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Abstract. A rapid approach to monitor ablative therapy through optimizing 
shape and elasticity parameters is introduced. Our motivating clinical applica-
tion is targeting and intraoperative monitoring of hepatic tumor thermal abla-
tion, but the method translates to the generic problem of encapsulated stiff 
masses (solid organs, tumors, ablated lesions, etc.) in ultrasound imaging. The 
approach involves the integration of the following components: a biomechani-
cal computational model of the tissue, a correlation approach to estimate/track 
tissue deformation, and an optimization method to solve the inverse problem 
and recover the shape parameters in the volume of interest. Successful conver-
gence and reliability studies were conducted on simulated data. Then ex-vivo 
studies were performed on 18 ex-vivo bovine liver samples previously ablated 
under ultrasound monitoring in controlled laboratory environment. While B-
mode ultrasound does not clearly identify the development of necrotic lesions, 
the proposed technique can potentially segment the ablation zone. The same 
framework can also yield both partial and full elasticity reconstruction.  

1   Introduction 

Primary and metastatic liver cancer represents a significant source of morbidity and 
mortality in the United States and worldwide [1]. An increasing interest has been fo-
cused on treatment using thermal ablative approaches, particularly radiofrequency ab-
lation (RFA). These approaches utilize image guided placement of a probe within the 
target area in the liver parenchyma. Heat created around an electrode is conducted 
into the surrounding tissue, causing coagulative necrosis at a temperature between 
50°C and 100°C [2]. Key problems with this approach include: 1) localiza-
tion/targeting of the tumor and 2) monitoring of the ablation zone. The first problem 
has been previously addressed by developing a robotic 3DUS system for guidance of 
liver ablation. The second problem, the subject of this paper, is monitoring the zone of 
necrosis during ablative therapy. 

Monitoring the ablation process in order to document adequacy of margins during 
treatment is a significant problem. Current approaches often result in either local  
failure or excessively large zones of liver ablation. Some ablative devices employ 
temperature monitoring using thermisters built within the ablation probes. However, 
these temperatures only provide a crude estimate of the zone of ablation. Magnetic 
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resonance imaging (MRI) can monitor temperature changes (MR thermometry), but is 
expensive, not available in many sites, and difficult to use intraoperatively [3]. Ultra-
sonography (US) is the most common modality for both target imaging and is also 
used for ablation monitoring. However, conventional ultrasonographic appearance of 
ablated tumors only reveal hyperechoic areas due to microbubbles and outgasing, but 
cannot adequately visualize the margin of tissue coagulation. Currently, ablation ade-
quacy is only estimated at the time of the procedure and primarily based on the probe 
position and not the true ablation zone. 

Accordingly, ultrasound elasticity imaging (USEI), known as elastography, has 
emerged as a potentially useful augmentation to conventional ultrasound imaging, 
first introduced by Ophir [11]. USEI in monitoring ablation [4, 13-16] was made pos-
sible by the following observations: (1) different tissues may have significant differ-
ences in their mechanical properties and (2) the information encoded in the coherent 
scattering (a.k.a. speckle) may be sufficient to calculate these differences following a 
mechanical stimulus. However, producing a real-time elasticity map using 3D ultra-
sound data is an exigent task that requires extensive computation and has its own 
limitations. Despite the fact that strain images have better signal-to-noise (SNR) and 
contrast-to-noise (CNR) compared to US images [10, 12] (Fig. 1), these images still 
suffer from artifacts related to their formation theory or US artifacts. These artifacts 
are primarily attributable to decorrelation due to out-of-plane motion, large deforma-
tion, shadowing effect, or other causes. Moreover, speckle decorrelation occurs due to 
the shadowing/attenuating effects underneath the hot ablation zone as seen in the B-
mode image (Fig. 1, left). 

 Accurate segmentation of strain images is an essential in planning and monitoring 
ablations [4, 13-16]. More generally, our method is directly relevant to a large family 
of interventions that require targeting, tracking, and monitoring some encapsulated 
stiff mass suspended in a softer background. In this paper, we report a generic and 
rapid approach to segment stiff lesions based on tissue deformation (i.e. displace-
ments), without needing to estimate strain images. 

 

Fig. 1. B-mode image shows ex-vivo liver boundaries embedded in gel based medium. It is not 
possible to differentiate the ablated area from B-mode. Strain is generated from differentiating a 
displacement map in the axial direction. Strain provides clear evidence of the presence of hard 
lesion, which is in agreement with the gross pathology picture. 

2   Strain Imaging Segmentation  

Strain imaging holds the promise of playing a significant role in planning and moni-
toring ablative therapy [4, 13-16]. However, reliable and rapid semi/automatic  
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segmentation of noisy strain images is needed during ablation intervention. By com-
paring ablated regions in both gross pathology and strain images in the 18 ex-vivo 
bovine liver samples, strain imaging -immediately after ablation- tends to overesti-
mate ablation coverage in 33.3 % of the time, due to a decorrelation region beneath 
the ablated lesion [15, 16]. To appreciate this fact, refer to the strain image in Fig. 1 
that has a strong agreement with gross pathology laterally and an obvious overestima-
tion axially. It is only 13.3 % of the time when ablation coverage in strain images 
matched corresponding gross pathology images. Accurate segmentation should help 
the surgeon by monitoring the extent of the applied ablative therapy in 3D, planning 
optimal overlap/multiple ablations to cover the original target tumor, and terminating 
decision of the procedure.  

To extract ablation boundaries, one approach is to apply conventional image seg-
mentation techniques directly to strain images. Initially to get these strain images, we 
start from RF data as input; create the displacement and correlation images; then dif-
ferentiate the axial displacement field and estimate the axial strain tensor (ε11). Obvi-
ously, to have reliable standalone segmentation module, the inputs (strain images) to 
this module should meet some expected standards, or consistent quality. However, 
obtaining local strain values with high accuracy depends on precise measurement of 
local tissue displacement. A significant problem is the loss of similarity (correlation) 
in the pre- and post-deformed image. During the last few years, several groups have 
investigated this problem [15]and have came up with various strategies for increasing 
the reliability of the cross-correlation function including: 1) Choice of the processing 
parameters, kernel length and amount of kernel overlap [5]; 2) RF-data tracking in-
stead of envelope-detected data when small displacements are involved [6]; 3) Tem-
poral stretching that include adaptive local and global companding [7]; and 4) Axial 
and lateral RF-data interpolation. In addition to these enhancements for displacement 
estimation, there has been active research in improving the procedure for deriving 
strain from displacement images including: 1) A least squares strain estimator 
(LSQSE) was suggested [8]; 2) Multi-step compression [9] to increase SNR; and 3) 
Average and median filtering [10]. 

Besides the perennial problem of decorrelation, the following issues need to be ad-
dressed. Displacement estimation: The majority of the rapid techniques assume a 
constant distribution of scatterers before and after a small (<3% axial strain) intro-
duced axial compression. However, this assumption is not valid during ablative ther-
apy proximal to the ablation zone, where vaporization and bubbles affect speckles ap-
pearance and matching. Strain estimation: The procedure for estimating the axial 
strain tensor is based on differentiating the displacement field. However, differentia-
tion also amplifies errors and noise in the displacement measurements. Unfortunately, 
all current solutions to suppress noise in strain imaging require least squares estima-
tion or average multiple compression steps.  Both add a considerable computation 
cost and/or time delay. Time performance: The entire chain of displacement estima-
tion, strain image reconstruction, and strain image segmentation takes far too long for 
3D datasets. Prior knowledge and redundancy: Clearly, not all displacement/strain 
measurements are required to locate a lesion. At the same time, in our motivating ab-
lative therapy application, there is well-defined a priori knowledge about the expected 
shape and size of the ablation. Undoubtedly, utilizing this a priori information effec-
tively should reduce redundant computational cost or time required. Elasticity recon-
struction: Segmentation helps in defining the location and boundary of a lesion but 
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fails in reconstructing Young’s modulus at the region of interest. It will be favorable, 
if one can augment the segmentation pipeline to solve the inverse problem with 
minimal effort. 

To address all these issues, we propose a novel framework to segment and track 
ablated lesions based on tissue deformations and shape priors. Furthermore, elasticity 
reconstruction, i.e. to retrieve the Young’s modulus, is possible with minimal altera-
tion of the framework. 

 

Fig. 2. Iterative tracking and segmentation pipeline 

3   Elasticity Model Based on Tissue Deformations 

The key insight to our approach is the integration of prior geometrical knowledge, a 
physical elasticity model, and direct estimation of tissue deformation. The proposed 
approach is explained in Fig. 2.The process starts, in the lower branch of the work-
flow, from a prior geometrical model. In our example, the ablated lesion is modeled 
as simple ellipse. In liver ablation, we have a very reliable initial guess of the location 
of the lesion, because we know the position of the ablator. Next we solve the forward 
problem of estimating the theoretical displacement from a geometric mesh representa-
tion of the initial model, boundary conditions and assumed elasticity model. The 
computational method of choice to solve this forward problem is Finite Element 
Method (FEM). In the upper branch, we start with calculating the correlation map and 
then rapidly estimate the displacement field. The lower and upper branches meet in 
the shape optimization loop where we iteratively solve the inverse problem to opti-
mize our parametric geometric model and locate the region of interest.  

3.1    Tissue Displacement Estimation 

We acquire RF ultrasound data from a tissue in both rest and stressed states, and then 
estimate the induced deformation distribution by tracking speckle motion. Our  
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implementation is based on maximiza-
tion of normalized cross-correlation be-
tween pre- and post-compressed RF 
signals. In the example shown in Figure 
2, decorrelation was caused by shadow-
ing and attenuation effects underneath 
the hot ablation zone, as seen in the B-
mode image. Fortunately, decorrelation 
artifacts can be detected from the nor-
malized correlation map associated with 
the displacement image. Figure 3 shows 
a typical color-coded correlation image, 
where dark-red indicates perfect corre-
lation (unity) and dark-blue stands for 
perfect decorrelation (zero). In the same 
figure, there are four different binary 
maps based on thresholds 0.95, 0.90, 0.85, and 0.80, all showing the spatial coverage 
of these correlation regions. The white region associated with correlations greater or 
equal to 0.95 is small compared to the region associated with correlations 0.80.  
knowing the locations of better correlated regions helps us formulate a better condi-
tioned shape optimization framework as shown in section 3.3. 

3.2   Theoretical Displacement Estimation  

To calculate theoretical displacements, a tissue elasticity model needs to be consid-
ered. We assume linear elastic, homogeneous and isotropic material. Moreover, liver 
tissues as mainly filled with water are incompressible, and hence Poisson’s ratio is 
nearly 0.5. We also apply uniform pressure by the transducer face in a quasi-static 
form, in which the deformation is considered plane strain. It is a type of deformation 
where there are no displacements in the z-direction, and the displacements in the x- 
and y- directions are functions of x and y only. For plain strain problem, the assump-
tion is εz = εzx = εzy = 0. Given a boundary conditions and a finite element mesh, the 
theoretical displacements u = (u,v) can be calculated by solving the following Na-
vier’s equations: 
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where ρ is the material density, K are the body forces, and c is a tensor where each en-
try is a function of G (shear modulus), E (Young’s modulus), and ν (Poisson’s ratio).  

3.3   Shape Optimization 

Here we compare observed tissue displacements with simulated displacements using 
correlation map as weighting criterion. This weighting method puts high premium on 
the “most trusted” displacement areas and drives the evaluation of the domain points in 
the mesh at the corresponding locations. This approach reduces the resources needed 
for updating the mesh and effectively utilizes the available displacement information 

 

Fig. 3. Correlation in the displacement map, 
thresholded at different correlation levels 
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with minimal redundancy. Next, in an iterative optimization cycle where lesion loca-
tion and shape parameters S, we adjust this hypothetical displacement field until it fits 
the actual displacement field. When the two fields are sufficiently similar, then the de-
formed model will yield the contours of the lesion. Thus, this inverse framework is try-
ing to solve a non-linear optimization problem with the objective function:  
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where S is the estimated shape parameters, u is estimated tissue motion, ( )Sℑ  is the 

objective function, N,M are the number of rows and columns respectively in the dis-
placement maps, and W is the correlation map that acts as a weighing function to mini-
mize the effects of distrusted tissue displacements. The experimental implementation is 
currently utilizing a modified version of the simplex search algorithm and LM method.  

4   Experiments and Results  

A thorough simulation study was conducted independently of any US imaging. The 
study involves running the finite element model to generate a displacement map 
where we know the ground truth shape parameters coupled to this map. Then, we use 
this displacement as the simulated input from tissue deformation. We have 5 parame-
ters to optimize, ellipse location (x,y), size (a,b), and orientation. We tested the  
robustness of the method under different conditions and using different optimization 
schemes. The tests include partitioned optimization by solving x, y together or sepa-
rately, then solving for size parameters and orientation. This is performed while ap-
plying different objective functions and different search constraints.  

 

Fig. 4. Shows both strain and displacement images that reflects tissue deformations. Model dis-
placement image represents FEM theoretical deformation. Also it illustrates a small circle to the 
top, left corner as an initial guess and another small circle after 8 iterations approaching to the 
final ellipse. Gross pathology picture is included to the right 

The second study was conducted using a robotic ultrasound acquisition system. We 
used a Siemens Antares US scanner (Siemens Medical Solutions USA, Inc. Ultra-
sound Division, Issaquah, WA) with an ultrasound research interface (URI) to access 
raw RF data. A Siemens VF 10-5 linear array was used to acquire data. The tracking 
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beams were standard B-mode pulses (6.67 MHz center frequency, F/1.5 focal  
configuration, apodized, pulse repetition frequency (PRF) of 10.6 KHz, with a pulse 
length of 0.3μs). We collected data immediately after ablation of 18 ex-vivo fresh bo-
vine liver samples; they are divided into three groups, 4min, 6min, and 8 min abla-
tions using a Radionics device.  All samples were soaked in degassed water to remove 
air pockets, and then embedded into gel material to support the liver during ablation 
and also maintain the assumed incompressibility of living tissues. 

Figure 4 reflects the application of our approach on one ex-vivo liver sample ab-
lated for 8min. Both strain and axial displacement from tissue deformation are in-
cluded in the figure. The strain image shows good indication for the ablation zone. 
The FEM theoretical axial displacement at the last iteration has a good agreement 
with the corresponding tissue displacement. Also, we included the initial ellipse at the 
top-left corner, and in 8 iterations it becomes closer to the final shape, which was es-
timated in 15 more iterations. To evaluate the resulting segmentation, we use two in-
dependent ground truths. The first one deals with ellipse location, by relying on the 
ablator’s tip location in the B-mode image before ablation. We have excellent agree-
ment within 1 mm laterally. It is hard, however, to get a corresponding location axi-
ally, due to the unmeasured axial motion of the US probe before collecting strain data. 
The second ground truth deals with ellipse size, by using gross pathology picture to 
get an accurate measure for the ellipse size. In axial direction, our approach suggests 
76.1 pixels (10.49mm) where pathology picture gives about 11 mm. In lateral direc-
tion, however, our approach numbers is 140 pixels (18 mm) where pathology is 15 
mm. This suggests that the axial displacement is very accurate in locating axial fea-
tures but we probably need to regularize the objective function with lateral displace-
ment estimation. Figures 5 and 6 present a convergence study for the scale parameters 
and center location, respectively. In both figures and for all four parameters, 10 itera-
tions were enough to lock on a value with 10-4 difference variations.  

 

 
 

 

Fig. 5. Scale convergence of the ellipse Fig. 6. Location convergence of the ellipse. It 
also shows the effects of K on optimizing shape 
parameters. K is the ratio of Young’s modulus 
of ablated lesion to normal liver. 
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We chose a suggested literature value of 1.5 KPa for the Young’s modulus of bo-
vine liver, and tested the convergence of the FEM model to the center location using 
values of the Young’s modulus for the ablated tissue, at 7.5, 15, 30, and 60 KPa. The 
results are shown in Figure 6, where the K parameter refers to the ratio of the ablated 
tissue, at 7.5, 15, 30, and 60 KPa. The results are shown in Figure 6, where the K pa-
rameter refers to the ratio of insensitive to variations for K values in the 10-40 range, 
in other words, regardless how hard we have cooked the tissue or how poorly estimate 
its Young’s modulus, the model robustly converges. Also when we picked an unrea-
sonable value, such as K=5, the shape optimization algorithm was biased with only 3-
5 pixels (0.7mm).   

5   Conclusions 

We have developed and tested a novel shape optimization approach based on tissue 
deformation and shape priors. The results for the 18 samples will be reported in a de-
tailed journal publication. Extending this framework to 3D is the next step for this 
project, which promises to increase the amount of measurements, while reducing the 
number of unknowns to just 9 parameters for an ellipsoid. Finally, the authors ac-
knowledge the financial support from the NSF #EEC 9731478 and Siemens Corpo-
rate Research. 
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