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Prostate brachytherapy is a treatment for prostate cancer using radioactive seeds that are permanently
implanted in the prostate. The treatment success depends on adequate coverage of the target gland with
a therapeutic dose, while sparing the surrounding tissue. Since seed implantation is performed under

Keywords: transrectal ultrasound (TRUS) imaging, intraoperative localization of the seeds in ultrasound can provide
Prostate FfaChythefaPY physicians with dynamic dose assessment and plan modification. However, since all the seeds cannot be
Registration seen in the ultrasound images, registration between ultrasound and fluoroscopy is a practical solution for
leli ?;:;ﬁ?lgy intraoperative dosimetry. In this manuscript, we introduce a new image-based nonrigid registration

method that obviates the need for manual seed segmentation in TRUS images and compensates for the
prostate displacement and deformation due to TRUS probe pressure. First, we filter the ultrasound images
for subsequent registration using thresholding and Gaussian blurring. Second, a computationally efficient
point-to-volume similarity metric, an affine transformation and an evolutionary optimizer are used in the
registration loop. A phantom study showed final registration errors of 0.84 +0.45 mm compared to
ground truth. In a study on data from 10 patients, the registration algorithm showed overall seed-to-seed
errors of 1.7 £ 1.0 mm and 1.5 + 0.9 mm for rigid and nonrigid registration methods, respectively, per-

formed in approximately 30 s per patient.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

With an estimated number of 240,890 new cases in 2011, pros-
tate cancer is the most common cancer among men in the United
States, accounting for 29% of their cancers (Siegel et al., 2011). It is
also the second highest cause of cancer death among men in the
United States (Siegel et al., 2011). Radical prostatectomy, exter-
nal-beam radiation therapy and brachytherapy are established
treatments for prostate cancer. Low-dose-rate brachytherapy
(hereafter, brachytherapy) is an effective and minimally invasive
treatment for localized prostate cancer that can achieve outcomes
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at least equal to the other treatment options while showing less se-
vere side-effects (Merrick et al., 2001; Blasko et al., 2002; Morris
et al., 2009). In brachytherapy, the cancer is eradicated by internal
radiation from permanently implanted radio-active sources (seeds)
of 123], 19pd, or '37Cs. Generally, the physician implants 40-130
seeds using needles, based on the size of the prostate and the type
and activity of the seeds. Before the operation, the seed positions
are planned using a transrectal ultrasound (TRUS) volume. The goal
of the planning is to cover the target gland with a prescribed dose
of radiation, while sparing the healthy surrounding tissue such as
urethra and rectum. In contemporary brachytherapy, seed place-
ment is performed under visual guidance from TRUS.

In practice, the actual delivered implant geometry is different
from the plan for several reasons including intraoperative tissue
swelling (Yamada et al., 2003), prostate motion and deformation
caused by needle insertion (Lagerburg et al., 2005), needle deflec-
tion (Nath et al., 2000) and seed migration. Deviation of the seeds
from their planned positions results in a sub-optimal dose distribu-
tion. Over-radiation of the healthy surrounding tissue may lead to
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complications such as sexual and urinary dysfunction, and rectal
ulceration. Excessive under-radiation of the cancerous gland may
result in treatment failure. Traditionally, the delivered dose is
quantitatively assessed using CT after the patient is released from
the operating room.

Dynamic dosimetry—the ability to calculate the delivered dose
intraoperatively, based on the actual position of the implanted
seeds—enables the physician to adjust the plan and ensure suffi-
cient dose coverage before the completion of the operation. More-
over, a dynamic dosimetry system may render postimplant CT-
based dose evaluation unnecessary, as the delivered dose can be
quantitatively assessed at the end of the operation. This will signif-
icantly reduce brachytherapy quality assurance complexity and
cost.

In order to have accurate intraoperative dosimetry, one should
be able to localize the deposited seeds in relation to the prostate.
A variety of methods have been tried to localize the seeds in ultra-
sound images (Han et al., 2003; Holmes and Robb, 2004; Feleppa
et al,, 2002; McAleavey et al., 2003; Mitri et al., 2004; Ding et al.,
2006; Xue et al., 2005; Wei et al., 2006; Wen et al., 2010). However,
US-only seed localization is not considered a reliable tool for dose
calculation as this method suffers from missing seeds in ultrasound
images and presence of false positives—seed-like artifacts caused
by calcification and air bubbles (Han et al., 2003).

An alternative technique used in brachytherapy treatment and
available by commercialized products entails estimation of the
seed positions based on the position of the needle visible in sagittal
images. This method was further refined so that the seeds are man-
ually localized in sagittal ultrasound images at the time of deposi-
tion (Potters et al., 2003; Meijer et al., 2006; Nag et al., 2001; Polo
et al,, 2010). Although this method showed improvements in the
treatment outcome (Nath et al., 2009; Nag et al., 2001), it cannot
account for intraoperative seed displacement after implantation
caused by edema, tissue motion and/or seed migration.

The secondary imaging modality often utilized in brachyther-
apy operating rooms is C-arm fluoroscopy, which is more reliable
than TRUS for seed visualization. However, a C-arm image shows
a 2D projection of the implant geometry with no soft-tissue detail.
Nonetheless, brachytherapists frequently use C-arm images for
gross implant evaluation based on their mental 3D visualization
of the seeds.

Although C-arm images do not have sufficient soft-tissue con-
trast to show the prostate boundaries, three or more C-arm images
can be used to reconstruct the seeds in 3D (Amols and Rosen, 1981;
Su et al., 2004; Narayanan et al., 2004; Lam et al., 2004; Jain et al.,
2005b; Brunet-Benkhoucha et al., 2009; Lee et al., 2009, 2011b,a;
Dehghan et al.,, 2011a,c). The seeds reconstructed from C-arm
images can be registered to the prostate delineated in TRUS images
to calculate the delivered dose. Therefore, ultrasound-fluoroscopy
fusion can provide a practical solution for dynamic dosimetry and
has demonstrated its benefits in limited clinical trials (Orio et al.,
2007; Song et al., 2011).

Registration of the reconstructed seeds to the TRUS coordinate
system is a necessary step for ultrasound-fluoroscopy fusion and
has been extensively studied (Todor et al., 2003; Jain et al., 2012;
Song et al., 2011; French et al., 2005; Su et al., 2007b; Orio et al.,
2007; Tutar et al., 2008; Fallavollita et al., 2010; Dehghan et al.,
2011b). Lead markers on the TRUS probe or radio-opaque fiducials
were used for ultrasound-fluoroscopy registration (Todor et al.,
2003; Jain et al., 2012). French et al. (French et al., 2005) used
the probe as a fiducial for ultrasound-fluoroscopy registration.

In order to avoid image occlusion by the probe, it is necessary to
retract the probe, at least partially, before the C-arm image acqui-
sition. Since the physicians usually press the probe against the
prostate to achieve a good acoustic coupling and improve the TRUS
image quality, probe retraction results in prostate motion in the

posterior direction and sometimes deformation (Wallner et al.,
2001). The marker- and fiducial-based registration methods cannot
account for this motion and deformation.

As a remedy, Su et al. (2007b), Orio et al. (2007) and Tutar et al.
(2008) used a point-to-point registration method between ultra-
sound and fluoroscopy. In this method, the physician manually
localizes some seeds in the sagittal TRUS images. This point set is
then registered to the seeds reconstructed from the C-arm images.
Manual seed localization in TRUS images is a difficult and time-
consuming task and is entirely dependent on accurate seeds deter-
mined, rather subjectively, by the physician. Therefore, registration
methods that rely on manual seed segmentation are not appropri-
ate for wide-scale practical implementation.

Fallavollita et al. were the first to propose an intensity-based
registration between CT or fluoroscopy and TRUS (Fallavollita
et al., 2010). They reported successful registration results between
CT and TRUS on a ground truth phantom. They also reported qual-
itative agreement between TRUS and fluoroscopy for a single pa-
tient data set. Since a rigid registration method was used in (Su
et al., 2007b; Orio et al., 2007; Tutar et al., 2007, 2008; Fallavollita
et al., 2010), they could only account for rigid motion of the pros-
tate due to probe retraction but not for the likely deformation.

For a more comprehensive review on intraoperative imaging
and dosimetry techniques for prostate brachytherapy, we refer
the readers to (Polo et al., 2010).

Despite considerable research and development efforts, dy-
namic dosimetry is not yet available for clinical use in brachyther-
apy (Nath et al., 2009). A practical method for TRUS-fluoroscopy
fusion is a much sought-after solution to surmount the last stand-
ing obstacle in the road toward dynamic dosimetry.

In this paper, we introduce a new image-based TRUS-fluoros-
copy registration algorithm. Our method obviates the need for
manual seed segmentation in TRUS images and is robust to missing
seeds and false positives in the TRUS images. In addition, by
employing a deformation model based on the observed nature of
the probe-prostate interaction, our algorithm is capable of com-
pensating for the effects of prostate motion and deformation
caused by probe retraction. To the best of our knowledge, this is
the first nonrigid registration method for TRUS-fluoroscopy fusion
for prostate brachytherapy.

We employ thresholding to prepare the TRUS images for reg-
istration, without any attempt to remove the false positives or
identify the missing seeds. We also apply Gaussian blurring to
increase the capture range of our registration method that ex-
ploits a robust evolutionary optimizer (Hansen, 2006). We exam-
ined our algorithm on a phantom and on patient data. In
addition to excellent visual agreement, our registration method
shows errors that are smaller than clinically acceptable levels
(customarily, less than 2 mm). We also examined our registra-
tion method in prediction of dose parameters compared to CT-
based dosimetry. Since rapid computations are essential for prac-
tical dynamic dosimetry, our method runs in approximately 30 s
per patient. With fast and accurate C-arm-based seed reconstruc-
tion methods available (Lee et al., 2011b,a; Dehghan et al,,
2011a,c), our algorithm can be readily integrated into a practical
system to provide dynamic dosimetry for prostate brachytherapy
in clinical application.

Compared to the work of Fallavollita et al. (2010), we introduce
a deformable registration method that compensates for the effects
of probe pressure. Our method also shows lower registration errors
and faster computational speed. In addition, we use different pre-
processing steps, similarity metric and optimizer to enhance the
robustness of our algorithm. The underlying idea of our method
for a rigid registration was presented in (Dehghan et al., 2011b).
This manuscript significantly extends our previous work by pre-
senting a deformable registration method, and by providing a more
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detailed description of the methodology and performance analysis
on 10 clinical data sets.

This paper is organized as follows: In Section 2 we discuss the
components of the registration algorithm and explain the experi-
mental method on phantom and clinical data sets. The results are
presented in Section 3, followed by the discussions in Section 4.
At the end, conclusions and the future work are outlined in
Section 5.

2. Materials and method
2.1. Workflow

We envision the following workflow for providing intraopera-
tive dosimetry analysis and optimization using ultrasound-fluo-
roscopy registration. At some point during the operation or
immediately at the end, the physician acquires a series of trans-
verse TRUS images of the prostate by continuously retracting
the probe from the prostate base toward its apex (see Fig. 1a).
Since some of the seeds may be located superior to the base or
inferior to the apex, it is recommended that the whole range be
covered during image acquisition. These slices are concatenated
into a volume that is used for registration (Fig. 1b). After acquir-
ing TRUS images, the physician fully retracts the probe. Then sev-
eral C-arm images are taken from different angles (Fig. 1c). These
images are processed for distortion correction and seed segmen-
tation (Kuo et al., 2012). The seeds are reconstructed in 3D space
from the processed C-arm images (Fig. 1d) and are registered to
the TRUS volume (Fig. 1e). After registration, the dose distribution
is calculated and the isodose contours are overlaid on the TRUS
images. At this stage, the under-dosed regions (cold spots) or
the regions with high risk of over-radiation can be detected.
The physician can change the planned position of the remaining
seeds and add new seeds, if necessary, to compensate for possible
errors.

(c)

2.2. TRUS image preprocessing

In order to prepare the TRUS image volume for registration, we
apply the following preprocessing steps. First, a region of interest is
selected by the user to confine the search region for optimization
and to increase the robustness of the algorithm. The region of
interest is selected from a transverse slice of the mid-gland, by
marking the two corners of a rectangle that encloses the prostate.
A volume of interest (VOI) is generated by cropping the same re-
gion in the other slices and compounding them. As preoperative
prostate contours are usually available from the TRUS volume,
the region of interest can be defined automatically using the con-
tours of the prostate gland.

The reconstructed seeds from C-arm images have no informa-
tion about soft tissue. However, ultrasound usually provides a
low contrast image of soft tissue variations. Although the recon-
structed seeds and the TRUS volume do not seem to be appropriate
for an image-based registration, implantation of the metallic seeds
inside the prostate changes the TRUS images advantageously. The
implanted seeds cause strong reflections in the ultrasound beam
that appear as bright regions in the TRUS images. These bright re-
gions can be used to establish a correlation between the ultrasound
volume and the reconstructed seed cloud. Although calcifications
and air bubbles trapped in the needle tracks produce bright regions
too, most of the bright regions are caused by the seeds. Based on
this intuition, the reconstructed seeds can be registered to the
TRUS coordinate system using the intensity of the TRUS images.
Since we correspond the bright regions to the seeds, thresholding
the ultrasound images can enhance seed visibility. Therefore, we
produce a thresholded image It from the VOI such that:

0 if I(x,y,2) < W, + 00y

1
1 ifI(x,y,2) > u, + ooy M

hixy.2) = {

In this equation I(-) is the image intensity at a given position, x, and
oy are the mean and standard deviation of image intensity in the

Fig. 1. The workflow for ultrasound-fluoroscopy registration. (a): Several transverse images of the prostate. (b): A volume created from the slices. (c): Several C-arm images
taken from different angles. (d): Seeds reconstructed in 3D. (e): Registered seeds overlaid on the US volume. Seeds are shown as capsules.
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VOI, respectively, and « is a threshold parameter (We will discuss
this parameter in more detail in Section 3.4). A mid-gland slice of
the VOI before and after thresholding is shown in Fig. 2a and b,
respectively.

After thresholding, we apply an Euclidean distance transform to
each slice of the VOI and produce a distance map image (Ip) accord-
ing to the following equation.

Io(x,y.2) = miny/(x x> + (v -y, @)

Xs:Ys

s.t. It(Xs,y5,2) = 1.

The distance transform defines the value of each pixel in Ip as the
minimum Euclidean distance from that pixel to the nearest white
pixel in the same slice of I (i.e. the distance to the closest seed can-
didate). Fig. 2c shows the result of the distance transform applied to
Fig. 2b.

Finally, a Gaussian function is applied to the distance map im-
age to produce a Gaussian-blurred image (Ig) such that:

2
IG(X*,va) = exp <_%)7 (3)

where, I is the volume of interest after Gaussian blurring and ¢ is
the standard deviation of the Gaussian function. Fig. 2d shows the
effect of the Gaussian function applied to Fig. 2c. The Gaussian-
blurred volume is used as a target volume in the registration loop.

2.3. Point-to-volume registration

In this section, we describe an image-based affine registration
method to register the reconstructed seeds to the preprocessed
VOL. Since transformation of a set of points is computationally
more efficient compared to transformation of a volume, we assume
that the VOI is fixed and transform the seed cloud.

The probe pressure is mostly in the anterior-posterior (AP)
direction and fairly uniform along the long axis of the probe.
Therefore, we use a 1D scaling along the AP-axis to account for

the prostate deformation caused by the probe pressure. Although
this is a slightly simplified model of the prostate deformation,
our results in Section 3.2 show that this model is sufficiently accu-
rate for clinically acceptable results.

2.3.1. Transformation

We assume a TRUS coordinate system Oy, such that the x axis is
parallel to the horizontal axis of the image from left to right, the y
axis is parallel to its vertical axis from bottom to top and the z axis
is parallel to the long axis of the probe from the prostate base to its
apex. We define an affine transformation T : R®> — R? between the
C-arm and TRUS coordinate systems such that:

1.0 0
T(x)=|0 4 O|R(O)X+t, (4)
0 0 1

where, X represents the coordinates of any point in the C-arm coor-
dinate system, R is a rotation matrix, 0 = [6g,0p, 0y] represents the
roll, pitch and yaw angles, t=[t,t,t,]" shows translation along
the x, y and z axes, and 4 is the scaling along the y axis of the TRUS
coordinate system.

We did not scale the seed cloud along the x and z axes, in order
to avoid any destructive influence of lower image quality in these
two directions on the registration algorithm. Note that ultrasound
volume is usually created by stacking several axial slices. There-
fore, the resolution along the z axis is low. In addition, seeds that
are located at the anterior region of the prostate usually appear
as wide (along the x axis) bright regions as US beam is wider in this
area.

2.3.2. Similarity metric

The seeds reconstructed from C-arm fluoroscopy images are
considered as a set of points. This can be used favorably to formu-
late a computationally efficient point-to-volume similarity metric.
We assume rectangular cuboids of dimensions Ax x Ay x Az
around each reconstructed seed in the TRUS coordinate system.

Fig. 2. Preprocessing steps. (a): One slice from VOLI. (b): The same slice after thresholding. (c): After application of distance transform. (d): After application of the Gaussian

function.
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In this work, cuboids of the size 2 x 2 x 6 mm>—slightly thicker
and longer than a seed—were used. Our similarity metric is equal
to the integral of the image intensity over all the cuboids and hence
it quantifies the overlap between the cuboids and the bright re-
gions in the VOI. Therefore:

¥ Yy *
szz/M /Ay /MIG Tisa) + |y | |dxdydz, (5)
n=1/-3 /-3 J-F 7

where, s,, represents the coordinates of the nth seed in the C-arm
coordinate system. Since the similarity metric in (5) quantifies the
overlap between the cuboids and the large bright regions caused
by the seeds, it guides the reconstructed seeds toward the centers
of the bright regions.

2.3.3. Optimizer
The registration problem can be written as the following con-
strained optimization problem:

(t',0°,27) = argmax 5(t,0,7) (6)
Cnin < €< thax
s.t. omin < 0 < omax
)vmin < ) < )vmax~

We employ the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) (Hansen, 2006) to solve the constrained optimiza-
tion problem in (6). This algorithm is a stochastic method for
continuous-domain optimization of nonlinear and nonconvex
problems and is known for its robustness and efficiency. CMA-ES
samples the search region based on a multivariate normal distribu-
tion, the covariance matrix of which is adapted using the informa-
tion from the sample points at each iteration and information from
previous iterations. The sampling and adaptation proceeds itera-
tively until convergence to the optimal solution.

It should be noted that the thresholded TRUS volume is a sparse
binary image. Therefore, if the thresholded volume is used in (5),
changes in the optimization parameters may result in insignificant
or no change in the similarity metric. However, application of the
distance transform and the Gaussian blurring as explained in Sec-
tion 2.2, spreads the bright regions and produces a smooth and dis-
cernible change of intensity in the image. This continuous and
smooth intensity change guides the optimization algorithm toward
the optimal solution, enlarges its capture range and also improves
its convergence. In this work, the standard deviation of the Gauss-
ian filter is chosen so that the output of the filter decreases to 75%
at 1 mm away from a white pixel. If the standard deviation is too
small, the bright spots are not spread sufficiently to provide a large
basin of convergence. If the standard deviation is too large, the
white spots are spread widely and this can increase the influence
of the false positives.

3. Experiments and results
3.1. Phantom study

We tested our registration algorithm on a CIRS-053 prostate
brachytherapy training phantom (CIRS Inc., VA, USA) implanted
with 48 dummy seeds.

In order to establish a ground truth, the phantom was imaged
using CT. The phantom box was equipped with 6 fiducial beads vis-
ible in CT images (see Fig. 3). The seed clusters were segmented in
the CT volume by thresholding. The center of mass of the seed clus-
ters were grouped into a set of points similar to the outcome of
seed reconstruction from C-arm images. The relationship between

Optical Tracker

CT Fiducials

Fig. 3. The ground truth phantom. The registration between CT and TRUS volumes
is provided using fiducial markers on the phantom box. Both markers and TRUS
probe are tracked using an optical tracker.

the seeds and the beads (manually localized in CT images) pro-
vided the seed positions in the phantom coordinate system.

In addition, several transverse slices of TRUS images were
acquired during a continuous retraction of the probe and com-
pounded into a volume with pixel spacing of 0.29 x 0.29 x
0.35 mm>. The TRUS probe was tracked using a Cetrus optical
tracker (NDI, ON, Canada) and a calibrated pointer (Traxtal Inc.,
ON, Canada) during imaging with respect to the phantom box
fiducial beads (see Fig. 3). The TRUS image coordinate system
was registered to the phantom box coordinate system using the
method in (Chen et al.,, 2009). The positions of the CT seeds were
transformed to the TRUS coordinate system and were assumed as
the ground truth.

We applied independent perturbations of —15 mm to 15 mm
with steps of 1 mm along each axis and rotations of —15° to 15°
with steps of 1° around each axis to the CT seeds. In order to sim-
ulate the effects of missing seeds in the TRUS, we added some
seeds to the CT seeds at random positions. We conducted the
experiment with a complete CT seed cloud as well as with 5 and
10 extra seeds. Since the added seeds did not have a counterpart
in the TRUS volume, they could simulate the effect of missing seeds
in the TRUS images. The positions of the added seeds were ran-
domly selected for each value of translational or rotational
perturbation.

We also simulated the effect of false positives in the TRUS vol-
ume, in another experiment, when some randomly selected seeds
were removed from the ground truth seeds. In this case, the exper-
iment was carried out with 5 and 10 seeds removed form the CT
seed cloud. Since the images of these seeds in the TRUS volume
did not correspond to any seeds in the reduced seed cloud, they
acted as false positives in the TRUS volume. The removed seeds
were randomly selected for each value of translational or rotational
perturbation.

The registration algorithm successfully converged closely to the
global optimum (ground truth seed positions) in all the 930 simu-
lations with a maximum average registration error of 1.34 mm.
This shows the wide capture range of our algorithm and also its
robustness to the missing and false positive seeds. Fig. 4 shows
two TRUS images of the phantom marked with the ground truth
and registered seeds. Table 1 summarizes the registration results
of our phantom study. The seed-to-seed distance between the
ground truth seeds and the registered seeds was considered as
the registration error. We should emphasize that the range of
translational and rotational perturbations applied in this phantom
study is larger than the error in the initial guess one may encounter
in clinical cases.



1352 E. Dehghan et al./ Medical Image Analysis 16 (2012) 1347-1358

Fig. 4. Two transverse slices of the phantom overlaid with ground truth seeds (squares) and registered seeds (diamonds).

Table 1
Mean and SD of registration error for phantom study.

Seed cloud Registration error (mm)
Mean * SD (Max)

Complete 0.77 £ 0.40 (1.99)

Missing 5 0.79 £ 0.40 (2.01)

Missing 10 0.84 £0.42 (2.18)

Extra 5 0.86 + 0.46 (3.10)

Extra 10 0.93£0.52 (3.81)

Overall 0.84 £0.45

The phantom had a dedicated hole to place the TRUS probe.
In addition, care was taken to avoid phantom compression by
the probe during TRUS imaging. Although the probe pressure
was insignificant, we used affine registration in our phantom
study. We assumed tpax = —tmin = [20,20,20]"(mm), Omax = —Omin =
[20°,20°,20°] and 1 < 4 < 1.3 as our constraints in (6).

3.2. Clinical data

We evaluated our algorithm on clinical data sets acquired from
10 patients implanted with 61-105 (median = 78) 1°3Pd seeds at
the Johns Hopkins Hospital, Baltimore, MD, USA. The physician im-
planted the seeds using visual feedback from a BK Pro Focus (BK
Medical, MA, USA) ultrasound machine.

For ultrasound image acquisition, the physician continuously
retracted the TRUS probe from 5-10 mm superior to the base to
5-10 mm inferior of the apex while the images were automatically
recorded at 1 mm intervals. The TRUS images had a pixel size of
0.19 x 0.19 mm?. In order to achieve computational speed, we
sub-sampled the images after thresholding and Gaussian blurring
to create a volume with a voxel size of 0.38 x 0.38 x 1.00 mm>.

After full retraction of the TRUS probe, we acquired 9 C-arm
images in a 20° cone around the AP-axis of the patient using a
GE OEC 9600 mobile C-arm (GE Healthcare, WI, USA). A radio-opa-
que fiducial (Jain et al., 2005a) was mounted on the guiding tem-
plate for C-arm pose calculation. The C-arm images were
processed for geometric distortion correction, seed and fiducial
segmentation and pose computation, postoperatively (Kuo et al.,
2012). The seeds were reconstructed in 3D space using 5-6 images
using a dimensionality reduced linear programming approach with
automatic pose correction (called APC-REDMAPS) (Lee et al.,
2011a).

We tested our registration algorithm in rigid (1= 1) and affine
modes. The rotational parameters were initialized by aligning the
reconstructed seeds with the planned positions of the seeds using
the iterative closest point (ICP) algorithm. The translational param-

eters were initialized so that the center of mass of the recon-
structed seeds coincided with the center of the VOI. The scaling
parameter for the affine registration was initialized as 4= 1. For
our clinical data sets we used tgax=—tmin=[15,15,15] (mm),
Omax = —0min = [15°,15°,15°] and 1 < 1< 1.3 as our constraints in
(6). Since the probe always compresses the prostate, we assume
A= 1.

Figure 5 shows several transverse images from mid-gland of 9
patients, overlaid with seeds after affine registration. As it can be
seen, there is an excellent visual agreement between the bright
spots in the images and the registered seeds. Figure 6 shows two
mid-gland images of the prostate for patients 2 and 5, overlaid
with seeds resulted from affine and rigid registrations. The true
positions of some identifiable seeds are marked with arrows in
these figures. As it can be seen, the affine registration method re-
sults in a better visual agreement between the real and the regis-
tered seeds.

After each registration, the results were visually inspected to as-
sure a successful registration. Since no ground truth for seed posi-
tions was available at this stage, we manually selected some seed-
like bright spots close to the registered seeds as candidates and
carefully examined them in the axial and sagittal slices to make
sure they are true seeds. If several seeds were implanted back-
to-back, we usually selected the first and last seeds on the row.
These bright spots were selected mostly from the posterior region
of the prostate where seed visibility was better. Also note that
prostate gland deformation is the greatest in this region. Fig. 7
shows a sample of deformably registered and selected seeds for
one of the patients. The mean and standard deviation of the
seed-to-seed distances between the registered and the centers of
the selected seeds are reported in Table 2, as registration error
for affine and rigid registrations, for all the patients. The correspon-
dence problem between the selected and registered seeds was
solved using the Hungarian algorithm. We tried our best to select
the seeds with high confidence. As a result, the number of selected
seeds is only 52% of the implanted seeds (See Table 2).

As expected, the affine registration method showed superior
performance compared to the rigid registration method in term
of seed-to-seed registration error. Table 2 shows that, for all of
the patients, the affine registration method resulted in a seed-to-
seed registration error of less than 2 mm which is customarily con-
sidered as the clinically acceptable threshold.

In order to analyze the error along each axis, the seed-to-seed
error vector was projected onto the x, y and z axes. The mean
and standard deviation of the absolute value of the projected error
along each axis is reported in Table 3. As it can be seen in Table 3,
the error along the x and y axes are generally smaller than the error
along the z axis, because our TRUS volume had a slice spacing of
1 mm along the z axis. Moreover, it is difficult to accurately localize
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Fig. 6. Two transverse slices from the second (left) and fifth (right) patients, showing the seeds as a result of affine (squares) and rigid (diamonds) registration. The true

position of some identifiable seeds are shown with arrows.

the center of each individual seed along the insertion axis if several
seeds are implanted back-to-back. Even for single seeds, the uncer-
tainty in the localization of the seed centroid is higher along the z
axis, since the seed image is usually elongated due to the needle
tracks. The errors caused by the slice spacing and manual segmen-
tation along the z axis contribute to the registration error along this
axis.

We also conducted a dosimetry study on 9 of the patients for
whom postimplant prostate contours and CT images were avail-
able. In order to calculate the delivered dose to the prostate, an
experienced radiation oncologist delineated the prostate in the
postimplant TRUS and Day-1 CT (acquired one day after the proce-
dure) images. Fig. 8 shows the prostate volume segmented in Day-
1 CT and postimplant TRUS. The prostate volume was measured to

be 39.0+10.2 cc (Mean =SD) using Day-1 CT and 38.2+7.6 cc
based on postimplant TRUS images. We calculated the delivered
dose using the seed positions obtained from rigid and affine ultra-
sound-fluoroscopy registrations and the postimplant TRUS pros-
tate contours. For comparison, we calculated the delivered dose
using seed positions and prostate contours segmented in Day-1
CT as well.

In this work, we computed and reported two important dose
parameters—Vig0 and Dgg. The former is the percentage of the
prostate volume covered with 100% of the prescribed dose and
the latter is the percentage of the prescribed dose delivered to
the 90% of the prostate volume. For dose calculation throughout
this work, we approximated the seeds as point sources (Rivard
et al., 2004).
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Fig. 7. Deformably registered seeds (blue stars) and manually selected seeds (red
circles). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Seed-to-seed registration error (Mean + SD (Max)).
Patient ~Number of seeds  Rigid Affine
ID Total Selected Reg. err.(mm) Reg. err.(mm) Scale (1)
1 76 49 1.7+0.7(41) 15+0.7(3.5) 1.09
2 90 56 23+1.1(49) 1.7+08(3.8) 1.19
3 64 35 1.6+1.0(39) 14+08(3.1) 1.04
4 105 41 1.5+0.6 (3.0) 14+0.7(2.8) 1.08
5 91 49 24+13(54) 16+1.0(51) 120
6 73 44 19+1.0(42) 19+11(52) 1.09
7 61 31 1.5+08(3.8) 14+0.8(3.7) 1.04
8 67 38 1.3+09(3.2) 1.1%0.7 (4.0) 1.11
9 102 60 14+0.7(3.6) 13+0.8(39) 1.11
10 81 23 1.6+ 0.8 (4.0) 1.3+0.8(3.8) 1.12
Overall 810 426 1.7+1.0 1.5+0.9 1.11+£0.05

Table 3
Absolute value of projection of seed-to-seed vector along each axis (Mean + SD).

Patient ID  Absolute projected error (mm)

Rigid Affine

X y z X y z
1 05+05 0.7+04 12+08 05+05 04+03 1.1+0.8
2 07+06 15+1.1 1309 0.7+05 07+07 12+09
3 05+04 05+04 1411 04+x04 04+04 1.1+08
4 06+04 0.7+0.5 09207 06+05 05+05 09+0.8
5 04+03 15+1.1 15+12 04+02 06+04 1.2+1.1
6 06+06 07+06 1311 06+06 05+05 15+1.2
7 05+04 06+04 1.1+08 05+04 04+04 1.2+0.8
8 03+03 08+08 0.8+06 04+03 04+04 08+0.7
9 03+03 08+06 10+08 04+03 03+03 1.1+08
10 06+06 08+05 1.0+0.7 05+05 05+04 09+0.7
Overall 05+04 09+08 1.1x09 05+04 05+06 1.1+09

Fig. 9 shows the dosimetry parameters calculated using affine
and rigid ultrasound-fluoroscopy registrations and Day-1 CT for
patients 1-9. Table 4 compares the rigid and affine registration
methods in term of their accuracy in prediction of the dose param-
eters, assuming the Day-1 CT-based parameters as the ground
truth. Fig. 9 and Table 4 show the potential of our registration algo-
rithm as an intraoperative and quantitative dose assessment tool
that can give the radiation oncologist an opportunity to make
implantation adjustments to improve the target coverage.

For each dose parameter in Table 4 we report a prediction error,
such that:

ey = |Pcr — Pugl, (7)
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Fig. 8. Prostate volume segmented in Day-1 CT and postimplant TRUS.

where, e, is the prediction error for a dose parameter (V;o0 or Dgg),
pcr is the value of that parameter obtained based on Day-1 CT, and
pur is its value calculated using ultrasound-fluoroscopy registra-
tion. As it can be seen in Table 4, the affine registration method re-
sulted in an average prediction error of 1.7% for Vi, while this
error is less than 5% for all of the patients in our study. Such small
prediction errors suggest that our ultrasound-fluoroscopy registra-
tion method can be used intraoperatively to assure full prostate
coverage before the patient is released from the operating room.
This in turn, improves the result of postoperative CT dosimetry
and reduces the chance that the patient needs to be brought back
for additional treatment. In addition, the small dose parameter pre-
diction errors show that manually selected seeds used for validation
did not result in significant bias.

3.3. Computational speed

Our algorithm was implemented in MATLAB on a computer
with an Intel Core 2 CPU (2 GHz) and 2 GB of RAM. MATLAB imple-
mentation of CMA-ES was provided by N. Hansen.! The registration
time—including preprocessing and manual selection of the region of
interest—is approximately 30 s per patient which we consider clini-
cally acceptable. We expect to achieve significantly faster registra-
tions by an optimized implementation of our algorithm in C++ or
by using GPU. Since the implementation of the affine registration
is not significantly more costly, the affine registration method is
more advantageous compared to the rigid registration method, con-
sidering its lower seed-to-seed and V;qo prediction errors.

As mentioned before, preoperative prostate contours are usu-
ally available and can be used for automatic selection of the VOI,
in order to decrease the runtime and remove the need for manual
intervention. As indicated in Section 2.3.3, the search region was
limited to +15 mm along each axis and +15° around each axis from
the initial estimate. This search region was sufficiently large for all
the patients. Optimization in a larger search region may require a
larger number of function evaluations and hence, more computa-
tional time. However, considering the fast speed of our algorithm,
registration with a larger search region can be implemented, if nec-
essary, without violating practical temporal performance
restrictions.

The maximum number of function evaluations was set to 2500
for the optimization algorithm. This number was conservatively
chosen as we achieved successful registration results with smaller
number of iterations as well. Although other termination criteria
such as a limit on the variation of the optimization parameters
or the similarity metric can be used, our termination criterion re-
sults in an almost constant computational time for all the patients.

1 Available online at: http://www.Iri.fr/hansen/cmaes_inmatlab.html.
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Fig. 9. (a) Volume of the prostate covered with 100% of the prescribed dose. (b) Dose delivered to the 90% of the prostate volume. V,o0 is shown in percentage of prostate

volume and Dy is shown in percentage of the prescribed dose.

Table 4
Comparison of dosimetric parameters predicted using affine and rigid ultrasound-fluoroscopy registration versus Day-1 CT-based parameters.
Parameter Method N Mean + SD (%) Range (%) Prediction error Ratio to CT
Mean + SD (%) Mean + SD
Vioo CT 9 97.5+24 92.4-99.9
R-UF 9 949+2.2 91.9-97.5 31+2.1 0.97 £ 0.03
A-UF 9 96.6+ 1.4 94.2-98.2 1.7+1.4 0.99 +0.02
Dgo CT 9 124.6 £18.3 102.5-165.8
R-UF 9 115.3+9.9 102.3-131.5 109+11.7 0.93 +0.09
A-UF 9 1244+11.2 111.1 - 146.1 10.5+11.0 1.01 £0.11

R-UF: rigid ultrasound-fluoroscopy registration. A-UF: affine ultrasound-fluoroscopy registration.

3.4. Threshold parameter

The threshold parameter « in (1) plays an important role in the
registration algorithm. If this parameter is too small, the threshol-
ded image contains too many bright regions, most of which are
false positives. In this case, the optimization algorithm may be-
come trapped in local optima. On the other hand, if « is too large,
many of the seeds are removed in the thresholded image, and then
there may not be enough seeds present in the image to guide the
optimizer. The threshold parameter could be determined based
on the statistical properties of the ultrasound image. However,
during our study on the phantom and all the clinical data sets,
we used a fixed value of o = 2.5. In order to study the performance
of our algorithm over a range of values for «, the variation in the
registration results were measured as follows.

Assume that s;; represents the coordinates of the ith registered
seed in the TRUS coordinate system, calculated using o;, where
o €{2,2.5,3}. Also assume that m; is the average position of the
ith seed over different values of «. Then d;; = ||s; — m;|| represents

Table 5
Deviation of seed positions from the average posi-
tion as a result of the change in o.

Patient ID Deviation (mm)

Mean + SD

0.19 £0.08
0.26+0.10
0.32+0.12
0.33+£0.19
0.19 £0.08
0.25+0.11
0.29+0.14
0.18 £0.06
0.14 £ 0.05
0 0.18 £0.08

0.23+£0.13

— O 00N WN =

Overall

the variation of a seed position with respect to its average position.
Table 5 shows the mean and SD of the seed position variations
caused by the changes in o. Our algorithm showed consistently
successful registration for these different values of «. The sub-mil-
limeter deviations in the seed positions demonstrate the robust-
ness of our algorithm to variations in the threshold parameter
and show that there is no need for fine-tuning.

4. Discussion
4.1. Accuracy in prediction of dose parameters

We compared our dosimetry results from ultrasound and fluo-
roscopy registration to postimplant CT dosimetry which, currently,
is the standard quality assessment method. The comparison gives
an overall accuracy assessment of our algorithm and shows its po-
tential as a dynamic dosimetry system. The difference between our
results and CT-based dosimetry can be caused by multiple factors
as discussed below.

Su et al. (Su et al., 2007a) showed that seed localization uncer-
tainties of less than 2 mm are expected to result in less than 5% er-
ror in Dgg. As it can be seen in Table 2, the affine registration
method resulted in a seed-to-seed registration error of less than
2 mm for all the patients. However, the dose parameters in Table 4
show average prediction errors of 10.9% and 10.5% calculated using
the rigid and affine registration methods, respectively. It should be
noted that in order to investigate the effects of seed localization
uncertainties, Su et al. (Su et al., 2007a) added noise to the seed
positions while keeping the prostate contours fixed. However, in
our work, the dose parameters are calculated using prostate con-
tours delineated in two different modalities—CT and ultrasound.
CT imaging provides excellent visualization of the implanted seeds.
However, soft tissue is not highly differentiated in this modality
and thus, prostate contours delineated in CT can be different from
prostate contours delineated in ultrasound. Lindsay et al. (Lindsay
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et al., 2003) showed that the uncertainties in the prostate contours
affect the prediction accuracy of Dgg as adversely as uncertainties
in seed localization.

In addition, postimplant prostate swelling may continue over-
night and may result in changes in both the seed positions and
the prostate volume compared to the time when the C-arm and
TRUS images were acquired. These changes may then yield a differ-
ence between the dose parameters computed using Day-1 CT and
ultrasound-fluoroscopy registration. Thus, the dose parameters
prediction error is a combination of inter-modality prostate con-
tour variation, prostate swelling, and seed localization error. The
seed localization error, itself, is a combination of seed reconstruc-
tion errors and registration errors. The error caused by overnight
prostate swelling and seed motion can be decreased by using
Day-0 CT instead of Day-1 CT.

It is worth mentioning that a rigid registration between our
reconstructed seeds and Day-1 CT seeds showed an average error
of 1.8 + 1.1 mm. Therefore, the effects of the differences between
the prostate contours segmented in TRUS and CT seem to be more
significant on the dose parameter prediction errors. The effect of
prostate contouring errors on the dose prediction accuracy can
be seen more vividly in patient 7 for whom, the error in the predic-
tion of Dgg is the greatest (see Fig. 9b). Note that, the prostate vol-
ume contoured in postimplant TRUS images for patient 7 is
approximately 50% larger than the volume of the prostate con-
toured in CT (See Fig. 8). This is an indication of large prostate con-
touring error. If the data pertaining to this patient is removed as an
outlier, the predication error for Dgg is decreased to 7.5 + 6.2% and
7.0 +3.8% for the rigid and affine registration methods, respec-
tively. It should be mentioned that due to the presence of the
seeds, prostate delineation in postimplant TRUS is difficult as well.
Preoperative prostate contours are usually segmented right before
the operation for intraoperative preplanning and can be used for
calculation of dose parameters, although they do not account for
intraoperative prostate swelling and motion. If the error between
the preoperative prostate contours and the real prostate is large
at the end of the operation, the brachytherapist can delineate the
prostate again to calculate the dosimetry parameters with higher
accuracy.

However, we should emphasize that the main purpose of dy-
namic dosimetry is to assure that the prostate is fully covered by
the prescribed dose, while the patient is still in the treatment posi-
tion. The isodose curves can be calculated, intraoperatively, using
the registered seeds and overlaid on the real-time TRUS images.
The physicians can use the isodose curves to conduct the proce-
dure based on the real prostate boundaries visible in TRUS images,
without a need for intraoperative prostate delineation.

4.2. Affine vs. rigid registration method

As Table 2 shows, the affine registration method with an aver-
age registration error of less than 2 mm for all the patients, shows
better results compared to the rigid registration in term of seed-to-
seed distances. As expected, the seed-to-seed distances differ most
significantly along the y axis, since the affine registration method
uses a scale along the y axis only. Fig. 6 demonstrates the impor-
tance of using an affine registration to reduce the effects of probe
pressure.

The affine registration method resulted in a smaller average er-
ror in prediction of V;oo compared to the rigid registration method
(see Table 4). It also resulted in a less than 5% error in prediction of
Vioo for all the nine patients, while the rigid registration showed
the same level of error only for seven of the patients. However,
the prediction error in Vigg is less than 10% for all the patients
regardless of the registration method. Both rigid and affine regis-
tration methods resulted in approximately equivalent average pre-

diction errors for Dgg. However, this error is less than 10% in six
patients for the affine registration method compared to five pa-
tients for the rigid registration method.

In this work we used a 1D scaling to compensate for prostate
deformation caused by the probe pressure. Our results show that
this model was sufficiently accurate for the range of prostate vol-
umes and probe pressures in this study. If the deformation is sig-
nificantly larger due to excessive probe pressure applied by the
physician or larger prostate volume, more sophisticated algorithms
may be necessary. For example, a statistical analysis on a large pa-
tient data set can be used to identify major modes of deformation.
Then, larger deformations can be compensated by adding the
weight parameters of the deformation modes to the optimization
loop. However, Wallner et al. (Wallner et al., 2001) indicated that
one can achieve good acoustic coupling by gently pressing the
probe against the prostate; therefore, excessive pressure should
be avoided. Moreover, they argue that due to stiffness of the pros-
tate, warping of the prostate in the US images at extreme pressures
is caused by image artifact and not prostate deformation (Wallner
et al., 2001). The prostate volumes in this study were 20.6-54.3 cc
in postoperative CT. When the prostate volume is greater than
60 cc, the pubic arch interference becomes a concern (Davis
et al., 2012). In our clinic, patients with prostate volumes greater
than 55 cc are usually given a short course of androgen deprivation
therapy to shrink their prostate.

4.3. Initialization

A good initial estimate of the registration parameters plays an
important role in the convergence of the algorithm to the global
optimum. In this work, we initialized the rotational parameters
using the planned position of the seeds. We also initialized the
translational parameters so that the center of mass of the seeds
coincides with the center of the VOI. This initialization resulted
in convergence of our algorithm to below 2 mm registration error
for all the patients without a need to restart the algorithm from dif-
ferent initial guesses.

If the algorithm is used intraoperatively, when only a partial set
of the seeds are implanted, coinciding the center of mass of the im-
planted seeds with the center of mass of the planned seeds up to
that stage can provide a good initial estimate for the translational
parameters. The same method can be used to initialize the rota-
tional parameters. Due to high computational speed of our algo-
rithm, the registration can be restarted from different initial
estimates if a failure occurs.

We expect our algorithm to show successful results when a
large portion of the seeds are implanted. However, rigorous evalu-
ation of our work in cases that a small number of seeds are im-
planted is subject of future work.

5. Conclusions and future work

In this paper, we introduced a new nonrigid image-based ultra-
sound-fluoroscopy registration method to provide a practical solu-
tion for dynamic dosimetry in prostate brachytherapy. We
employed thresholding and Gaussian blurring to enhance the qual-
ity of the TRUS images and prepare them for registration. We used
a computationally efficient point-to-volume similarity metric and
a stochastic evolutionary optimizer within our registration loop.

Our trials on a ground truth phantom showed registration er-
rors of 0.84 + 0.45 mm (mean * SD) for initial alignment errors of
+15 mm along each axis and +15° around each axis, despite the
presence of false positives and missing seeds. In a trial on 10 pa-
tient data sets, our algorithm achieved overall registration errors
of 1.5+ 0.9 mm and 1.7 £ 1.0 mm for the affine and rigid registra-
tions, respectively. The affine registration method succeeded in
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achieving an average registration error of less than 2 mm for all the
patients. In a dosimetry comparison with Day-1 CT for 9 patients,
our registration results showed prediction errors of 3.11 £ 2.06%
and 1.70 + 1.42% for Vjoo in rigid and affine modes, respectively.
It also showed prediction errors of 10.9 + 11.7% and 10.5 + 11.0%
for Dgg in rigid and affine modes, respectively, which were de-
creased to 7.5 + 6.2% and 7.0 £ 3.8%, after removal of an outlier.

In summary, our image-based ultrasound-fluoroscopy registra-
tion method is capable of providing accurate registration and
dosimetry results within a clinically acceptable time frame. In con-
trast to previous work, it is able to account for prostate motion and
deformation caused by the probe retraction and also perform the
registration without a need for manual seed segmentation. Consid-
ering the results, our algorithm is a promising method for provid-
ing dynamic dosimetry and improving prostate brachytherapy
treatment quality.

Investigation on performance of the algorithm in clinical setting
and comparison to Day-0 CT are part of the future work.
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