Computer Integrated Surgical Systems and Technology National Science Foundation Engineering Research Center

Image Overlay for CT-Guided Hepatic Needle Insertions **Cadavers Studies**

Michelle L. de Oliveira, MD; Anton Deguet, MS; Gregory Fischer, MS; Emese Balogh, MS; Laura M Fayad, MD; James Zinreich, MD; Russell H. Taylor, PhD; Gabor Fichtinger, PhD

Computer Integrated Surgical Systems and Technology Engineering Research Center, Johns Hopkins University, Baltimore, MD

INTRODUCTION

- > Liver biopsy is frequently performed to establish the diagnosis and stage in various hepatobiliary disorders
- > Computer Tomography (CT) is commonly used for guiding percutaneous abdominal procedures.
- > Conventional CT does not provide real-time capability. CT Fluoroscopy is useful targeting technique, however significant radiation exposure to physician and patient occur.
- > Presently, no technical solution exists to assist free-hand CT guided needle placement in accurate simple and feasible manner without imparting additional radiation.

OBJECTIVE

> The goal of this study is presenting a two-dimensional image overlay device to assist hepatic needle placement on CT scanners.

APPROACH

Augmented Reality on CT Scanner:

- > CT image is acquired and displayed on the flat panel display
- > Through a semi-transparent mirror, clinician sees the reflection of the CT image in place over the patient
- > Laser plane parallel to the image plane guides the clinician to stay in-plane
- > Visual guides are displayed to indicate the angle and depth
- > Fiducial markers (IZI biopsy strips) are used to confirm the entry point and slice
- Gantry can be tilted at any time

METHODS

Procedure Workflow:

- 1. Scan Volume of Interest
- 2. Select insertion slice
- 3. Place IZI Biopsy Markers using the CT image plane laser
- 4. Scan the slice of insertion with markers in place
- 5. Move CT table to align insertion plane with CT Overlay laser
- 6. Select target and entry point on Overlay Console
- 7. Place needle tip on IZI markers then align needle to laser plane and overlaid guides
- 8. Insert needle
- 9. Take a confirmation CT slice
- 10. If the needle placement is correct, proceed, otherwise return to (7). 11. Insertion and biopsy

Optional:

- Acquire a lateral scout image of the patient
- > Measure orientation of ribs and tilt gantry to have clear paths to the targets

EXPERIMENTS

Animal Cadaver Study:

- > Fresh dead pigs are kept on ventilator and under warming blanket
- > Fiducials are inserted as target points (staples or small metal balls)
- > Ventilator is paused to simulate breath hold during imaging and insertion
- > Goal is to touch a target with the tip of a 18G needle (3 different pigs, up to 6 different targets per pig and for each target up to 3 entry points)
- > Take a confirmation volume around insertion plane for analysis

	<u> </u>	Experi												
'rial mber	Targeting Error (mm)	Target Motion (mm)	Insertion Depth (mm)	Depth Error (mm)	Insertion Angle (degrees)	Angular Error (degrees)	Summary Statistics							
1 2 3	6.45 2.11 6.13	0.50 2.63 4.47	53.55 56.54 59.55	0.28 -2.26 0.57	41.7 32.3 -2.3	2.1 1.1 -2.6			Tarş E (n	geting rror 1m)	Dept Erro (mm	h A r :) (de	ngular Error egrees)
4	4.06	1.50 0.90	22.66	0.56	94.0 40.8	9.1 1.1		Average		5.4 2.1	0.3		2.1	
6	6.71	0.71	28.10	0.18	0.0	-4.3		Std. Dev.		1.8			3.1	
8	4.50 5.29	1.50	36.40 37.83	3.26	63.9 83.6	4.9 -0.4	1	Maxim Minim	im (7.5).9	5.8 0.7		9.1 1.1	
9 10 11	2.77 2.71 3.31 3.70	2.28 2.28 2.02 0.42	28.94 40.55 55.60	2.06 0.57 -1.69	55.0 28.9 40.6 78.1	5.2 0.8 -0.1		C	orrel	atio	n M	latr	ix	
13	3.71	2.73	75.07	1.25	23.4	-0.2			al Targettir	Ig Target	Angular	Depth	Insertion	Inse
14 15	1.12 5.00	1.57 4.46	83.18 54.63	1.12 5.84	63.1 50.6	1.1 -1.5	Trial Numb Targetting	Nun ber 1.0 Error -0.2	ber Error 000 -0.2699 099 1.0000	Motion 0.4218 -0.1114	Error -0.3719 -0.3602	Error 0.6408 0.2141	Depth 0.4454 -0.2285	An: 0.4
16	2.97	1.61	54.84	0.79	64.7	-1.0	Target Mor Angular Er Depth Erro	tion 0.4 rror -0.3 or 0.6	218 -0.1114 719 -0.3802 408 0.2141	1.0000 -0.0870 0.3762	-0.0870 1.0000 -0.1820	0.3762 -0.1820 1.0000	0.6420 -0.3151 0.1742	0.2 0.4 0.3
18	2.09	3.74	65.81	2.17	83.6	-0.7	Insertion D	Depth 0.4 Angle 0.4	154 -0.2285 355 -0.4669	0.6420	-0.3151 0.4000	0.1742	1.0000	0.0
19 20	7.51 5.11	4.73 5.28	63.19 64.04	4.67 3.96	57.0 39.8	-3.9 -2.9	Correlation larger than 0.4							
21	0.89	1.55	46.51	2.59	116.6	0.1								

PRELIMINARY RESULTS

CONCLUSION

- Intuitive interface with in-situ guidance
- High accuracy with fast learning curve
- Promises of reduced X-ray dose and operation time
- > Clinician stays in control and can revert to his/her usual procedure
- Inexpensive device

Nu

FUTURE WORK

- Controlled studies on human and animal cadavers
- MRI compatible version with the ability to display any slice in real-time

ACKNOWLEDGEMENTS

- Siemens Corporate Research
- ➢ National Science Foundation #EEC-9731478
- > Dr. de Oliveira is supported by Brazilian Ministry of Education #CAPES-BEX1572/03
- > Beatrice Mudge, Radiology Technical Manager, Johns Hopkins Hospital

