone-beam computed tomography volume.”” V2V
should also allow for a gray-scale volume to be binarized,
where usually each seed is represented by more than one
white voxels. Such volumes are resulted from fluoroscopy
reconstructions where seeds are considered to have length
and direction, such as in Ref. 38. Since voxel intensity is
used, an interpolator is used to evaluate moving volume in-
tensities at nonpixel positions after applying the spatial trans-
formation in each cycle of iteration. For this very reason, we
must consider the continuous TRUS as the moving volume
and binarized seed cloud as fixed volume. For the first reg-
istration, the transformation parameters are initialized with
an initial guess, discussed later. Then, a similarity measure
evaluates the degree of matching between the transformed
moving volume and the fixed volume. The two most widely
used similarity measures are mutual information®**” and nor-
malized correlation.*! Our experimental registration scheme
is based on the ITK-Insight Segmentation and Registration
Toolkit.*

II.C.1. Metric

We implemented Mattes mutual information (MMI) that
estimates a probability density function (PDF) uniformly dis-
tributed over the intensity interval. The calculations are
based on the method of Mattes ef al.***** where the probabil-
ity density distributions are estimated using Parzen histo-
grams. Compared to standard mutual information, we initial-
ize a random number generator that selects the sample of
voxels used for estimating the volume histograms and the
joint histogram. Further, the advantage of MMI is that it uses
only two parameters: The number of samples used to esti-
mate the PDF and the number of histogram bins used to
calculate the entropy. The number of histogram bins was
empirically set to 50 and the number of samples used was set
to 10% of the total number of voxels making up the fixed
volume. For comparative purposes, we also tested NC. Voxel
values are taken from the fixed volume; their positions are
mapped to the moving volume and result in general in non-
pixel position on it. Values at these nongrid positions of the
moving volume are interpolated using a user-selected inter-
polator. The correlation is normalized by the autocorrelations
of both the fixed and moving volumes.* Let Imgl and Img2
be the fixed and moving volume, respectively. NC computes
the voxelwise cross-correlation and normalizes it by the
square root of the autocorrelation. Using a simple 2D image
example,

Eﬁllmgli - Img2;
VEY Img17 - ¥ Tmg2}

NC=-1 X (5)

where Img1; and Img2; are the ith pixels in the two images
and N is the number of pixels considered. The —1 factor is
used to make the metric be optimal when its minimum is
reached. The optimal value of the metric is then —1. A mis-
alignment between the images results in small measurement
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values. This metric produces a cost function with sharp peaks
and well-defined minima. Naturally, the above metrics work
identically for volumes. The number of spatial samples used
here was empirically set to 50.

II.C.2. Transformation

Several authors have investigated nonrigid deformation
techniques using prostate data. For instance, Karnik et al®
conclude that the results from rigid and nonrigid registrations
were not statistically significantly different (p >0.05) in their
transrectal prostate biopsies. Xu et al.*® conclude that there
was no apparent impact of deformable registration which in-
dicates that prostate deformation is less of a factor than organ
displacement during the needle placement process. Lastly,
Misra et al.*’ show that boundary conditions surrounding the
organ dominate the deformation more than the constitutive
behavior of the tissue itself. Interestingly, after TRUS imag-
ing, the probe is retracted from the rectum to avoid blocking
seeds during fluoroscopy imaging. This causes the prostate to
relax posteriorly, but usually without significant deformation.
Practice guidelines specifically require slight rectal pressure
to mitigate deformation by probe translation during TRUS
imaging.48 In this light, rigid registration should suffice. We
implemented a 3D Euler transform of six parameters, three
for the Euler angles that represent the rotation, and three for
the translational components. We specify the center of rota-
tion as the gravity center of the moving volume. Clinically,
we always have accurate and consistent initial guess for the
registration. Standard patient positioning allows for estimat-
ing the main symmetry axes of the prostate, and alignment of
the gravity centers of the TRUS volume and the seed cloud
yields accurate guess for translation.’

Il.C.3. Optimizer

One of the simplest and yet most powerful evolution strat-
egies is the “one plus one evolution strategy,” denoted by
(1+1)-ES. The step size adaptation can be performed ac-
cording to the following rule: If less than 20% of the gen-
erations are successful, then decrease the step size for the
next generation; if more than 20% are successful, and then
increase the step size in order to accelerate convergence.
This adaptation is done for every N—LR generations, where
N is the number of parameters to be optimized and LR is a
constant which here is equal to 1. All parameter values were
set default™ with the maximum number of iterations set to
100 and the minimum value for the Frobenius norm of the
covariance matrix set to 0.0015. If the norm is smaller than
this value, the optimization process will stop even before it
hits the maximum iteration. The registration parameters were
assigned initial weights corresponding to a 1° to 1 mm ratio
for rotations and translations, respectively.

Lastly, as TRUS and fluoroscopy are both likely to be
spotted with false positives, the registration could be trapped
in local minima. To counteract this problem, for all experi-
ments, we restart the registration 15 times with slightly
changing the initial pose (i.e., =10% of last optimized pa-



2755 Fallavollita et al.: Registration between ultrasound and fluoroscopy in prostate brachytherapy 2755

rameter value) and then take as a final solution the smallest
root mean square results of the 15 convergence optimiza-
tions.

IL.D. Intensity-based registration of points-to-volume
(P2v)

An alternative to volume-to-volume registration is an al-
gorithm that maps a discrete 3D point set to the moving
TRUS volume. Once again, the goal of the registration
method is to find the set of parameters of the transformation
that optimizes a specified metric. Similarly to V2V earlier,
we consider the 3D point cloud as fixed volume and the
TRUS as moving volume and we search for a transformation
that maps the moving volume to the fixed one with maxi-
mum similarity. To each point in the cloud, we assign a voxel
value of 255 and thus create a black volume sparsely spotted
with single white voxels. Each seed is represented by exactly
one white voxel. Two metrics were tested for P2V: Normal-
ized correlation and MS metric, the latter computing the
square difference between the average moving volume inten-
sity for an inside point and the average moving volume in-
tensity for an outside point. The optimal value of the metric
is zero. Poor matches between the images result in large
values of the metric. This metric is simple to compute and
has a relatively large capture radius. The number of pixels
considered, N, was set to the image size.

L
MS = ;]2 (Img1; — Img2,)%. (6)

i=1

An inside point is defined as points for which the corre-
sponding value (in the point set node) is negative. An outside
point is defined as points for which the corresponding value
(in the point set node) is positive:.42 The transform and opti-
mizer are kept the same as described in the preceding sec-
tion. Generally, P2V is designed for schemes where each
seeds is reconstructed into a single point, such as in Refs. 25
and 26, and seeds are represented as a list of points.

lll. EXPERIMENTS AND RESULTS
lllLA. Ground-truth phantom

The objective here is to construct ground-truth seed loca-
tions relative to TRUS. A commercial prostate brachytherapy
phantom (CIRS Inc., VA) was implanted with 48 nonradio-
active seeds according to a clinically realistic implant plan
(Fig. 6).

We selected CT imaging for ground-truth measurement
for several reasons: High geometrical accuracy, availability
and ease of use. Reconstructed seeds are faithfully repre-
sented by thresholded binarized CT volume, regardless to
which x-ray modality they originate from, let that be CcT*®
limited view C-arm ﬂuoroscopyzs’26 or cone-beam computed
tomography.27 Six small BB fiducials were mounted on the
phantom box, three on the left, and three on the right side.
The fiducials were placed so that the prostate lay in the cen-
ter of gravity of the fiducials, guaranteeing maximum target
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TRACKER

FIG. 6. Ground-truth phantom. (Top left): Coordinate systems and transfor-
mations. (Bottom left): 3D volume reconstruction using 2D U.S. images
along with tracking and calibration information. (Right): Ultrasound and CT
images of the phantom, in the top and middle rows, respectively, and after
registration in the bottom row. In the ground-truth registration, seeds from
CT are clearly visible and are marked as circles. Note that several blotches
in TRUS image are without corresponding CT seed; these are false posi-
tives. Also, we do not have false negatives or missing seeds in this particular
TRUS slice. Generally, there were more false positives than false negatives
in the phantom.

registration accuracy inside the prostate. We acquired CT
images of the phantom with 0.3 0.3 mm? in-plane reso-
lution and 0.6 mm slice thickness.

We carefully segmented the six fiducials attached to the
walls of the phantom. The CT fiducials were also localized
with a calibrated pointer (Traxtal Inc., Toronto, Ontario) and
Certus optical tracker (NDI, Waterloo, Ontario) with respect
to the DRB coordinate on the phantom. Finally, we trans-
formed the positions of seeds segmented in CT images to the
TRUS coordinate system, thereby defining the ground truth
for the registration. In order to maximize registration and
tracking accuracy, the fiducials and tracking bodies were ar-
ranged so that their centroids fell close to the center of the
prostate. This process yielded ground-truth registration be-
tween the TRUS and CT and the target registration error
(TRE) was 0.2 mm.

The TRUS probe was tracked optically with Certus rela-
tive to the DRB. The TRUS image space and DRB space
were calibrated with the system reported in Ref. 35. Using
tracked TRUS acquisition, we scanned the phantom system-
atically with translational motion and continuous image cap-
ture. The in-plane pixel size was 0.14X0.13 mm?. Inter-
frame spacing was about 0.5 mm. Following filtering, an
8-bit image volume was compounded from the 2D slices.
The TRUS reconstruction relies on a splatting technique for
high-quality interpolation, where each pixel of a B-mode im-
ages is smeared into a N X M X O kernel, which is then either
compounded or “alpha-blended” into the 3D image recon-
struction volume at the appropriate (x, y, z) location. The
2D B-mode images are splatted one by one as they are cap-
tured to provide real-time reconstruction. Compounding re-
quires the use of an accumulation buffer which is the same
size (i.e., same number of voxels) as the reconstruction
volume.* For any U.S. image, a tracking file is stored con-
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TaBLE I. Mean and standard deviation of TRE in phantom trials for V2V
registration (all units in mm).

TRE

Filter NC MMI

U.S.0 0.61+0.17 0.71£0.15
U.S.1 0.54x0.11 0.82£0.06
U.S.2 0.74x0.26 0.87%0.12
U.S.3 0.79%0.12 0.88£0.13
US4 0.77+0.25 0.91£0.17
U.S.5 0.65*0.15 0.69£0.14
U.S.6 0.71%0.10 0.91%0.18
U.S.7 0.69+0.12 1.01+0.15

sisting of two transformations: (i) From the optical tracker to
the probe and (ii) from the optical tracker to the phantom.
Further, during calibration, a file is generated giving the
transform between the probe and image. The reconstruction
program49 takes each U.S. image and its tracking information
along with the probe calibration information and generates
the 3D model (Fig. 6, bottom left).

lll.A.1. Registration evaluation

Using the gold standard transformation, the two data sets
are first aligned. To test the two registration algorithms, the
volume selected as the moving image (i.e., TRUS data) is
perturbed from the aligned position by applying a random
transformation within the range selected for the perturbation.
The registration then tries to bring the perturbed volume
back to the aligned position. The registration error is evalu-
ated in terms of TRE, which is defined as the distance be-
tween corresponding points other than the fiducial points af-
ter registration.50 In this paper, the values for mean
registration error and standard deviations were calculated as
the difference between true and estimated seed positions, ob-
tained from the ground truth and the registration,
respectively.

Capture range is defined as the range within which the
algorithm is more likely to converge to the correct optimum.
We applied random misalignment of maximum =5 mm
translation and *15° rotation. This capture range, especially
for rotation, is larger than the error of the initial guess one
can achieve clinically.5 The robustness of registration is de-
fined here as the ability of the optimization to get close to the
global minimum on all trials. Robust performance in the
presence of many false positive seed appearances will be of
key importance in clinical use. For good measure, we have
tested for both false positive and false negative during ex-
perimentation. In conclusion, we performed the registration
25 times for each TRUS filter.

lI.B. V2V registration results

Table I shows results from the runs that yielded TRE be-
low the clinically acceptable threshold of 2 mm. (The diam-
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Origina TRUS

Filtered TRUS Registered 3D

FiG. 7. Typical phantom registration results. From left to right: Original
TRUS, filtered TRUS, registered 2D, and registered 3D overlays. Top row is
with MMI metric and U.S.5 filter; bottom row is with NC metric and U.S.1
filter. The registration was successful in the presence of a large number of
false positive appearances.

eter of an implant needle and a seed is about 2 and 1 mm,
respectively. Seed localization error below 2 mm is consid-
ered as clinically adequate.)

While the algorithm converged in each run, 27% yielded
TRE values above 2 mm. As customary in such cases, we
adjusted the initial guess and restarted the registration.
(Again, we note that the angular capture range tested was
larger than we need in actual clinical practice.) All filters
with both MMI and NC metrics gave a mean seed registra-
tion error less than 1 mm, which is well below the clinically
acceptable limit. The NC metric outperformed the MMI met-
ric for all filters, likely because NC uses the entire image (all
samples) to perform registration whereas the MMI randomly
selects samples during the optimization phase. Noise reduc-
tion combined with phase congruency filter (U.S.5) gave the
best TRE (0.75 mm) for MMI metric. Noise reduction filter
alone (U.S.1) gave the best TRE (0.62 mm) with NC metric.
Somewhat surprisingly perhaps, no filtering (U.S.0) yielded
excellent TRE with both metrics, 0.65 mm with MMI, and
0.77 mm with NC. Figure 7 shows images after registration
of TRUS and binary CT.

The effects of false positives and false negatives in TRUS
were investigated by randomly masking true seeds and add-
ing false seeds to the 3D volume created from the ground-
truth CT data. To start with, there were many more false
positives than false negatives in the phantom (Fig. 6). To
simulate false positive and false negative appearances in
TRUS, we added and subtracted, respectively, up to 15 seeds

TaBLE II. FP and FN evaluation by randomly adding/masking out 15 seeds
for the V2V registration algorithm; mean and standard deviation of TRE in
phantom trials for the least performing filter (all units in mm).

TRE
Filter NC MMI
FP U.S.7 U.S.3
1.12+0.34 0.91+0.18
FN US4 US.3
0.96+0.40 1.13%£0.32
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TaBLE III. Mean and standard deviation of TRE in phantom trials for P2V
registration (all units in mm).

TRE

Filter NC MS

U.S.0 1.19+1.99 0.40£0.17
U.S.1 0.58*=1.44 0.70£0.22
U.S.2 0.88*1.68 0.49£0.12
U.S.3 1.89+2.23 0.56£0.12
US4 0.67+1.67 0.38£0.19
U.S.5 0.66*1.75 0.65+0.24
U.S.6 0.54*1.36 0.88£0.17
U.S.7 0.76 = 1.51 0.83+0.21

(31%) present in the CT data. This false positive and nega-
tive rate is significantly higher than observed in human pa-
tient images.

In the false positive analysis, all simulations yielded ac-
ceptable TRE values that were less than the 2 mm clinical
threshold. Table II shows the least accurate results occurred
when removing 15 seeds from the CT data; the U.S.7 filter
using the MMI metric (TRE of 1.12+0.34 mm) and the
U.S.3 filter using NC metric (TRE of 0.91+0.18 mm). For
comparison, the baseline nonfiltering scheme (U.S.0 filter)
yielded the following results: TRE of 0.97 =0.41 mm using
MMI and TRE of 0.88+0.31 mm using NC metric.

In the false negative analysis, the least accurate results
were observed using the U.S.4 filter in the MMI metric (TRE
of 0.96+0.40 mm) and the U.S.3 filter using NC metric
(TRE of 1.13%=0.32 mm). For comparison, the baseline
nonfiltering scheme (U.S.0 filter) yielded the following re-
sults: TRE of 0.92%0.34 mm using MMI and TRE of
1.02£0.18 mm using NC metric.

For the unoptimized MATLAB prototype, V2V took an av-
erage of 150 s on an Intel Core2, 2.4 GHz dual-core com-
puter.

lll.C. P2V registration results

For the point-to-volume registration technique, results for
the NC metric were less accurate when compared to the
above volume-to-volume analysis. As seen in Table III, fil-
tering the TRUS data was beneficial, as six of the seven
filters yielded more precise TRE values than the unfiltered
TRUS. In particular, U.S.6 filter showed the best value of

TaBLE IV. FP and FN evaluation by randomly adding/masking out 15 seeds
for the P2V algorithm; mean and standard deviation of TRE in phantom
trials for the least performing filter (all units in mm).

TRE
Filter NC MS
FP U.S.3 U.S.3
1.97+1.34 0.87+0.11
FN US.2 US.5
1.18*=1.12 0.81+0.14
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FiG. 8. Clinical results of a registration of TRUS and seeds registered from
multiview fluoroscopy. All fluoroscopic seeds (marked with [J) except two
align with white TRUS features within the 2 mm clinical limit. Two seeds in
the center image (marked by the ovals) do not match with TRUS, possibly
due to concurrent false positive and acoustic shadowing effects.

0.54*=1.36 mm. The MS metric showed stronger statistical
significance for average and standard deviation. Still, all fil-
ters yielded a final TRE below 1.0 mm.

In the false positive and false negative analyses, both the
MS metric yielded excellent TRE below 2 mm. Table IV
shows the least accurate were achieved with the U.S.3 and
U.S.5 filter yielding TRE of 0.87+0.11 mm and TRE of
0.81£0.14 mm for the false positive and false negative
analysis, respectively. With the NC metric, the results dete-
riorated as the least precise values were achieved with the
U.S.3 and U.S.2 filters yielding TRE of 1.97 = 1.34 mm and
TRE of 1.18 = 1.12 mm for the false positive and false nega-
tive analysis, respectively.

The unoptimized MATLAB code for P2V executed in 90 s,
in average, on an Intel Core2, 2.4 GHz dual-core computer.

lll.D. Initial clinical patient data results

Clinical patient data was collected under ethics board ap-
proval. Here we present results on the first, and so far our
only patient data set available. Seeds were reconstructed
from four C-arm fluoroscopy images as a cloud of seeds
using the method of Jain et al.’ compounded into a binary
CT volume. We then performed P2V registration with both
NC and MS metrics, with results shown in Fig. 8 for the MS
metric. A quick visual inspection reveals that there is no
fluoroscopy seed without a white blotch in TRUS, suggesting
that we do not have false negatives. As it was expected, there
are some white blotches in TRUS without corresponding
seed from fluoroscopy, suggesting the presence of multiple
false positives. At the same time, the expert clinician had
great difficulties in segmenting the dense series of TRUS
slices with many seeds extending across consecutive images.
For this particular patient, C-arm fluoroscopy reconstructed
all the 81 implanted seeds. In the TRUS data, the expert
clinician identified only 41 seeds with confidence, while 40
seeds could not be distinguished from noise and artifacts.
Based on the 41 seeds positively segmented in TRUS, the
average TRE was 2.86 mm, with a standard deviation of
1.26 mm.

IV. DISCUSSION AND CONCLUSION

To our knowledge, there has been no study to quantify the
effects of TRUS and fluoroscopy registration error on dosi-
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metric quality, i.e., to analyze the effect of each translation
and rotation on dose volume histograms. Until such results
become available in the literature, we use the accuracy
threshold applied for the seed localization error,”* of which
is about 2.0 mm.

Intensity-based registration between TRUS and CT/
fluoroscopy reconstructions of prostate implants was found
to be excellent in phantom studies, in terms of TRE, capture
range, and robustness to both false positive and negative
seed appearances in TRUS.

As TRE and robustness seems statistically similar for the
MMI and NC metrics in the V2V scheme, we favor NC for
simplicity and speed. Notably, the MS metric on extremely
sparse seed volumes in the P2V tests outperformed the NC
and MMI metrics on richer volumes in the V2V scheme.
This clearly suggests that recovering the seed centroids is
sufficient for registration and there is no need for a costly
and complicated recovery of seed length and direction,”® un-
less that is deemed useful for dosimetry purposes.

Surprisingly perhaps, filtering TRUS did not yield tan-
gible advantages. According to Table I and the right column
(MS metric) of Table III, unfiltered TRUS (baseline U.S.0)
outperformed all but one filters. In any case, the differences
were both statistically and clinically insignificant. Compli-
cated and time-consuming filters, such as phase congruency
(U.S.2) and combination filters (U.S.4-U.S.7), seem espe-
cially unjustified. All filters, including the dummy U.S.0,
yielded a TRE below 1.0 mm, (i.e., an accuracy that was
close to the accuracy of the ground truth), which is almost
negligible from a dosimetric perspective. As fundamental ul-
trasound signal and noise characteristics of seeds are not sig-
nificantly different in phantom and humans, we should not
need prefiltering human TRUS either. Using unfiltered TRUS
will make the intraoperative workflow simpler and faster,
with volume compounding being the only preregistration
task for TRUS. To conclude, all approaches in the prior art of
fusion between ultrasound and fluoroscopy have three pro-
hibitive aspects: They introduce a prohibitive engineering
entourage to the already cluttered operating room, interfere
with the established surgical workflow, and substantively in-
crease costs. We suggest a P2V method accompanied by a
MS metric and no preprocessing of TRUS to be sufficient to
yield a clinically viable registration process for dynamic do-
simetry optimization.

Our experience with early clinical data clearly and force-
fully underlines the inherent difficulty of reliable validation
based on explicit segmentation of seeds in TRUS. For many
seeds, the expert clinician could not tell apart true seeds from
noise in TRUS. After two weeks, the clinician repeated the
task of seed identification in the same patient data and nearly
half of all seed locations were picked differently, suggesting
unreliable consistency in visual seed localization. A possible
workaround might be applying multiple segmenters, but that
is likely to fail as well. Earlier, Orio et al.® reported the same
difficulty, as they were able to visually identify 20%—-25% of
all the implanted seeds in TRUS. We established registration
ground truth, as suggested by Jain ef al. in Ref. 5, by prereg-
istration of a radiographic fiducial and the TRUS coordinate
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space. This approach, however, is not generally robust and,
as Jain et al.”’ mentioned, it may require compensation for
biases emanating from multiple sources. Currently, we con-
sider amending our institutional review board approval to
allow for implanting dual-modality Visicoil® (RadioMed,
Tyngsboro, MA) fiducials into the prostate. These flexible
thin metal spirals have been found to be visible in both
TRUS and fluoroscopy, thus promising successful ground-
truth registration.

Although intraoperative dynamic dose optimization is tar-
geted in the current work, postimplant evaluation will remain
essential in establishing success for the brachytherapy proce-
dure. If initial seed reconstruction is inaccurate then progres-
sive registration between TRUS and fluoroscopy would yield
inaccurate results. Fortunately, Jain et al’ and Lee et al’'
have recently developed methods that would reconstruct
brachytherapy seeds from fluoroscopy with an accuracy be-
low 1 mm. Optimization and implementation of our code in
C++ would yield consistent runtimes below 60 s which is a
requirement when translating our method in clinic.

In summary, the first report of intensity-based registration
between TRUS and brachytherapy seeds reconstructed from
fluoroscopy and CT was presented. The method was experi-
mentally evaluated on standard training phantom with
ground truth established, using 48 seeds in a clinically real-
istic implant. Seed registration error below 1.0 mm was
achieved, capture range was larger than required in standard
clinical workflow, robustness was excellent to false positive
and false negative seed appearances, and temporal perfor-
mance was adequate. Early experience with limited clinical
data was promising. A robust clinical validation methodol-
ogy, such as implanted dual-modality fiducials, is necessary
for prospective evaluation in patients.
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