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ABSTRACT 
This paper describes a new robust method for 2D and 3D ultrasound (US) probe calibration using a closed-form 
solution. Prior to calibration, a position sensor is attached to the probe and is used to tag each image/volume with its 
position and orientation in space. At the same time, image information used to determine target location in probe 
coordinates.  The calibration procedure uses these two pieces of information to determine the transformation 
(translation, rotation, and scaling) of the scan plane with respect to the position sensor. We introduce a novel 
methodology for real-time in-vivo quality control of tracked US systems, in order to capture registration failures during 
the clinical procedure. In effect, we dynamically recalibrate the tracked US system for rotation, scale factor, and in-
plane position offset up to a scale factor. We detect any unexpected change in these parameters through capturing 
discrepancies in the resulting calibration matrix, thereby assuring quality (accuracy and consistency) of the tracked 
system. No phantom is used for the recalibration. We perform the task of quality control in the background, 
transparently to the clinical user while the subject is being scanned. We present the concept, mathematical formulation, 
and experimental evaluation in-vitro. This new method can play an important role in guaranteeing accurate, consistent, 
and reliable performance of tracked ultrasound. 
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1. INTRODUCTION 
 
During the past two decades surgical procedures have witnessed a revolutionary change, nowadays referred to as 
Computer Integrated Surgery. In particular, with the introduction of various imaging modalities such as Magnetic 
Resonance Imaging (MRI), Computer Tomography (CT), and Ultrasound (US), surgical procedures have seen 
advancement in all stages, pre-, post-, and –intra-operative alike. True 3D imaging modalities, like MRI and CT, are 
extremely potent in terms of their rendering capabilities, but are cumbersome to use for intra-operative procedures, 
mainly due to obstructive hardware and imaging latency. Ultrasound, however, has been emerging as a widely popular 
image guidance modality, since it is real-time, safe, convenient to use in the operating room, and readily inexpensive 
compared to CT and MRI. 
 
Unfortunately, conventional ultrasound is predominantly a 2D imaging methodology. A significant amount of research 
has been conducted to convert this technology to provide the physicians with a 3D real-time visualization of the internal 
anatomy [1]. There are two basic methods to achieve this. The first, an intrinsically 3D method, is to either employ a 
fixed two-dimensional array transducer or a uniformly moving single array of sensors. This approach is somewhat 
limited, because the scanning range is constrained by the hardware, which is quite often rather bulky and expensive. The 
second technique, an indirectly 3D method, is to let the clinician manually acquire spatially co-registered 2D image 
slices, compound those into a contiguous 3D volume [2], and then refresh the volume with real-time slices. This 
approach is highly applicable to tracking invasive surgical tools and compensating for organ motion. Significant 
research has been dedicated to quantitative tracked ultrasound, involving tracking the US probe in 3D space with 
respect to a stationary frame of reference. While tracked US originates from interventional applications, it recently has 
become an indispensable tool in external beam radiation therapy (EBRT) guidance [3]. In fact, EBRT is expected to 
become the largest user of tracked ultrasound in the next couple of years. Each year in the United States 65,000 patients 
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are treated for prostate cancer alone. Considering an average of 40 treatment fractions per patient, the total number of 
procedures is approximately 2.6 million a year. Tracked US guidance is also applicable to the EBRT of breast cancer, 
adding about 2 million more cases to the potential market. 
 
Typically, tracking is achieved by rigidly attaching 3D localizers to the US probe. A missing link, however, is the 
spatial transformation between the US image pixels and the 3D localizers on the probe, which requires calibration. 
Hence, calibration is ubiquitously present in all systems where ultrasound is used for quantitative image guidance. From 
our experience, the wide majority of intra-operative hazard situations in tracked US systems are caused by failure of 
registration between tracking and imaging coordinate frames, thereby manifesting in miscalibration of the tracked US. 
The most typical form of error is a false reading of the tracker. This occurs quite often in electromagnetic tracking 
systems due to invisible field distortions caused by metal objects or electromagnetic noise. Another typical problem 
related to tracking is deformation or physical damage of the tracking body attached to the probe, causing a latent 
misreading of pose. What makes these problems exceedingly dangerous is that they occur without apparent warning. 
Among human operator errors, inadvertent changes of lateral image polarity occur quite frequently and transparently to 
the clinical user. With regular off-line recalibration some of the aforementioned errors can be caught prior to procedure. 
The process is called Quality Control (QC), a mandatory routine in any clinical department. Typically, QC is performed 
annually, monthly, or weekly, which places a heavy financial burden on the department. In addition to increasing patient 
safety, reduction in QC costs clearly is a major incentive. 
 
In all current calibration methods, a set of objects (often referred to as phantoms) with known geometrical properties are 
scanned and then various mathematical procedures are applied to estimate the unknown transformation that maximizes 
the similarity between the US images and the phantom [4-9, 13]. There is error associated with each stage of the process 
(phantom fabrication, image acquisition, spatial co-registration, image processing, formulation, and numerical 
optimization solution), the combined total error of which may easily become significant. Geometrical model based 
phantoms like points [4-6, 10, 11] and planes [5, 7, 11] exist and some studies have compared their accuracy and 
performance [5, 11]. The cross-wire and three-wire phantoms require large numbers of images and are hard to automate, 
while the single-wall phantom such as the Cambridge phantom [5] is a more automatic, repeatable method. Figure 1 
shows a typical formulation for the coordinate systems required for the fore mentioned phantoms. Galloway et al. [9] 
introduced pointer-based methods, which simplify the nonlinear optimization problem. However, these methods require 
pointer calibration and careful data collection. One variation of the pointer-based method was introduced by Pagoulatos 
[6], where the phantom is a collection of N-shaped fiducials that are defined in the tracker frame. Blackall et al. [12] 
presented a voxel based registration method for US calibration. Registration is achieved by the maximization of 
normalized mutual information. This occurs when accurate calibration parameters give optimal similarity between the 
US images of the phantom and the 3D voxel based model acquired pre-operatively. 
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Figure 1: The chain of transformations is from pixel frame P, to the receiver frame R, 
to transmitter frame T, and finally to construction frame C. The (u,v) pixel 
coordinates are multiplied by (Sx,Sy) scale factors. The resulting transformed point 
Cx has the (0,0,0) coordinate values [Cross-wire Phantom]. (Upper figure Courtesy 
of R. Prager) 
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The use of special objects and phantoms, however, is cumbersome and foreign to the operating room where interrupting 
the procedure for the sake of probe calibration is not practical. What is required therefore is a paradigm shift in 
calibration technology to a phantomless self-calibration that is performed directly on the patient, intra-operatively, in 
real-time, transparently to the physician. 
 
Generally, full calibration involves a six degree-of-freedom (DOF) rigid transformation and three or two dimensional 
scale factors when using 3DUS or 2DUS probes, respectively. However, on a practical level, the possibility of pure 
translational error in the calibration matrix is low. One atypical scenario would involve the rigidly attached sensor 
sliding without experiencing any relative rotation in the US image reference frame. Thus for the purpose of QC, it is 
sufficient to recalibrate the system for the remaining (rotational and scale) degrees-of-freedom. This paper presents the 
concept, mathematical framework, experimental implementation, and in-vitro evaluation of a phantomless real-time 
method that detects intra-operative failures of the tracked US while recovering the calibration matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. MATHEMATICAL FORMULATION 
 
The key enabler of our self-calibration method is a closed-form mathematical formulation of the problem. Figure 2 
presents the coordinate systems for the mathematical formulation. A1, A2 are the transformations of US picture 
coordinate system (P) with respect to the fixed construction frame (C) at poses 1 and 2, respectively. Note that the 
actual selection of C is arbitrary and the only requirement is that it must be rigidly fixed during the calibration process. 
Using A1 and A2, we obtain the transformation between poses 1 and 2, as A=A2A1

-1. At the same time, the transformation 
between the two poses can be recovered using a calibration phantom or recovered directly by matching the 2D 
ultrasound images acquired in these poses to a prior 3D model of the phantom object. B1 and B2 are readings from the 
tracker for the sensor frame (R) with respect to tracker reference frame (T), at poses 1 and 2 respectively. The relative 
pose between the sensor frame (R) at pose 1 and 2 is given by B = B2

-1B1. This yields the following homogeneous 
matrix equation: 

Where A is estimated from images, B is assumed to be known from the external tracking device, and X is the unknown 
transformation between the US image coordinate system and the sensor frame (R). Expanding this equation yields two 
separate constraints on translation and rotation, where Ra is the rotation of the US image frame between pose 1 and 2, λ 
is the unknown scale factor vector that relates the translation vector ua in voxel space to the US image frame translation 
vector ta (usually expressed in mm), such that: 
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Figure 2: Coordinate definitions in the closed form AX=XB. 
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It is important to account for the most general case where the scale factor (which again converts from voxel space to 
image space) is not known. This scenario typically occurs when A is recovered by registering the US image to some a 
priori known model including pre-acquired MRI or CT volume (or phantom) given in voxel space. In the linear 
formulation of the problem, we will use the linear operator vec and the Kronecker product (⊗) [14]. Using the following 
property of the Kronecker product: 
  

( ) )()( DvecECCDEvec T⊗=   (3) 

 
One can rewrite equation 1 as:  
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From (4) and (5), we can transform the whole problem (AX=XB) into a single homogeneous linear system: 
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The solution for this homogeneous linear system could be given by finding the null space Ψ, which is a subspace in R15. 
Then the unique solution could be extracted from the null space using the unity constraint to the first 9 coefficients 
representing the Rx. In case of noise-free data, this method guarantees orthogonality but not normality of the recovered 
Rx, which can be easily fixed [15] as follows: 
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V
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Where sign is a sign function that returns the sign of det(V), V=vec-1(v) and v is any vector in the null space Ψ. In the 
case of noisy data, one can project the estimated Rx into SO(3) manifold, and get a corresponding least squares solution. 
Obviously, one motion is not enough to recover all the parameters. In fact, two independent motions [16-19] (three 
poses) with non-parallel axes is sufficient to recover a unique solution for AX=XB. However, another solution can be 
described in where the system is solved in two steps: first extract the rotation as in (7), and then solve for the translation 
and scale as in (8).  
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We have extended this solution method to account for inhomogeneous scale in the three coordinate axes [8,20]. Prior to 
this work, we have exploited this closed form formulation to solve the calibration problem based on various mechanical 
phantoms including the double-wedge phantom [21], z-shape phantom [8], and thin-wall phantom [20]. In all these 
methods, phantoms were built in a way to assist estimation of A’s, which is the relative motion between successive US 
frames as shown in Figure 2. Our present task reduces to recovering A’s as we are scanning real tissue and collecting the 
corresponding B’s from the tracker, and then obtaining the calibration by solving the homogenous linear system in 
equation (6). Obviously, recovering A’s from real-time US sequences is a tracking problem instead of feature 
segmentation from static US phantom images. Tracking the 6 DOF of A’s based on 3DUS data is considered a straight 
forward problem. The main challenge lies in the full recovery of the A’s based on 2DUS data. The in-plane motion 
parameters can be recovered with sub-pixel accuracy in real-time, using speckle based tracking algorithms applied to 
the B-mode images. The out-of-plane motion parameters, however, appear to be difficult to recover from 2DUS data. In 
this paper, we recover A’s through careful algebraic analysis of degenerate special motions utilizing the closed form 
formulation in (6). In general, a special or degenerate motion doesn’t lead to unique optimal total, 6DOF, calibration. 
However these special motions (translation, planar or rotation about an axis) as shown in 2.1-2.3 can be used to partially 
calibrate the US system.  

 Translation Motion 
This motion scenario is realized by moving the 2D/3D US probe in translational sweep (without rotation) to collect 
nearly parallel stack of images and/or series of 3D slabs. Also it can be shown in a panoramic scan where the images 
can be stitched together without introducing a relative rotation. Given this kind of motion, Rb = R a= I3, leading to, 
Rx*tbi= tai where i denotes the motion. Using the property of the Kronecker product in (3) 
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Three independent translations are sufficient to obtain a full-rank system. Solving for Rx and the three scale factors: 
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Where ∆ = det(tb1,tb2,tb3), Using Khatri-Rao product [14] which defined as: 
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We have obtained a closed-form solution that recovers an anisotropically scaled rotation matrix from three independent 
translations. We can recover the three scale factors by applying the unit constraint on each column vector, and recover 
the underlying rotation by then rescaling the columns to be unit vectors. This basically proves that three independent 
motions are sufficient to recover the rotation and the three scale factors. However, the third motion is not even 
necessary. It can be shown [15] that given two independent motions tb1, tb2, the third constraint comes from the cross-
product between tb1, tb2. 
 
In order to map this analysis to our application, several requirements must be considered. The ultrasound machine 
generates real-time 2D US pixel-map, meaning that we have only two unknown scale factors in x and y, denoted as λx 
and λy. With sweeping probe motion we obtain multiple poses which suggests folding the closed form representation 
into a least squares problem. Starting from the following equation: 
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(9) 

 
The solution of this equation can be achieved in many ways. One can solve non-linearly for the three rotations and the 
two scale factors (λx, λy). Alternatively, one can solve linearly for the nine parameters of the scaled rotation and perform 
QR factorization with positive scale factor constraints. Or simply, apply the norm constraint on (9) as follows: 
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This allows solving for both (λx, λy). After recalculating the scaled uai, we obtain two sets of points governed by an 
SO(3) rotation matrix that can be recovered with Horn’s method [22]. 
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 Planar Motion 
Planar motion is more general as it also allows, in addition to translation, in-plane rotation, referred to as ‘Motion I’ in 
Figure 4. This type of sweeping probe motion is commonly applied clinically. With this general motion, one can recover 
both rotation and anisotropic scale factors as shown before, but it will not yield a full recovery of the position offset tx. 
By applying (6) we obtain: 
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Note that when 

3IRaRb == , equation (10) becomes similar to the pure translation case in (9). Also note that equation 
(11) is always under constraint as (I3-Ra) has rank 2, regardless to the number of in-plane rotations, meaning there is no 
single solution for tx and the general solution will have exactly one (the number of unknowns minus the rank) arbitrary 
scale factor ζ. So the solution can take the form: 
 

nx ttt *)( ζζ += o   

 
where ζ is the unknown scale factor and tο is a unique solution in the plane of motion (2-dimensional), since (I3-Ra) has 
rank 2. tn is the normal to the plane of motion (Figure 3). In our case, if the plane of motion is the US image plane (the 
x-y plane), tn may equal (0, 0, 1)T, which is a unit vector in the z-direction and thus perpendicular to the plane of motion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Illustration showing the unknown ζ. 

 

  
Figure 4: Experimental system and an illustration for the two 
suggested special motions.  ‘Motion I’ indicates a planar motion, 
and ‘Motion II’ indicates a rotation about an axis. 
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 Rotation about an axis 
Assuming that we have Rx, λx, and λy, the next step is to recover either ζ in tx(ζ), or tx.. By substituting Ra from equation 
(1.b) into (1.c) we get the following equation: 
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In this equation we know everything except ta, and tx. For general “n” motions, equation (12) gives 3n constraints while 
leaving (3n+3) unknowns, 3n for tai and 3 for tx, or (3n+1) unknowns, 3n for tai and 1 for ζ. There are basically two 
approaches to resolve this imbalance and solve for ζ or tx. The first approach suggests estimating tai for all n motions. tai 
can be recovered by feature/speckle tracking in 6DOF, which is a straightforward task once we have continuous 3DUS 
data. However, in case of 2DUS data, the method is reliable to recover the in-plane 3DOF but it suffers from inevitable 
drift in recovering the out-of-plane 3DOF [23]. Currently, the authors are developing more reliable out-of-plane motion 
estimation algorithms. In this paper we adopted the second approach, which suggests utilizing a special motion, Figure 
4, that would group all tai in a known relation instead of having to estimate all tai. Thus, one can easily recover tx or ζ in 
tx(ζ) as follows: 
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The special relation/motion we are proposing here is the following: 
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This equation can be solved for either tx as shown above or for ζ in case of having tx(ζ).  
 
 
 
 
 

3. MATERIALS AND METHODS  

 Experimental System 
In our experimental prototype (Figure 4), we used a SONOLINE Antares US scanner (Siemens Medical Solutions USA, 
Inc. Ultrasound Division, Issaquah, WA), with a Siemens VF 10-5 linear array probe. The patient was replaced with a 
tissue mimicking agar phantom. The US probe was held against the phantom in a rigid acrylic holder mounted on an 
adjustable steady arm. The arm had a dual purpose: to adjust the spatial position of the tracked US probe over the 
calibration phantom, and to ensure temporal synchronization between the tracker and the US scanner. Multiple optical 
markers were attached to the probe holder, which then were tracked by an OPTOTRAK device (Northern Digital Inc.). 
 
The tissue mimicking phantom provides realistic images of fully developed speckles. Its construction is based on a 
recipe by Fenster et al. [24]. Three percent by weight of agar gel (A-7002 Agar, Sigma-Aldrich, St. Louis, MO) was 
added to distilled water, with three percent by weight 50µm cellulose particles (S-5504 Sigmacell, Sigma-Aldrich), and 
with seven percent by volume glycerol (W25250, Sigma-Aldrich). The mixture was heated to 92 C°, stirred constantly, 
gradually cooled to 60 C°, and then poured into a container mold. We also introduced specular features and structures to 
mimic bone appearance and to allow for testing algorithmic performance under different echogenicity conditions. 
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Figure 5: The real-time self-calibration workflow. 

 
 
 
 
 

 Algorithm Workflow 
The workflow in the real-time self-calibration QC procedure 
is described in Figure 5.  The Acquisition Module receives the 
US video signal and tracker readings, from which it prepares 
synchronized indexed sequences of images and tracking 
information. The Motion Analyzer sorts out the types of 
motions in these sequences and sends a control signal for the 
Real-time Tracker, which recovers the A matrices. Finally, the 
AX=XB solver receives corresponding A and B data, and 
recovers the X calibration matrix. The Quality Control unit 
analyzes the new calibration and compares it with previous 
runs. In case of suspected discrepancy, an appropriate Action 
is initiated to deal with a hazard condition. The action could 
range from generating a warning message to demanding a halt 
of the procedure and full recalibration of the system.  
 
 

 Real-time Tracker 
As mentioned above, the role of Real-time Tracker is to 
recover the A matrices, the motion of the US image in 
construction frame, as it was described in Figure 2. What is 
necessary is to compute the relative motion in pairs of 
ultrasound images for which the absolute (tracked) motion is 
known. We accomplish this using direct image registration 
methods similar to those described in [25]. Specifically, we 
introduce an intermediate “warped” image representation W 
defined as: 
 

)*)((),;,( puRotIptuW += αα  

 
where u=(x,y)T is an image location, P  is a translation offset, and α is an interframe rotation. Let W(t; P, α) denote the 
column vector constructed by stacking the value of  W for all possible image locations u. We then compute an estimate 
of the offset (Pt, αt) between images at time t and t+d by iterating the following equation: 
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where mJ denotes the pseudo-inverse of the Jacobian matrix of W with respect to P and α. The values of (Pt, αt) is 
taken from the previous frame. 
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4. EXPERIMENTS AND RESULTS 
 
We used the experimental system to collect 5 datasets, altogether 
containing 20 motions in B-mode with a rectangular view and 8 cm 
depth. One of the datasets contained 4 motions and was obtained under 
a faulty condition: we purposely flipped lateral polarity of the B-mode 
image to simulate a common operator error. Table 1 shows the rotation 
and scale reported by the self-calibration QC system.  
 
In testing the image tracker, we used d=10 step size, for which images 
were matched with an RMS gray-scale error of less than 2% of signal 
value, suggesting a registration error of less than 1/10 pixel [25]. 
 
The heart of the self-calibration QC system, as seen in Figure 5, are the 
real-time image tracker and AX=XB solver. The image tracker is sensitive to the step d between registered images, while 
the AX=XB solver is sensitive to the number and type of motions used to recover the calibration parameters. The upper 
graph in Figure 6 illustrates the relation between the recovered scale and number of images and the step size d taken in 
the image registration algorithm. The “bad” case appears in the upper graph for the first 30 images and the “good” case 
is in the lower graph. Note that the number of images can be represented by the scanning time, where 1 second 
corresponds to 33 frames, sweeping over a certain distance covered with the given scanning velocity. The x-axis 
represents the number of frames used in the AX=XB solver and the y-axis is the scale ratio in mm/pixel. The upper 
figure is for λx, the lower is for λy. Figure 6 also shows convergence for the scale ratio under different image registration 
steps (small d: 1, 3, and 5; large d: 10, 20, 30, and 40). Note that as we increase the step size, we also introduce a delay 
equal to the step size before we start estimating a given parameter. This is because we must wait for the dth image to 
arrive. 

We have found that steps larger than 40 frames are not reliable to track and predict the motions of the speckle patterns. 
At the same time, these kernels are temporarily distant, suggesting that we have to wait for about 2 seconds to detect a 

 Magnitude of 
rotation 

(Rodrigues form) 

Scale in x and y 
(mm/pixel)  

Dataset-1 3.163 0.22 0.26 
Dataset-2 3.072 0.23 0.26 

Dataset-3 2.992 0.23 0.27 
Dataset-4 3.008 0.23 0.29 
Dataset-5 0.086 0.24 0.27 

Table 1: QC system report on rotation and scale 

 

 
Figure 6: Relation between the recovered scale and number of images & step size. 
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faulty condition. However, small tracking steps do need a few readings to start convergence, due to the small motions 
they deliver to the AX=XB solver. Note that the convergence for d= 1, 2, and 3 appears after 20 small motions for λy 
and appears after 30 small motions forλx, This is mainly due to the type of motion present. The intuition behind this is 
that we can’t estimate a scaling parameter in a direction normal to the direction of motion. Similarly, favorable results 
were obtained for the rotation component, as shown in figure 7. We can conclude that given the right motion, a kernel 
of 10 steps (d=10) converges in 10-20 steps, meaning 0.3-0.6 seconds with a total travel of ~1.5mm (scanning speed @ 
3mm/sec). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Conclusion and Future Work 
In general, the self-calibration QC system reported the calibration matrix robustly and consistently. It recovered the 
correct calibration parameters under normal working conditions by monitoring the constancy of calibration matrix and 
did not produce false alarms. It also managed to distinguish the faulty condition by catching an outlier calibration 
matrix. By far the most significant work item in progress is extending the self-calibration QC framework to estimate the 
out-of-plane free motion of the US probe, thereby providing full calibration in-vivo, real-time, as the patient is being 
scanned, which will obviate phantom-based calibration. The real-time performance of the self-calibration QC system 
allows for averaging hundreds of independent calibrations from a single sweep, which in turn promises to retire cross-
wire based reconstruction accuracy evaluation and at last make US calibration free from any phantom whatsoever. We 
will also compare the accuracy of our current self-calibration against published off-line calibration methods. Last but 
not least, the sensitivity and specificity of the self-calibration QC system will be examined. A clinical-grade QC system 
must catch all faulty conditions (high sensitivity), yet it must not halt the clinical intervention with producing false 
alarm (high specificity). Altogether, the combined QC and self-calibration system appears to have high practical utility 
for clinical departments that use and maintain tracked ultrasound systems. Finally, the authors acknowledge the 
financial support from the NSF #EEC 9731478 and Siemens Corporate Research.   
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