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C-arm fluoroscopy images are frequently used for qualitative assessment of prostate brachytherapy.
Three-dimensional seed reconstruction from C-arm images is necessary for intraoperative dosimetry
and quantitative assessment. Seed reconstruction requires accurately known C-arm poses. We propose
to measure the C-arm rotation angles and computationally compensate for inevitable C-arm motion to
compute the pose. We compensate the translational motions of a C-arm, such as oscillation, sagging
and wheel motion using a three-level optimization algorithm and obviate the need for full pose tracking
using external trackers or fiducials. We validated our approach on simulated and 100 clinical data sets
from 10 patients and gained on average, a seed matching rate of 98.5%, projection error of 0.33 mm

(STD = 0.21 mm) and computation time of 19.8 s per patient, which must be considered as clinically
excellent results. We also show that without motion compensation the reconstruction is likely to fail.
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1. Introduction

Prostate cancer continues to be the leading cancer among men
in the United States with an estimated occurrence of 217,730 new
cases in 2010 (Jemal et al., 2010). Low dose rate brachytherapy
(henceforth, brachytherapy) is an effective treatment for localized
prostate cancer that can achieve excellent outcomes (Blasko et al.,
2002; Morris et al., 2009a,b). Brachytherapy entails permanent
placement of radioactive capsules (seeds) of '>°I or '°Pd inside
the prostate and periprostatic tissue to kill the cancer with radia-
tion. Brachytherapy seeds are as small as a grain of rice, approxi-
mately 4.5 mm long and 0.8 mm in diameter. The success of the
procedure directly depends on the accuracy of seed placement to
deliver sufficient dose to eradicate the cancer while sparing the
urethra and rectum. The seed positions are preplanned to tailor
the dose to the patient’s anatomy. Generally 40-130 seeds are im-
planted depending on the type of the seeds and the volume of the
prostate. During the procedure, the physician delivers the seeds
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using needles that pass through a guiding template, under real-
time visual guidance from transrectal ultrasound (TRUS) (Prestidge
et al., 1998). The guiding template confines the needles to move in
parallel to the long axis of the probe. C-arm fluoroscopy images are
frequently taken during the procedure to qualitatively assess the
implant (see Fig. 1).

Accurate execution of the plan is extremely difficult due to
prostate displacement and deformation (Lagerburg et al., 2005),
needle bending, prostate swelling (Yamada et al., 2003) and, sys-
tem calibration and human errors. As a result, seed misplacements
are still common and may lead to under-dosed regions that neces-
sitate repeated treatment, or over-dosed regions which result in
complications, such as rectal ulceration, urinary incontinence and
sexual dysfunction. Intraoperative dosimetry and planning meth-
ods were introduced to reduce the errors and increase the treat-
ment quality (Nag et al., 2001; Orio et al.,, 2007; Polo et al.,
2010). These methods intermittently calculate the delivered dose
during the procedure and modify the insertion plan, in real-time,
to compensate for possible errors.

In order to calculate the dose distribution, the position of the
implanted seeds, registered to the prostate anatomy, should be
known. Ultrasound imaging provides sufficient soft tissue contrast
to delineate the prostate; however, despite the efforts (Han et al.,
2003; Holmes and Robb, 2004; Feleppa et al., 2002; McAleavey
et al., 2003; Mitri et al., 2004; Ding et al., 2006; Wei et al., 2006;
Wen et al., 2010), robust seed segmentation in ultrasound is not
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Fig. 1. Brachytherapy procedure. The needle passes through the guiding template
in parallel to the long axis of the transrectal probe. The C-arm rotates around the
craniocaudal axis of the patient to acquire images. This figure is reproduced from
Lee et al. (2009) with permission form the authors.

yet possible (up to 25% of seeds can be hidden even after careful
manual segmentation in B-mode images (Han et al., 2003)). X~
ray fluoroscopy images provide excellent seed visualization. How-
ever, fluoroscopy images do not provide sufficient soft tissue con-
trast to segment the prostate boundaries. Fluoroscopy-ultrasound
fusion can provide a solution for real-time intraoperative dosime-
try and has been extensively studied (French et al., 2005; Su et al.,
2006; Orio et al., 2007; Tutar et al., 2008; Fallavollita et al., 2010).
In this scenario, during and/or immediately after the brachyther-
apy procedure, several C-arm images are taken from different an-
gles and segmented for seed centroids. Then, the seeds are
localized in 3D space using the segmented images. By registration
of these seeds to the prostate anatomy localized in ultrasound, the
delivered dose to the prostate can be calculated. Upon observation
of large seed misplacements or cold spots, the physician can mod-
ify the plan and implant new seeds. Reconstruction accuracy and
speed are vital for intraoperative dosimetry using fluoroscopy-
ultrasound fusion.

Three-dimensional seed reconstruction has been widely investi-
gated in the literature (Amols and Rosen, 1981; Tubic et al., 2001a;
Todor et al., 2002; Tutar et al., 2003; Su et al., 2004; Narayanan
et al., 2004; Lam et al., 2004; Jain et al., 2005b; Kon et al., 2006;
Brunet-Benkhoucha et al., 2009; Lee et al., 2009; Lee et al., 2011).
In order to successfully reconstruct the seed positions in 3D, three
major problems must be solved.

(1) C-arm calibration: For an accurate reconstruction, C-arm
intrinsic parameters, such as image resolution, image center,
source to center distance and focal length should be known
(Navab et al., 1996; Brack et al., 1996; Jain et al., 2005a).

(2) Seed matching: After segmentation of the 2D coordinates of
seed projections in the C-arm images, a seed matching prob-
lem should be solved to assign each seed projection in one
image to the corresponding seed projections in the other
images (see Fig. 2 for an example). Since the seed matching
is not known, seed reconstruction using two C-arm images
leads to an ambiguity that can be resolved using a third
image. Therefore, at least three images are required for seed
localization in 3D space. Seed matching has been solved
using various methods, such as simulated annealing (Tubic
et al., 2001a), heuristic rules (Todor et al., 2002) and the
Hungarian algorithm (Jain et al., 2005b). Hidden or overlap-

ping seed projections are common in projection images and
result in incomplete data sets that further complicate the
seed matching problem (see Fig. 2). The hidden seed prob-
lem has been tackled using different approaches, such as
pseudo-seed-matching (Narayanan et al., 2004), adaptive
grouping (Su et al., 2004), Hough trajectories (Lam et al.,
2004), an extension to the Hungarian algorithm using net-
work flow (Kon et al., 2006) and dimensionality reduced lin-
ear programing (Lee et al., 2011). It should be noted that
tomosynthesis-based reconstruction methods have been
proposed that solve the matching problem automatically
(Tutar et al., 2003; Brunet-Benkhoucha et al., 2009; Lee
et al., 2009). However, these methods generally need a larger
number of images.

Jain et al. showed that seed matching is equivalent to a net-
work flow problem which is NP-Hard (Jain et al., 2005b).
However, they proposed a pseudo-polynomial yet practical
solution for seed matching from three images by mapping
the original tripartite problem into three bipartite ones that
could be solved using the Hungarian algorithm. Jain’s
method was abbreviated as MARSHAL (Jain et al., 2005b).
The original MARSHAL assumed complete data sets; how-
ever, it was later extended to address the hidden seed prob-
lem (Kon et al, 2006) (the extended method was
abbreviated as XMARSHAL). This algorithm demonstrated
clinically acceptable reconstruction rates and time perfor-
mance on simulated and phantom data, and has been clini-
cally tested (Song et al., 2011; Jain et al., in press). We will
discuss XMARSHAL in more details in Section 2.1 as it runs
in the core of our algorithm.

(3) Pose recovery: Seed matching and reconstruction are per-
formed using known C-arm poses that provide the relative
positions of the C-arm images in 3D space. The C-arm pose
is generally recovered using radio-opaque fiducials or beads
(Navab et al., 1996; Brack et al., 1996; Zhang et al., 2004; Jain
et al., 2005a), or obtained from electromagnetic and optical
trackers (Peters and Cleary, 2008). Fiducials may interfere
with the image of the anatomy, require segmentation and
can limit the working volume. Auxiliary trackers are expen-
sive, need calibration, optical trackers require line of sight,
electromagnetic trackers are sensitive to interference and
hence, further complicate the intervention. It has been sug-
gested to use the implanted seeds as fiducials to compensate
for C-arm pose computation errors (Tubic et al., 2001a; Jain
and Fichtinger, 2006; Lee et al., 2009). However, a good ini-
tial measurement of the pose is required and is usually
obtained by using fiducials and trackers. Pose recovery with-
out a fiducial or tracker can significantly ease the recon-
struction process and consequently facilitate the transition
of seed reconstruction algorithms from research laboratories
to medical practice. In this work, we introduce a method to
estimate the pose using sole measurement of rotation angles
and computationally compensate for the pose computation
errors without fiducials or external trackers.

It is common practice in brachytherapy to acquire several
images by rotating the C-arm around the patient. Usually, the rota-
tion axis is approximately aligned with the patient’s craniocaudal
axis. In ideal cases, joint angle measurements can yield an accurate
pose of the C-arm. However, C-arm movements, such as oscillation,
sagging and wheel motion are significant and prevent accurate
pose recovery based solely on joint angle measurements (see
Fig. 3). If uncompensated, these C-arm motions can lead to severe
pose computation errors and reconstruction failure.

In this paper, we prove that in the typical case of a C-arm ro-
tated around a single axis within a small angle span, C-arm angle
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Fig. 2. Three C-arm images taken at different angles. The figure at the middle shows several hidden and overlapping seeds. Three seed matchings are shown using arrows. The

seeds move along an almost horizontal line through the images.

Fig. 3. Initial (gray) and correct C-arm pose (color) for the third C-arm. Transla-
tional error along the up-down direction is only added to C-arm 3. The
reconstructed seeds are shown after motion compensation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

measurements augmented with a computational method to com-
pensate for C-arm motions suffice for a clinically reliable and accu-
rate seed reconstruction. However, without such a motion
compensation algorithm, the reconstruction is prone to failure.
We employ joint encoders or digital protractors to measure the
rotation angles. The novelty of this work is in the introduction of
an effective motion compensation method that obviates the need
for full pose tracking using external fiducials or trackers. Consider-
ing the simplicity of the implementation, high reconstruction accu-
racy and favorable computational speed, this algorithm is suitable
for clinical translation. The underlying idea and limited prelimin-
ary data was presented at a recent conference (Dehghan et al.,
2010). This manuscript provides a more detailed description of
the methodology and performance analysis on 100 clinical data
sets.

This paper is organized as follows. The algorithms for seed
matching and motion compensation are explained in Section 2.
Numerical simulation, phantom and clinical results are presented
in Section 3, followed by discussion in Section 4. The conclusions
are drawn and the future work is outlined in Section 5.

2. Methods

We propose an iterative three-level algorithm that takes advan-
tage of the constrained movement of a C-arm during coplanar
imaging, compensates for its major translational motions using
reconstructed seeds and, in turn, significantly increases the likeli-
hood of finding the correct matching solution in a clinically accept-
able time. We compensate for C-arm motions that are mostly
translational. That is an approximation of the C-arm motion pat-
tern. However, as our results prove, it is sufficient for successful
reconstructions. Our motion compensation algorithm can be used
with any seed matching algorithm. For seed matching and recon-
struction, we employ XMARSHAL (Kon et al., 2006) that is capable
of solving the matching problem in the presence of hidden seeds
with low computational cost. For the sake of completeness we
briefly outline this method in Section 2.1. As mentioned, tomosyn-
thesis-based reconstruction methods do not require a matching
algorithm. However, they suffer from lack of accurate C-arm pose
too. Therefore, C-arm motion compensation framework applies to
them as well.

2.1. Seed reconstruction using XMARSHAL

Assume that three C-arm images of an implant with N seeds are
available and N;, i € {1,2,3} seed projections are segmented in each
image. In this case, the seed matching problem in the presence of
hidden seeds can be written as the following optimization
problem:

Ny N, N

M = argmin 35> > i M
]

i=1 j=1 k=1

Ny Nj

EZmijk >1, Vi

j=1 k=1
N; N

Y ympe =1, VY

i=1 k=1

s.t. Ni Mo

Z Zm,-jk = 1, vk
i1

Ni N N3

> 2 2 My =N,
i1 j=1 k=1

my € {0, 1},

where for eachie {1,...,N1},j€(1,...,N>} and k € {1,...,Ns}, cjjx is
the cost of matching seed projections p},pj2 and p? from the first,
second and third images, respectively, and my; is a binary variable
showing the correctness of such a match. The constraints in (1) en-
sure reconstruction of N seeds while taking the hidden seeds into
account.
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Assume three rays emanating from each of these seed projec-
tions p}, p? and p; to its corresponding X-ray source in 3D space.
The point with the minimum average distance from these lines is
considered as their symbolic intersection. We define the average
distance of the symbolic intersection from these lines as their sym-
bolic distance. If we project the symbolic intersection on each im-
age, the summation of the distances between this projection and
the corresponding seed projection on each image is considered as
the matching cost (cy«) (Jain et al., 2005b).

Eq. (1) is a weighted-tripartite matching problem that is equiv-
alent to an NP-Hard combinatorial optimization (Jain et al., 2005b)
with an exponential complexity. An approximate low computa-
tional cost solution to this problem was proposed by Jain et al.
by projecting the tripartite matching problem into three bipartite
problems (Jain et al., 2005b). In this solution, seed projections p}
and pj2 can be matched (with a cost c;) only if they have a low cost
counterpart in the third image. In this method:

Cj = mkin Cijk, VK. (2)

This is based on the observation that although low ¢y, cjx and cy; do
not guarantee a low ¢y, a low ¢, guarantees cj;, ¢jx and ¢; to be low.

This solution resembles a network-flow optimization problem
in which each seed projection in an image is represented by a node
(Jain et al., 2005b; Kon et al., 2006). The matching between two
seed projections is represented by a link that flows between them
with a cost equal to the matching cost ¢;. This network flow prob-
lem was extended in Kon et al. (2006) to address the hidden seeds
problem. This problem can be solved using a cycle canceling algo-
rithm in practically O(N®) times (Kon et al., 2006), producing clin-
ically excellent matching.

Given the correct matching and the C-arm poses, the 3D posi-
tion of the seeds with minimized reconstruction cost is calculated
as:

3 13
si = [Z (1- ui,-z/;j)} > (1= vsvy)a, 3)
j=1

J

where s; is the position of the ith seed, g; is the position of the X-ray
source corresponding to the jth image, v; is the unit vector along the
lines L; that connect the projection of seed i on image j to g; and I is
a 3 x 3 identity matrix. The reconstruction cost for seed i is defined
as the symbolic distance between lines L;;, Li; and L;s.

2.2. Motion compensation

Let us assume a world coordinate system Ox,,y\,z,, centered at
the center of rotation of the C-arm and a source coordinate system
Ox.yszs centered at the X-ray source as shown in Fig. 4. The pose of
the C-arm is defined by a transformation matrix °T,, from the world
to the source coordinate system as:

0

‘Rw  —°Ryd 0
T, = 1 @

0 1

where °R,, is the rotation matrix from the world to the source coor-
dinate frame, | is the distance from the source to the center of rota-
tion and 6=[dx 6, J;]' is the translational motion of the C-arm
caused by oscillation, sagging and wheel motion (see Fig. 3). We
can initialize a pose computation by measuring the C-arm rotation
angles - which define °R,, - and setting the unknown ¢ equal to
zero. Assuming & = 0 causes error in the pose computation and sub-

Fig. 4. A C-arm rotating around its primary axis (PA) in a single plane. The angle
around the secondary axis (SA) is fixed. The world coordinate system Ox,,y,z,, is
centered at the center of rotation. The source coordinate system Ox.y.z; is centered
at the source.

sequent unsuccessful seed reconstruction. Therefore, we should
compensate for this error and improve our pose computation.

An iterative scheme can be implemented where the recon-
structed seeds with given C-arm poses are used to improve the
pose recovery and subsequently enhance the seed reconstruction
results. Such iterative schemes were suggested in the literature
to compensate for the rotational and translational pose errors (6
DOFs) (Tubic et al., 2001a; Jain and Fichtinger, 2006). It is known
that such a problem can be solved up to an unknown scale (Jain
and Fichtinger, 2006). This means that the reconstructed seed
cloud can arbitrarily shrink or expand. As it is shown in Fig. 5,
the X-ray images, C-arm intrinsic parameters, seed matching and
relative C-arm rotations are identical between two sets of recon-
struction solutions; however, the scaled relative translations result
in a scaled seed cloud.

We demonstrate that by making realistic and practical assump-
tions in accordance with clinical protocols, motion compensation
can be reduced to 2 DOFs for mobile C-arms used in brachytherapy.
This approach eliminates the scaling problem and results in a clin-
ically adequate implant reconstruction and computational time
small enough to be carried out intraoperatively. Pose error com-

Fig. 5. The scaling effect results from 3 DOF translational motion of the C-arm. The
X-ray images, C-arm relative rotations and C-arm intrinsic parameters are identical
between the left and right reconstructions. Seed matching solution is independent
of the scaling factor.
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pensation for 2 DOFs requires less complicated algorithms (com-
pare to 6 DOFs) and thus is computationally faster.
We make the following assumptions:

1. The C-arm images are acquired by rotation of a C-arm around
its primary axis (PA) in a small angle span, while the angle
around the secondary axis (SA) is fixed (see Fig. 4).

2. C-arm rotation angles are measured.

3. The intrinsic parameters are known and do not change during
rotation of the C-arm.

4. 2D coordinates of seed projections are available via manual or
automatic segmentation.

5. Most significant C-arm motions are of translational nature, con-
fined to the Oy,z, plane - the motion along x,, is negligible
(0ix=0,i€{1,2,3}).

As mentioned before, acquiring images by rotating the C-arm
around its PA while the angle around SA is fixed is common prac-
tice in brachytherapy. The rotation span around PA is usually lim-
ited to approximately +15° due to collision of the C-arm with the
operating table, brachytherapy stand or patient’s legs. Mobile C-
arms are available that employ a fixed axis of rotation and are
equipped or can be easily retrofitted with joint encoders (Grzeda
and Fichtinger, 2010).

Limited rotation span in a clinical setting results in an insignif-
icant change in the calibration parameters, such as focal length,
image center and source to center distance. Image resolution is
considered as constant over the lifetime of the device. It has been
shown that in such situations recalibration for each C-arm pose is
not necessary, because small changes in the calibration parameters
do not significantly alter the relative positions of the reconstructed
seeds (Jain et al., 2007). It should be noted that we are interested in
the relative position of the seeds as the seed cloud as a whole
should later be registered to the prostate anatomy.

In this work we relied on manual segmentation to identify the
seed centroids. Since XMARSHAL is capable of addressing the hid-
den seeds problem, it is not required to identify all the implanted
but hidden seeds in every image. The effects of hidden seed per-
centage and seed segmentation error on the performance of XMAR-
SHAL are discussed in Kon et al. (2006).

The last assumption is the cornerstone of our motion compen-
sation algorithm. The most likely source of pose computation error
is the oscillation of the C-arm, which is mostly up-down (along the
z,, axis) since the C-arm is connected to the base as a cantilever.
Our observations confirm this assumption that the C-arm primary
motion is in the up-down direction due to oscillation and C-arm
weight. The motion in the other two directions are much smaller;
however, are not always insignificant. As a result, C-arm pose com-
putation error along z,, is more significant compared to the inaccu-
racies in the other two directions.

The proposed motion compensation algorithm initializes the C-
arm pose using measured joint angles as shown in Fig. 3 and com-
pensates for the inevitable translational motions by finding the
optimal translational adjustments (offsets)  for each source posi-
tion, by solving the following problem:

Ny Ny N;
* Nl _ T z § z . .
(miﬂ“b"> B arg’{?kg i1 =1 k=1 ol Ga)i ®)

ne {123}

subject to the constraints of (1). In order to minimize the scaling ef-
fects, we restrict the offsets to be in the Oy,,z,, plane — based on our
assumption - and introduce a three-level optimization method to
identify them.

2.2.1. First-level optimization

At the first level, the algorithm finds a few matching seed pro-
jections in the images to calculate an initial offset estimate with
very low computational cost. Since the fluoroscopy images are ta-
ken with the rotation of the C-arm around its PA, the seed projec-
tions follow almost horizontal lines in the images. Therefore, a seed
at the top or bottom of one image is more likely located at the top
or bottom of the other images (for example see Fig. 2). Based on
this observation, the algorithm automatically selects n seed projec-
tions from the top (seeds with maximum ordinate values in the 2D
image coordinate system) and n seed projections from the bottom
of each image (seeds with minimum ordinate values in the 2D im-
age coordinate system) and solves the matching problem for them,
using the initial estimates of the C-arm poses from joint angle
readings. Since the selected 2n seed projections from one image
do not necessarily correspond to the selected 2n seed projections
in the other images (these 6n seed projections may belong to more
than 2n seeds in 3D), some of the reconstructed seeds have a high
reconstruction cost, are erroneously matched, and cannot be used
to improve the pose recovery. Therefore, the algorithm selects a
subset of p <n reconstructed seeds from the top and p recon-
structed seeds from the bottom of the 2n reconstructed seeds with
the best reconstruction costs for pose recovery. We use n=5 and
p=2. In order to estimate the C-arm motion, we assume that the
position of the C-arm source corresponding to the first image
(henceforth, the first source position) in 3D space is fixed (5; = 0)
and optimize the position of the C-arm sources corresponding to
the second and third images (henceforth, the second and third
source positions) in the Oy,,z,, plane to minimize the reconstruc-
tion cost for the selected 2p seeds. The seed matching and motion
estimation are iteratively performed until there is no change in the
seed matching solution.

Since a small number of seed projections are used at this level,
the matching problem can be solved extremely quickly using
XMARSHAL. With a given matching, 2D offsets for the second
and third C-arm source positions can be found by solving a set of
linear equations. These equations are derived in (A.6)-(A.15).

2.2.2. Second-level optimization

In this step, the C-arm source positions are initialized in 3D
space using the optimal offset values from the first level. Then,
the matching problem is solved for all seed projections and the
seeds are reconstructed. The C-arm source positions are optimized
in 3D space to minimize the average reconstruction cost while the
seeds are fixed in space. The matching and source position optimi-
zations are iteratively solved until the reconstruction cost or its
change between two iterations is smaller than a predefined thresh-
old. The thresholds were empirically assigned as <0.1 mm for the
former and <0.1% for the latter.

The new position of the jth X-ray source at iteration k + 1 is cal-
culated as:

N

N -1
qtt = { (I'— vy U?;)} > (- vyvp)st, (6)
i=1

i=1

where sk is the position of the ith seed at iteration k.

Since we employ a 3D optimization at this level, the recon-
structed seed cloud may significantly shrink or expand (see
Fig. 5). However, optimization in 3D increases the likelihood of
finding the correct matching which is independent of the scaling
factor. Therefore, we take advantage of 3D optimization at this le-
vel, find the correct matching and remove the scaling effects at the
next level.
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2.2.3. Third-level optimization

At this step, we assume that the correct matching solution is
available from the second-level optimization. However, the seed
cloud may be scaled due to 3D motion compensation. Therefore,
once more, we assume that the C-arm motion along x,, is negligible
and optimize for 2D C-arm motion. The C-arm source positions are
initialized using the joint angle readings. The first source is fixed in
space. Next, 2D offsets of the second and third source positions are
optimized to minimize the reconstruction cost with the given
matching. Similar to the first level, the 3D seed positions and 2D
offsets for the sources have a closed form solution, the equations
for which are derived in (A.6)-(A.15). The three steps of the algo-
rithm are shown in Fig. 6.

3. Results
3.1. Simulations

First, the motion compensation algorithm was tested on simu-
lated data. We synthesized four seed clouds based on realistic
dosimetry plans of four patients with 100, 102, 108 and 130 seeds.
Seed images were synthesized by rotation of the C-arm around the
PA at 0°, £5° and +10°, while the SA angles were kept constant at
180°. The intrinsic parameters of a GE OEC® 9800 device were used
as the intrinsic parameters of the C-arm in the simulations. The
seeds were reconstructed using every possible combination of
three images out of five. In order to investigate the performance
of our motion compensation algorithm, translational and rota-
tional pose errors were added to one of the C-arm source-image
pairs. The added errors were 0-10 mm along x, and y,, O-
20 mm along z,, with steps of 1 mm and 0-3° around SA and PA
with steps of 0.5°. The effects of these errors were simulated inde-
pendently, as only one error was introduced at each simulation.
During image synthesis, hidden seed projections were created by
merging the seed projections that were close to each other. There
were on average 1.6 hidden seeds per image, with a maximum of
14.

Select a few
seeds from top &
bottom of images

The reconstructed seeds were compared against the ground
truth after a rigid registration of reconstructed seed cloud to the
known seed cloud. The average and standard deviation (STD) of
localization error, defined as the distance between the true and
reconstructed seeds, are shown in Fig. 7 for all the introduced pose
errors. The average and STD of the matching rate are also shown in
Fig. 7. The algorithm has an average matching rate of 99.2% when
the pose error is zero.

As it can be seen in Fig. 7c-f, the algorithm shows consistently
high matching rates and small localization errors over a wide range
of errors along y,, and z,, as the C-arm motions in these two direc-
tions are compensated. Fig. 7a shows consistently high matching
rates for errors of up to approximately 5mm along x,,. However,
the localization error increases monotonically with the error in this
direction as shown in Fig. 7b. This is due to the fact that the match-
ing problem is solved at the second level, using a 3D motion com-
pensation; while we reconstruct the seeds using a 2D motion
compensation at the third level. Therefore, the correct matching
is found at the second level even in the presence of errors along
Xw; however, the seed cloud is deformed at the third level, which
leads to a monotonically increasing localization error. The match-
ing and localization errors increase with the rotational pose errors,
since the motion compensation algorithm does not compensate for
rotational errors. However, the average matching rate is above 95%
when rotational pose errors are less than 1.5°. We assume that in a

clinical setting, the angles are measured with errors of less than
t1°.

3.2. Phantom study

We conducted a phantom study on a CIRS Model 053 tissue-
equivalent prostate brachytherapy training phantom. An experi-
enced brachytherapist inserted 26 needles to implant 136 dummy
stranded seeds inside the phantom.

We took five images from the phantom using a GE OEC® 9800
mobile C-arm by rotation of the device around its PA in a 20° rota-
tion span in approximately 5° intervals. A digital protractor was

?
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Fig. 6. The proposed three-level motion compensation algorithm.
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in (b), (d), (f), (h) and (j), respectively.



E. Dehghan et al./ Medical Image Analysis 15 (2011) 760-771 767

connected to the source casing of the device to accurately measure
the rotation angles. The seed projections were manually seg-
mented in the images and the seeds were reconstructed in 3D
using every combination of 3 out of 5 images (10 reconstructions)
using motion compensation.

The phantom was also scanned using a Picker PQ5000 CT scan-
ner. The seeds in the CT volume were segmented by thresholding
and assumed as the ground truth. Although the CT and C-arm
images were taken at different times, we assumed that the phan-
tom deformation and seed displacements were negligible. We
compared the seeds reconstructed from C-arm images to the seeds
from CT after a rigid registration of the two seed clouds and re-
ported the difference as localization error in Table 1.

On average, we achieved a matching rate of 99.0% with 0.9 mm
localization error. In order to show the importance of motion com-
pensaion, we also tried to reconstruct the seeds without motion
compensation and achieved an average of 78.3% for matching rate,
which is far below the clinically acceptable level. Su et al. sug-
gested that a seed detection rate of above 95% is required in order
to achieve clinically sufficient estimation of dose distribution for
contemporary 2% prostate implants (Su et al., 2005).

3.3. Performance on clinical data

The performance of the motion compensation algorithm was
also tested on clinical data. Ten patients were implanted with
100-135 '?°[ seeds (average 112) at the British Columbia Cancer
Agency. Five C-arm images were taken from each patient by rota-
tion of the C-arm around the patient’s craniocaudal axis at angles
approximately 0°, +5° and +10°, while the SA angle was fixed. A
GE OEC® 9800 mobile C-arm was used for imaging. This is a digital
device with motorized joints. This device has a heavy intensifier
that causes significant sagging and oscillation during image acqui-
sition. For patients 1-8 the rotation angle around the PA was mea-
sured by a digital protractor which was attached to the source
casing. The digital protractor did not interfere with the image of
the anatomy or the working space and did not require precalibra-
tion. For the other 2 patients the rotation angles were measured
using the joint encoders of the device. The digital protractor had
a resolution of 0.1° while the device joint encoders had a resolution
of 1°. We expect higher accuracy from the measurements of the
protractor. The C-arm joint angle encoders showed a variation of
1° around the SA. This deviation was taken into account for initial-
ization of the C-arm poses. The C-arm intrinsic parameters were
once identified in a preoperative calibration and were assumed
to be constant for all the rotation angles and all the patients. For
each patient, we reconstructed the seeds for every combination
of three images out of available five, thus obtaining 100 recon-
structions in total. The seeds were manually segmented in the
images. There were an average of 2 and maximum of 8 hidden
seeds in the images.

Table 1
Matching rates and mean and standard deviation of localization error for phantom.

Rec. # Matching rate (%) Localization error mean + STD (mm)
1 100.0 1.0+0.6
2 100.0 09+0.5
3 100.0 0.7+04
4 99.2 0.9+0.6
5 98.5 0.8+04
6 98.5 0.8+0.5
7 98.5 1.0£0.6
8 98.5 0.8+0.7
9 99.2 0.8+04
10 97.8 09+0.5

Fig. 8. Reprojected seeds overlaid on a C-arm fluoroscopy image, showing small
projection errors.

The reconstructed seeds were reprojected on the images (see
Fig. 8) and were meticulously inspected for matching errors. These
images were also used to measure the projection error — defined as
the distance between the segmented seed centroid and the pro-
jected location of the reconstructed seed - to quantify the recon-
struction accuracy.

Fig. 9a shows the seed matching rate with motion compensa-
tion for each case. Overall, we achieved an average matching rate
of 98.5% which is above the clinically accepted level. A perfect
reconstruction was accomplished in 54% of the cases, while in
76% and 92% of the cases the matching rate was greater or equal
to 98% and 95%, respectively.

In order to demonstrate the necessity of motion compensation,
seed reconstruction was performed without motion compensation
as well. As it can be seen in Fig. 9b, XMARSHAL without motion
compensation achieved an average matching rate of 46.1%, which
is a completely inadequate performance. Moreover, calculations
show that motions of more than 30 mm in the up-down direction
were compensated. This proves our hypothesis that it is necessary
to use motion compensation, when only C-arm rotation angles are
measured.

Fig. 9b directs us to another important role of the first-level
optimization - other than increasing the speed. As it can be seen
in Fig. 9b, an initial reconstruction without application of the
first-level optimization can result in very unsuccessful matching
results in which mismatched seeds are significantly abundant
and can even outnumber the correctly matched seeds. In such
cases, sole application of the second-level optimization can result
in erroneous pose estimations since the large group of mismatched
seeds can misguide the optimization algorithm. However, in the
first-level optimization, the algorithm selects a handful of seeds
from the top and bottom of the images that are very likely to cor-
rectly match. These few correctly matched seeds provide a good
initial pose computation for the second level. Therefore, the first-
level optimization not only shortens the computation time but also
increases the robustness of the algorithm.

The mean and the standard deviation of the projection error are
shown in Fig. 9c and d for correctly and erroneously matched
seeds, respectively. The overall average and standard deviation of
the projection error for correctly matched seeds are 0.33 mm and
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Fig. 9. Clinical results showing the matching rate (a) with and (b) without motion compensation, the mean and STD of the projection error for (c) correctly and (d)
erroneously matched seeds. In (c) and (d), the length of the green bars shows the mean, and the length of the orange bars shows the STD.

0.21 mm, respectively, which demonstrates high reconstruction
accuracy. The mean and standard deviation of projection errors
are 1.12 mm and 1.93 mm, respectively, for mismatched seeds.

It should be noted that the projection error cannot be used to
measure the scaling factor. Therefore, we use seed spacing to pro-
vide additional confidence in our reconstruction accuracy. The pa-
tients in our study were implanted using stranded '%°I seeds. In
such a case, the seeds that are implanted by a common needle
are connected to each other by a bio-degradable strand that keeps
them at a fixed center-to-center distance of 10 mm. We measured
the center-to-center distances of the seeds that were inserted
using a common needle and reported the results for each patient
in Table 2. The overall seed spacing was 10.3 mm, which shows
that significant scaling did not occur.

4. Discussion

We achieved matching rates comparable to the results reported
in Lee et al. (2009), Brunet-Benkhoucha et al. (2009), Lee et al.
(2011). In particular, similar matching rates are reported in the ori-
ginal MARSHAL and XMARSHAL papers (Jain et al., 2005b; Kon
et al., 2006). However, it should be noted that in all these works
the C-arm pose was accurately known by using either a radio-opa-
que fiducial (Jain et al., 2005b; Kon et al., 2006; Lee et al., 2009; Lee
et al,, 2011) or a precisely calibrated and accurately tracked radio-
therapy simulator in Brunet-Benkhoucha et al. (2009)(It should be
noted that therapy simulators are extinct in contemporary radia-
tion oncology). In other words, the C-arm was fully tracked and
accurate poses were available. Due to availability of accurate C-
arm poses in these works, motion compensation was not neces-
sary. However, in our approach no external tracker was used to
estimate the pose. Therefore, the initial pose recovery without mo-
tion compensation in our case was not sufficiently accurate for a

Table 2
The average and standard deviation of the distance
between two consecutive seeds implanted by one
needle.

Patient # Seed spacing (mm) Mean + STD

104+ 0.6
10.4 +£0.6
103+0.4
10.3+0.3
10.3+0.3
10.2+04
103 +04
10.1+0.4
104 +0.5
0 10.3+04

103 +0.5

— OO N WN =

Overall

successful reconstruction (see Fig. 9b). However, with the pro-
posed computational motion compensation method we achieved
high matching rates without full pose tracking using any external
tracker or fiducial (see Fig. 9a). This, in particular, explains the dis-
crepancy between the successful results reported in Jain et al.
(2005b), Kon et al. (2006) and our unsuccessful results with the
same matching algorithm when motion compensation was not
used.

In current brachytherapy practice, implant geometry is assessed
using CT, one or several days after the procedure. However, the
fluoroscopy images are taken at the end of the procedure while
the patient is still in treatment position and additions to the im-
plant are still possible to patch up cold spots. The prostate swells
during and after the procedure which results in a seed displace-
ment over time (Yamada et al., 2003) and even during the proce-
dure (Jain et al., in press). The seeds also tend to migrate after
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implantation (Fuller et al., 2004). Moreover, for our patients, the
fluoroscopy images were taken while the ultrasound probe was
still partially inside the rectum. The probe can deform the prostate
and displace the seeds. Therefore, the physical position of the seeds
during the CT scan is likely to be different from the position of the
seeds when the C-arm images are taken. Hence, CT images of the
patient can not be used as a confident ground truth to measure
the localization error. Therefore, we relied on the projection error
to validate the reconstruction in our clinical study. For the same
reason, we had to rely on reprojected images to identify the mis-
matches. It was shown that seed localization errors of less than
2 mm result in less than 5% deviation in the prostate D90 (the min-
imum dose delivered to 90% of the prostate volume) (Lindsay et al.,
2003; Su et al., 2007). Although it was not possible for us to mea-
sure the localization error in our clinical study, the localization er-
rors in our simulations and phantom study were significantly
lower than this threshold.

Although the mean and STD of the projection error for mis-
matched seeds are significantly larger than those of the correctly
matched seeds (see Fig. 9c and d), the range of the projection error
for correctly and erroneously matched seeds overlap. Therefore, a
fixed threshold for the projection error cannot be used as a crite-
rion to reliably detect the mismatches. However, it should be noted
that, in some cases, a seed projection is mistakenly matched to a
seed projection which is located very close to the correct one. In
such cases, the projection error is small. Such mismatches result
in small errors in seed localization. This suggests that if the seeds
with large projection errors are removed, the rest of the mis-
matches may result only in an insignificant change in the dosime-
try. Statistically, only 17.3% of mismatched seeds had a projection
error larger than 2 mm. This is 0.2% of all the reconstructed seeds.

We used three C-arm images for seed reconstruction. While
more could have been used, the fewer images used in the OR the
better, primarily because it saves time and also reduces radiation
exposure to OR staff. The matching rate is likely to improve by
using more than three images at the expense of computational
complexity (Kon et al., 2006). The motion compensation algorithm
and the seed matching method are valid for an arbitrary number of
images. Alternatively, seeds can be reconstructed for every combi-
nation of three out of all available images for a patient and the best
reconstruction can be chosen. The reconstruction algorithm is suf-
ficiently fast to allow for such a scheme in clinical settings. It
should be noted that for all the patients, except patient 3, there
is at least one reconstruction with perfect matching (see Fig. 9a).

The motion compensation algorithm can be combined with
other seed matching algorithms, such as REDMAPS (Lee et al.,
2011) as reported in Dehghan et al. (2010). In comparison to
XMARSHAL, REDMAPS provides the optimal matching solution.
Therefore, slightly better results — in term of matching rate - are
expected. However, XMARSHAL is computationally faster than
REDMAPS. Since, our matching rates using XMARSHAL are above
the clinically acceptable threshold, we prefer XMARSHAL due to
its speed.

In our results on clinical data, 8% of reconstructions have a
matching rate of less than 95%. Although Su et al. suggested that
a detection rate of at least 95% is required for an accurate dose esti-
mation (Su et al., 2005), it should be noted that seed detection and
matching rate are not completely equivalent. As mentioned above,
many of the mismatches occur when a seed projection is mistak-
enly matched to a wrong seed projection, which is closely located
to the correct seed projection. In this case the reconstructed seed is
considered a mismatch but the localization error may be small.
Therefore, all of the mismatched seeds cannot be categorized as
undetected seeds. As explained, by using more than three images
or employing a matching algorithm with optimal outcome such
as REDMAPS (Lee et al., 2011), we can increase the matching rate.

We implemented our algorithm using MATLAB on a PC with an
Intel 2.33 GHz Core2 Quad CPU and 3.25 GB of RAM. We achieved
an average time of 19.4 s per data set, which is more than sufficient
for clinical implementation. The first level of the optimization is
very fast since only 10 seeds per image are used in the reconstruc-
tion and XMARSHAL runs on an O(N?) runtime. The second level of
the algorithm is the most time consuming part, since a full match-
ing problem must be solved at each iteration. However, using the
outcomes of the first-level optimization to initialize the second le-
vel, significantly decreases the number of iterations necessary for
convergence. We used the convergence of the reconstruction error
as the stopping condition for the second level, which is a conserva-
tive criterion. As an alternative, the convergence of the matching
solution can be used - similarly to the first-level optimization. In
this case, if the matching solution does not change in two itera-
tions, the optimization will terminate. This stopping condition is
satisfied in significantly fewer iterations. However, it was observed
during the simulations - although rarely - that a matching solution
can change to a better one after three or more iterations. Since, the
runtime for the algorithms is already acceptable, we decided to
choose the more conservative criterion, in order to increase the
seed matching rate. As mentioned before, the third-level optimiza-
tion and seed reconstruction can be solved using (A.3) and (A.4)
with low computational cost.

In our clinical studies, stranded seeds were used. We used the
constant center-to-center distance of stranded seeds to show that
no significant scaling occurred during motion compensation. It
should be noted that our motion compensation and reconstruction
algorithms do not rely on any information limited to stranded
seeds and can be applied for loose seeds without algorithmic
modifications.

In this work the seeds were manually segmented in the
images by one observer without extensive efforts to identify all
the hidden seeds. Since XMARSHAL is capable of maintaining
above 97% matching rate for up to 1mm segmentation error
(Kon et al., 2006), our motion compensated reconstruction meth-
od can successfully reconstruct the seeds as long as the manual
seed segmentation error is below this threshold. Considering the
small dimensions of seed projections, this level of accuracy is
easily achievable. However, manual seed segmentation is a te-
dious task due to the large number of implanted seeds. Auto-
matic seed segmentation methods are available that have a
high success rate in identification of '?°I (Tubic et al., 2001b)
or '9Pd seeds (Kuo et al., 2010), even in the presence of over-
lapping seed projections. These methods can be used to segment
the majority of seeds in the images. The missing seeds can be
identified and the false positives can be removed with manual
intervention. Integration of an automatic segmentation algorithm
could facilitate the use of intraoperative dosimetry in a clinical
environment.

We assumed that the C-arm rotates around its PA. This assump-
tion - resulting in a horizontal motion of the seed projections in
the images - was used in the first-level optimization to justify
the selection of seeds from the top and bottom of every image as
candidates for matching seeds. If the C-arm rotates around its SA,
the seeds move vertically in the images. Therefore, the seeds that
appear at the left or right side of one image are more likely to ap-
pear at the left or right side of other images. In this case, these
seeds can be selected as candidates for matching seeds in the
first-level optimization. Similarly to our case, the motion along
the up-down direction, and perpendicular to the plane of rotation
would be compensated.

Since we did not use radio-opaque fiducials, the C-arm could be
positioned to capture the seeds close to the center of the detector.
In this situation, the seed segmentation error caused by geometric
distortion is below the tolerance level of XMARSHAL (Kon et al.,
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2006). Therefore, we did not correct for the geometric distortion. If
necessary, the dewarping parameters can be estimated using a sin-
gle image captured at the center of the rotation span. Jain et al.
showed that for small rotation spans, the dewarping parameters
obtained from a center image can effectively correct the geometric
distortions of all the images (Jain et al., 2007).

5. Conclusions and future work

We demonstrated that the sole measurement of rotation angles
of a C-arm with a small angle span in a single plane, combined with
a motion compensation algorithm, can result in successful prostate
implant reconstruction. For motion compensation, we introduced a
three-level optimization method to compensate for C-arm transla-
tional motions in the Oy,z, plane using a small subset of seeds as
fiducials to gain an initial estimate of the C-arm pose. This ap-
proach obviates the need full pose tracking with external trackers
or fiducials.

In a clinical study of 100 data sets from 10 patients, an off-
the-shelf digital protractor or C-arm joint encoders were used
to measure the rotation angle around the PA of a C-arm, while
the deviations in the angle around the left-right axis were mea-
sured using the C-arm joint encoders. Combined seed recon-
struction and motion compensation led to on average seed
matching rate of 98.5%, projection error of 0.33 mm and 19.8 s
computational time. The high matching rate, insignificant scaling
effect, low projection error and computation time show the fea-
sibility of our method for intraoperative dosimetry in a clinical
setting.

We assumed an insignificant motion of the C-arm along x,,
axis. This assumption was validated by high matching rates
and small projection errors in our clinical study. However, if
on some C-arms this motion is considerably large, a 3D motion
compensation is necessary. This, however, may suffer from the
scaling problem. An object with a known length can be used
to estimate the scale. Investigation on exploiting the length of
1251 seeds or seed spacers to recover the scaling factor is part
of our future work.
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Appendix A. Equations for simultaneous reconstruction and
motion compensation

In order to find the optimal 2D offsets of M sources (M images)
and at the same time, find the 3D position of N implanted seeds, we
solve the following optimization problem.

(s7,0;) =

B
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where ] is the total reconstruction cost, g; is the initial position of jth
source calculated form the joint angle readings, and J; is its corre-
sponding offset. The minimality necessary conditions imply that:
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Egs. (A.3) and (A.4) can be concatenated into a matrix form as
below.
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At this point, the set of linear equations in (A.6) is under-deter-
mined and the matrix A in (A.8) is singular. However, we fixed
the first source in space; hence 6, = 0. In addition, we assumed that
the C-arms move only in Oy,z, plane. This places another con-
straint on the equations in the form of 6x=0, je({1,...,M}. By
removing the rows and columns corresponding to these known
variables from A and removing the corresponding entries in X and
b, Eq. (A.6) can be solved.
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