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ABSTRACT 

PURPOSE: The iKnife is a new surgical tool designed to aid in tumor resection procedures by providing enriched 

chemical feedback about the tumor resection cavity from electrosurgical vapors. We build and compare machine learning 

classifiers that are capable of distinguishing primary cancer from surrounding tissue at different stages of tumor 

progression. In developing our classification framework, we implement feature reduction and recognition tools that will 

assist in the translation of xenograft studies to clinical application and compare these tools to standard linear methods that 

have been previously demonstrated.   

 

METHODS: Two cohorts (n=6 each) of 12 week old female immunocompromised (Rag2−/−;Il2rg−/−) mice were 

injected with the same human breast adenocarcinoma (MDA-MB-231) cell line. At 4 and 6 weeks after cell injection, mice 

in each cohort were respectively euthanized, followed by iKnife burns performed on tumors and tissues prior to sample 

collection for future studies.  A feature reduction technique that uses a neural network is compared to traditional linear 

analysis. For each method, we fit a classifier to distinguish primary cancer from surrounding tissue.  

 

RESULTS: Both classifiers can distinguish primary cancer from metastasis and surrounding tissue. The classifier that 

uses a neural network achieves an accuracy of 96.8% and the classifier without the neural network achieves an accuracy 

of 96%.  

 

CONCLUSIONS: The performance of these classifiers indicate that this device has the potential to offer real-time, 

intraoperative classification of tissue. This technology may be used to assist in intraoperative margin detection and inform 

surgical decisions to offer a better standard of care for cancer patients.  

 

1. PURPOSE 
The intelligent knife or the iKnife distributed by Waters (www.Waters.com) is a method of mass spectrometry that is 

designed to aid in tissue diagnosis and recognition. The device uses rapid evaporative ionization mass spectrometry 

(REIMS) to aerosolize tissue samples and provide enriched feedback about the chemical and biological profile of the tissue 

[1]. The iKnife sampling device integrates REIMS technology into surgical workflow by capturing the vapor that is 

released from high-frequency electric current (electrocautery) tools commonly used in tumor resection procedures. This 

device is capable of complimenting medical imaging to inform the surgeon about the margins of the resection without any 

histological analysis. To classify tissue samples intraoperatively, without the assistance of a mass spectrometry expert, the 

device will require a sophisticated machine learning database to distinguish between tissues from different cancer types 

and anatomical regions. 

 

The chemical profiles of tissue acquired from this device have been demonstrated to show distinctive separation of different 

tissue types in preliminary ex-vivo and in-vivo studies [2][3]. This suggests that there is value in developing a robust 

machine learning algorithm for this device that can accurately separate cancerous from healthy tissue for a variety of 

different cancer types. As there are a limited number of medical centers with access to iKnife and the required resources 

to facilitate clinical studies, it is important to develop efficient protocols and data analysis workflows for training data. 

Xenograft models are a viable tool for collecting this data outside of slow-moving clinical studies; these models can be 

further beneficial if the classifier trained using xenograft data can also be translated effectively to clinical data. 

 

http://www.waters.com/


 

 
 

 

In this paper, we demonstrate the feasibility of REIMS data collection and classification of primary cancer from its 

surrounding tissues in xenograft mice models of human breast cancer, at two different stages of cancer progression. We 

developed a data analysis framework that can be scaled up to intraoperative data collection. The raw data collected from 

the iKnife contains tens of thousands of ion peaks. We use linear feature reduction and classification to separate various 

tissue types. Although linear classification is sufficient for classifying homogeneous tissue samples from xenograft, we 

extend this classifier beyond our xenograft study to create a more general and versatile classifier. For this purpose we 

develop and compare a new framework that incorporates deep learning for future translation to clinical data.  

 

2. MATERIALS AND METHODS 
2.1 Dataset 

The dataset used in this study consists of two sets (n=6 each) of human breast cancer xenografts within Rag2−/−;Il2rg−/− 

mice ideally suited for these studies [4][5]. Female 12 week old mice were orthotopically injected in the abdominal 

mammary fat pad (Figure 1) with human MDA-MB-231 breast cancer cells (ATCC® HTB26™), established originally 

from the pleural effusion of a patient’s metastatic mammary adenocarcinoma. Mice were euthanized at 4 and 6 weeks post 

injection to assess differences between early and late stage tumor progression using iKnife data of the tumor, surrounding 

tissue and metastasis at time of necropsy. Each mouse was subjected to an average of 27 burns of various tissue regions, 

including intraperitoneal (IP) membrane, primary breast tumor, lung, liver and kidney tissues (Figure 1). 

These areas were chosen because of their visible spectral distinction from one another (Figure 2) as well as their proximity 

to the injection site. 

 

 

 

Figure 2: Left – Spectrum of multiple kidney samples. Right –Spectrum of multiple lung samples. 

 
Figure 1:  Left- location of electrocautery burns. Right – cell line injection site. 

 



 

 
 

 

For each cohort, the breast cancer cells metastasized as anticipated to various tissues, including lung, liver and spleen.  In 

the 6 week cohort, multiple highly visible macro-metastasis were noted in each organ, whereas metastasis in the 4 week 

cohort required more microscopic assessments (Figure 3). In this study, the aim was the separation of primary cancer from 

surrounding tissue and organs and the correlation between metastatic tissues at different stages of progression. To achieve 

this, metastasis bearing tissues are annotated here as the source organ or tissue from which they were derived. The spectra 

for each of these burns contains the corresponding intensity values for mass/charge ratios (m/z) in the 100-1200 range. 

The 6 week cohort contains a total of 6 mice and 145 burns and the 4 week cohort, containing 6 mice and 125 burns. The 

distribution of burns and tissue type is summarized in Table 1.  

 

 

 

 

 

 

 

The data was partitioned into 3 separate training and 3 separate test sets for further analysis. We used multiple partitions 

because of the variability between samples of the same tissue type taken at week 4 versus week 6 which was likely caused 

by varying metastasis progression (Figure 4). The first partition was made up of samples from the 6 week cohort for 

training and the 4 week cohort for testing. The second partition was made up of samples from the 4 week cohort for training 

and the 6 week cohort for testing. Finally, the third partition was made using a combination of samples from both the 4 

and 6 week cohort for training and a separate combination of both cohorts for testing. In all partitions the training and 

testing samples were distinctly separate.  

 
Figure 3: Left – Tumor progression after 4 weeks. Middle – Tumor progression after 6 weeks.  Right – Metastasis on Spleen 

after 6 weeks. 

 

Table 1: The number of burns taken at each anatomical location for each cohort. 

 Tumor Lung Liver Kidney IP Membrane 

4 Week Cohort 18 23 40 19 25 

6 Week Cohort 31 21 57 17 19 

 

Figure 4: Left – Spectrum of multiple spleen samples at 4 weeks. Right – Spectrum of multiple spleen samples at 6 weeks. 

 



 

 
 

 

2.2 Preprocessing 

The spectral data was preprocessed before further analysis. 

The preprocessing steps consisted of normalization, 

smoothing, calibration and sub-band reduction (Figure 5). 

Lockmass correction was performed to ensure the data was 

calibrated correctly. The peaks of the spectra were shifted left 

or right according to the location of the lockmass peak – an 

ion of a known m/z ratio that is used to calibrate the system. 

The 600-900 m/z range was used for further classification as 

the predominant phospholipid and triglyceride peaks are 

within this range [6]. Sub-band reduction was performed to 

reduce the 50000 peaks in this region to 1000 by taking the 

maximum peak intensity for increments of approximately 50 

peaks.  

 

2.3 Data Augmentation 

Our dataset was limited to only 270 samples with an uneven distribution of tissue types. To improve this sample size, and 

reduce the impact of this imbalance, a larger and more balanced dataset is necessary. In the absence of further mouse 

samples, we augment the spectral data. We perform this by manipulating the slope of the spectra and offsetting the peaks 

with simulated noise.  Figure 6 describes our proposed method of data augmentation used for this study. We added 

Gaussian noise to low frequency band isolated from the FFT of the data to simulate intensity fluctuations that are unrelated 

to unique tissue patterns. Gaussian noise is also added to offset peak positions and simulate instrumentation drift over time.  

 

Our method resulted in augmented spectra with the same general features as the original spectra but varying intensities 

and peak locations (Figure 7).  

 
Figure 7: Augmented versus original spectra.  

 

 

 

 

 
Figure 6: Data augmentation process.  

 

 

 
Figure 5: Summary of preprocessing steps. 

 



 

 
 

 

2.4 Feature Reduction and Classification 

Linear discriminant analysis (LDA) and principal component analysis (PCA) are standard methods of feature reduction 

that look for linear data trends to identify correlation in large data. These methods have already been demonstrated for 

class separation of REIMS data [2]. A shortcoming of these methods is that they will not consider non-linear trends that 

may exist in the data [7]. Non-linear modeling approaches including deep learning are known to improve the accuracy of 

cancer classification problems and offer a more scalable approach when dealing with clinical data that is noisy in nature 

[7]. We developed our data analysis and classification framework with a neural network to identify non-linear trends. We 

compare the performance of the linear approaches with non-linear modeling as we believe moving forward to 

intraoperative data will require dealing with noisy and highly heterogeneous measurements. 
 

The framework we developed consists of a neural network with two branches: 

an autoencoder for sophisticated dimension reduction and a classifier for 

prediction. This structure was chosen so that the decisions made at each layer 

of the neural network are chemically intuitive and can be used to understand 

classification outliers. An autoencoder is an unsupervised neural network 

designed to deconstruct data to a few distinct features and then reconstruct the 

original data from those features. The central layer of this network is the 

encoding layer which can be used as a reduced and informative representation 

of the input data, for our data this layer is a representation of the most significant 

ion peaks. Previous studies show the unique shape of asymmetrical 

autoencoders outperform symmetrical autoencoders by reducing predictive 

error during reconstruction [8]. An asymmetrical autoencoder model was used 

as the first branch in our network to decrease the dimensionality of the training 

space and improve classification accuracy. Each layer of the autoencoder was 

activated using the ReLU activation function and regularized according to 

Kullback-Liebler (KL) divergence [9]. A dropout rate of 0.5 was implemented 

after each layer to prevent overfitting. The autoencoder was optimized to 

minimize the mean squared error using gradient descent with the Adam update 

rule. The second branch of our network is a classifier that is trained at the same 

time so the network is forced to extract the most useful features for both 

reconstruction and classification (Figure 8). The final layer of this branch of the 

network was activated using the Soft max activation function and optimized to minimize the categorical cross entropy. 

The loss weights for each branch of the network are set to 0.1 and 10 for the autoencoder and classification branch 

respectively. Using our method of augmentation, the training data was augmented 6 times to increase the number of 

samples in the training set.  As a baseline, we use PCA dimensionality reduction and LDA classification to validate our 

model. PCA was used to reduce our input data from 1000 to 150 principal components and an LDA classifier was fit to 

the augmented training set for classification.  

 

3. RESULTS AND DISCUSSION 
Each classifier was used to predict the classes for each sample in the test set. Table 2 describes the combinations of samples 

used for the training and testing sets and the accuracy achieved with each method.  

 
Table 2: Training and testing set specifications and results achieved using linear and non-linear classification techniques.  

Training Set Testing Set PCA + LDA NN 

6 week cohort 4 week cohort 96% 96.8% 

4 week cohort 6 week cohort 84.8% 91.7% 

Both cohorts Both cohorts 88.7% 92.2% 

  

 

 
Figure 8: Neural network structure. 

 



 

 
 

 

The confusion matrices obtained using the 6 week cohort as the training set and the 4 week cohort as the testing set are 

shown in Figure 9 below.  

Using our non-linear method, the classifier only made 4 incorrect predictions with respect to liver, IP membrane and 

kidney samples. The same confusion matrices were generated using the 4 week cohort as the training set and the 6 week 

cohort as the testing set (Figure 10). 

 

Our non-linear method again outperforms traditional LDA and PCA, but the classifier incorrectly predicts a more 

distributed set of  tissue types. Finally, the confusion matrices were generated using a combination of both cohorts for 

training and for testing (Figure 11). 

 
Figure 9: Results obtained using the 6 week cohort samples as the training set and the 4 week 

cohort as the test set. Left- classification results with the neural network (96.8%).  Right- 

classification results without the neural network (96%). 

 

 

 

 
Figure 10: Results obtained using the 4 week cohort samples as the training set and the 6 week 

cohort as the test set.  Left- classification results with the neural network (91.7%).  Right- 

classification results without the neural network (84.8%). 

 

 

 



 

 
 

 

 

Again the non-linear classifier outperforms traditional LDA and PCA but mislabeled tissue types are more random and 

distributed.  

 

To better understand the misclassifications made using our non-linear network, the autoencoder reconstruction of one of 

these mislabeled samples was investigated. When the 6 week cohort was used for training set and the 4 week cohort was 

used for testing set, a liver sample was mislabeled as a lung sample (Figure 12).  

 

 
Figure 12: Left – Autoencoder reconstruction of mislabeled liver sample (labelled as lung). Middle – Autoencoder reconstruction of 

correctly labelled lung sample. Right – Autoencoder reconstruction of correctly labelled liver sample. 

On the right in Figure 12 is a correctly labelled autoencoder reconstruction of the spectra for a liver sample. This 

reconstruction is consistent with what we observe for healthy liver tissue. On the left in Figure 12 is the reconstruction of 

an incorrectly labelled liver sample demonstrating an obvious qualitative difference from the healthy liver sample. The 

second peak in the spectrum occurring at approximately 270 m/z is unexpected for liver tissue. This spectra  more closely 

resembles the reconstruction in the middle in Figure 12 of a correctly labelled lung sample. As demonstrated earlier, the 

training set in this partition (the 6 week cohort) had macro-metastasis on the lungs and liver whereas the testing set (4 

week cohort) did not. Therefore, this incorrect classification may actually indicate that there is reason to revisit this 

mislabeled sample because there may be presence of early metastasis on the liver at 4 weeks. 

 

These misclassifications can be used, alongside the correct classifications, to better understand the metastasis progression 

of tissue samples around the primary tumor at progressing stages of the disease. A more robust algorithm can be developed 

for this purpose by introducing a non-tumor bearing control group of mice and investigating metastasis and healthy tissue 

samples more closely.   

 

 
Figure 11: Results obtained using the 4 week and 6 week cohort samples as the training set and a 

combination of 4 week and 6 week samples as the test set.  Left- classification results with the 

neural network (92.2%).  Right- classification results without the neural network (88.7%). 

 

 

 



 

 
 

 

4. CONCLUSIONS 
The classifier is shown to accurately distinguish metastasis from surrounding tissue for cancer at different stages of tumor 

progression. The non-linear classifier outperforms the linear classifier for all three dataset partitions. The performance 

distinction of linear versus non-linear classification techniques is small (an average of 3.7% higher) for this data which is 

not unexpected because our dataset is homogeneous and the classes we are identifying are linearly separable. The addition 

of neural networks extends our classifier for more general usage and new datasets. The implementation of the autoencoder 

in our non-linear method also indicates that our network can be used to better understand the level of metastasis progression 

in various tissue regions. Future work may include a closer investigation into metastatic and non-metastatic tissue and 

comparing neural networks and linear models for the translation of xenograft models to clinical studies. Our results indicate 

that tissue classification is possible with the use of the iKnife and machine learning classification. This technology can be 

applied intraoperatively to inform margin decisions during tumor resections. 

 

5. NEW OR BREAKTHROUGH WORK TO BE PRESENTED 
We demonstrate the feasibility of REIMS data collection and classification of primary cancer from its surrounding tissues 

in xenograft mice models of human breast cancer, at two different stages of cancer progression. Although linear 

classification is sufficient for classifying homogeneous tissue samples from xenograft, we extend this classifier beyond 

our homogeneous study to create a more general and versatile classifier. 
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