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Abstract
Objective: We present an algorithm that enables percutaneous needle-placement procedures to be performed with unen-
coded, unregistered, minimally calibrated robots while removing the constraint of placing the needle tip on a mechanically
enforced Remote Center of Motion (RCM).
Materials and Methods: The algorithm requires only online tracking of the surgical tool and a five-degree-of-freedom
(5-DOF) robot comprising three prismatic DOF and two rotational DOF. An incremental adaptive motion control cycle
guides the needle to the insertion point and also orients it to align with the target-entry-point line. The robot executes
RCM motion without having a physically constrained fulcrum point.
Results: The proof-of-concept prototype system achieved 0.78 mm translation accuracy and 1.48 rotational accuracy (this is
within the tracker accuracy) within 17 iterative steps (0.5–1 s).
Conclusion: This research enables robotic assistant systems for image-guided percutaneous procedures to be prototyped/
constructed more quickly and less expensively than has been previously possible. Since the clinical utility of such systems
is clear and has been demonstrated in the literature, our work may help promote widespread clinical adoption of this tech-
nology by lowering system cost and complexity.
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Introduction

Recent advances in medical imaging have induced a

rapid increase in minimally invasive image-guided

interventions, such as biopsy and needle-based local

therapies. The success of these procedures hinges

on the accuracy of needle placement. Conventional

unassisted freehand techniques depend primarily

on the physician’s hand-eye coordination and thus

often suffer from inaccuracy and inconsistency in

needle placement. As an appealing alternative,

medical robots offer the potential to manipulate sur-

gical instruments more precisely and consistently

than is possible by hand. At the same time,

however, contemporary medical robots introduce a

prohibitively complex engineering entourage into

otherwise rather straightforward needle-placement

procedures.

Manual needle placement typically includes the fol-

lowing three decoupled tasks: (1) moving the needle

tip to the pre-selected entry point with 3-DOFCarte-

sian motion; (2) orienting the needle by pivoting

around the entry point using 2-DOF rotation; and

(3) inserting the needle into the body using 1-DOF

translation along a straight trajectory. The technical

challenge for robot-assisted needle placement has

been to reproduce this sequenceofmotions robotically

in a safe, practical and affordable manner.
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One possibility is to use serial linkages and coordi-

nate the joints mathematically under computer

control, as is done in the commercial ZeusTM and

AesopTM laparoscopic robots (Intuitive Surgical,

Inc., Mountain View, CA). Similar solutions were

used in the IGOR [1], PUMA [2,3], Neuromate

[4,5], Kawasaki [6] and Sankyo Scara [7] robots.

However, serial linkages present two fundamental

problems. First, the robot kinematics induce math-

ematical singularities in the active workspace, which

is prohibitive in most medical applications. Another

difficulty with conventional serial robots is the need

for a fully described and precisely encoded kinematic

chain. It is rather difficult to calibrate these arms, and

losing calibration accuracy during clinical use is a

critical risk. Their trajectory and range of motion is

controlled solely by software, which increases the

operative risks of these devices.

A decidedly more appealing and safer alternative is

the family of kinematically decoupled robots. These

devices contain separately controlled and sequentially

operated Cartesian, rotational and insertion stages,

and they thus appear to be a more natural fit for the

process of needle placement. They are also safer,

because the range of motion of each individual stage

can be independently constrained and, if necessary,

mechanically blocked, thereby preventing overdriv-

ing of any individual axis. The least straightforward

action for a decoupled needle-placement robot is

orienting the needle toward the pre-selected target.

One approach is to use a 2-DOF design that mechani-

cally constrains the fulcrum point at the needle tip.

For this function, goniometric arcs have been

proposed [8], but these are impractical for needle

placement because the fulcrum point has to be in

the center of the arcs, thereby blocking access to the

patient. Taylor and colleagues implemented the

remote center of motion (RCM) point concept in a

laparoscopic robot [9], where the fixed fulcrum

point is produced farther away from the mechanism,

thereby leaving room for surgical instruments and

allowing the physician access to the patient. The

RCM concept has been applied in several laparo-

scopic and needle-placement robots, including com-

mercial systems such as the da VinciTM (Intuitive

Surgical, Inc.). At Johns Hopkins University,

Stoianovici et al. developed a chain-drive RCM

robot that is used in conjunction with a radiolucent

needle driver for percutaneous access [10]. Variants

of this robot have been tested under image guidance

using fluoroscopy [11], computed tomography

(CT) [12], ultrasound [13] and CT-fluoroscopy

[14]. The workflow in these systems is usually as

follows: (1) register robot to imager; (2) select

target and entry points; (3) solve inverse kinematics;

(4) move needle to entry; (5) line up needle with

target; and (6) insert needle. Depending on the

number of actuated degrees of freedom available,

some steps may be executed manually, but the work-

flow remains the same. While the RCM paradigm has

made significant impact on the field, it also has some

disadvantages: (1) precise construction must guaran-

tee the existence of a known fulcrum point; (2) a tool

holder must be carefully designed for each new tool,

placing it exactly on this fulcrum point; (3) each

joint must be fully encoded; and (4) the kinematic

chain must be known a priori. The net result of

these factors is usually a complex and expensive struc-

ture that must be carefully designed, manufactured

and calibrated.

An appealing alternative to the mechanically con-

strained fulcrum point would be to generate a pro-

grammed or “virtual” RCM in software, while still

taking advantage of decoupled and uncalibrated

Cartesian, rotational and insertion stages. This

problem is the focus of our research.

Contemporary MRI, fluoroscopy and CT-

fluoroscopy allow real-time visualization, which

enables real-time tracking of surgical instruments.

Three-dimensional ultrasound-guided interventional

systems [13,15] also include a real-time tracker in the

field of interest. In these systems, one can track

the end-effector of a surgical robot and manipulate

the device under visual servo control. It has been

known in general robotics that the operational

space formulation [16] and partitioned control [17]

can be used to alter the behavior of the system so

that it appears, kinematically and dynamically, to be

an RCM device. Unfortunately, existing kinematic

and dynamic models need to be precise, so the

joints must be fully encoded and calibrated. Exten-

sive research has also been devoted to visual servo

control [18], but work applied to uncalibrated and/

or unencoded robots has focused on estimating the

robot’s Jacobian rather than generating a virtual

Remote Center of Motion (Virtual RCM). Artificial

intelligence-based algorithms for robot motion have

also been investigated but not yet applied to the

needle-placement task. These algorithms have been

used in the control of uncalibrated mobile robots to

explore unknown environments and navigate familiar

environments [19]. Related research has also

examined the effect of uncertainty in robot sensors

and/or the environment [20] in generating a

collision-free map of the space.

Our present contribution combines an uncali-

brated needle-placement robot from three linear,

two rotational, and one linear insertion stages and

an AI-based motion algorithm to create a Virtual

RCM robot that requires neither encoded joints

nor complete knowledge of the robot kinematics.

Unlike classic RCM robots, the Virtual RCM

method does not require (1) the existence of a phys-

ically fixed fulcrum point, (2) a priori knowledge of
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the kinematic chain, or (3) encoding of the joints.

This relaxes many requirements previously imposed

on RCM needle-placement robots. For example,

the axes of the prismatic stages need not be ortho-

gonal; the axes of rotation stages need not intersect;

and kinematically unknown passive linkages are

permitted anywhere within the chain. This allows

robots using the Virtual RCM algorithm to be

simple and inexpensive to construct, eliminates

laborious calibration, and permits testing of new

robots or parts of robots to proceed rapidly without

affecting the accuracy of image guidance.

Materials and methods

System overview

Our proof-of-concept system (Figure 1) is comprised

of a 3-DOFmotorized Cartesian stage (NEAT, Inc.),

a passive unencoded adjustable arm, and a 2-DOF

motorized rotational stage designed by Stoianovici

et al. [10]. The Virtual RCM algorithm requires

measurement of the pose of a point on the robot

with a known transformation to the tool frame. In

clinical practice, fiducials attached to the robot can

provide this information directly from CT [21] or

MRI images. When using ultrasound (US) as the

imaging modality, magnetic tracking can provide

the pose of both the image and the tool [22]. In our

system, we attach a magnetic tracker to the tool

holder (Flock of Birds, model 6D FOB, Ascension

Technology Corporation, Burlington, VT). The

passive arm shown in Figure 1 helps in gross initial

positioning of the needle tip and also purposely intro-

duces an unknown linkage in the kinematic chain,

demonstrating that the Virtual RCM does not

require known kinematics. The tool holder also pur-

posely removes the RCM property of the Stoianovici

rotation stage by holding the needle off the RCM

point, demonstrating that the Virtual RCM does

not require careful construction of the fulcrum con-

straining mechanism or the tool holder.

Low-level control of the robot is achieved using

a motion control card (MEI, Inc., Santa Barbara,

CA), driven with the Modular Robot Control

(MRC) library developed at Johns Hopkins Univer-

sity [23]. The readings of the FOB tracker are

reported to a PC running the 3D Slicer medical

data visualization package [24]. Slicer is a public

domain open-source program primarily developed

by the MIT AI Lab and the Surgical Planning Lab-

oratory at the Brigham and Women Hospital, with

sustained contribution from Johns Hopkins Univer-

sity. In Slicer, we create a 3D virtual environment

(Figure 2) in which objects are represented in the

FOB tracker coordinate frame.

The incremental adaptive motion cycle of the

Virtual RCM algorithm that aligns and translates the

needle (as verified experimentally in the Experimental

implementation section below) requires the transform-

ation between themagnetic sensor and the tool frame.

Using readings from the FOB tracker, this transform-

ation is determined off-line by a version of the pivot

calibration [25]. Also required is the orientation of

the Cartesian stage expressed in the coordinate

frame of the tracker. This is obtained by moving the

Cartesian stage arbitrarily (maintaining a safe distance

from the patient) while recording sensor readings.

Direction cosines yield the orientation of the Carte-

sian stages with respect to the tracker.

The Virtual RCM: a heuristic search

In addition to accuracy and robustness, a key

performance criterion for the Virtual RCM needle-

placement algorithm is fast convergence within very

few cycles. In systems where the Virtual RCM algor-

ithm is implemented (where the tool tip is not

mechanically constrained to an RCM point), the

roll and pitch DOF (a and b) are no longer

decoupled and thus cannot be optimized individu-

ally. A blind search of all possible a and b combi-

nations is not useful for these coupled variables,

because it would be impractical to repeatedly rotate

the two joints through a full 3608 until the best align-
ment was determined from all possible discrete com-

binations of the two variables. To rapidly optimize

these two variables simultaneously, we draw upon

artificial intelligence techniques, such as a heuristic-

based Breadth First Search (BFS) or Depth First

Search (DFS). We discretize each rotational DOF

and partition our search space into two subspaces,

one for each angle. A heuristic function rapidly

guides the search to optimal needle alignment by

deciding where to search next at each state.

In practical terms, this means that the robot makes

incremental motions, and after each motion uses the

heuristic function to observe whether the needle is

becoming more or less aligned. This enables theFigure 1. Experimental setup.
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algorithm to determine which direction of motion is

likely to cause better alignment. By continually

moving both angles, the robot is able to rapidly

home in on the proper alignment.

Selecting a heuristic function that quantifies

improvement in needle alignment is not trivial. A

desirable function would not have local minima that

may cause the final alignment to converge at an incor-

rect solution. Another consideration is that the

magnetic tracker (or any device that provides the

pose of the needle) introduces some uncertainty.

Therefore, a good heuristic function must have a

low sensitivity to noise, and it is important to

conduct an error propagation analysis of candidate

heuristic functions. This can be done by applying

Equation 1 (below), where z represents a heuristic

function measure. The quantity z is a function of

measurements, denoted by x and y, subject to

sensor uncertainty. The standard deviations (sx and

sy) represent the uncertainties in measurement.

The total uncertainty of the heuristic function z is

then given by:

s2
z ¼

@f (x, y)

@x
s2
x þ

@f (x, y)

@y
s2
y (1)

This indicates that heuristic functions where sensor

readings are multiplied/divided are much more

sensitive to sensor noise than heuristic functions

that involve only addition and subtraction.

Analysis of candidate heuristic functions

One potential heuristic function is the cross-product

between the needle vector and the entry path vector.

The needle vector is defined from the needle base to

the needle tip and the entry path as the vector

from the entry point to the target position. Minimiz-

ing the magnitude of the cross-product between these

two vectors yields a needle aligned with the entry

path.

Another potential heuristic function to move and

align the needle is to first minimize the distance

between the needle tip and the entry point (d in

Figure 3), and then align the needle by minimizing

dnormal while maintaining the needle tip at the entry

point. We will see in simulation that each of these is

a poor candidate heuristic function because they

have local minima that can cause the needle to

become misaligned.

To compare different heuristic functions, we build

a simulator reflecting our robot configuration. As

shown in Figure 4, we have an RCM frame at the

RCM point and two rotational DOF (a and b

around the x and y axes, respectively). We also have

a tracker frame, where the planned “entry” and

“target” points are defined. Most importantly, the

transformation between these two frames is Frcm
tracker,

Figure 2. Slicer graphical user interface.
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which is not required in the physical system (no cali-

bration step is necessary), but is assigned a value for

simulation purposes. The needle coordinates in the

RCM frame (note: the needle tip is not at the RCM

point) can be transformed to the tracker frame as

follows:

~ntrac kertip ¼ Ftrac ker
rcm R(~x, a)R( ~y, b)~nrcmtip

~ntrac kerbase ¼ Ftrac ker
rcm R(~x, a)R( ~y, b)~nrcmbase

where R(~x, a) is a rotation around the x-axis by a

degrees, and R( ~y, b) is a rotation around the y-axis

by b degrees. Now, we have the needle base and tip

points in the tracker space where the planned entry-

target points are defined. The following will illustrate

the different heuristic functions that were simulated

to check the applicability of each one:

cross� product ¼ (~ntrac kerbase � ~ntrac kertip )
�
�
�

� (~ptrac kerentry � (~ptrac kert arg et k

dist:metric ¼ dist(~ntrac kerbase , ~ntrac kertip , ~ptrac kerentry , ~ptrac kert arg et )

Comparing the distance heuristic function with the

cross-product heuristic function illustrates why the

cross-product is the preferred choice for creating a

Virtual RCM. The distance heuristic function

requires the needle tip to be placed at the inser-

tion point, while the cross-product heuristic function

search can take place with the needle anywhere in

space. The cross-product will also be subject to less

alignment error, as illustrated by the simulation in

the next section.

Simulation results

In simulation, all possible discrete combinations of a

and b can be plotted with respect to the scalar value

of a given heuristic function. This yields visual and

intuitive understanding of the heuristic functions.

Figure 5 shows the simulated needle as a is rotated

through a full 3608 while b is held constant at 58
and 508. This procedure is repeated for each b

value. Plots of two heuristic function results across

the entire a-b space can be seen in Figure 6. As can

be seen from this figure, the cross-product heuristic

function has a higher specificity than alternative

heuristic functions. Its deep minima will yield a

more accurate alignment result in the presence of

sensor noise or other real-world uncertainties than

the shallowminima of the distance heuristic function.

At first glance, it may not be obvious which of

the minima on the cross-product are acceptable sol-

utions. Two of the four minima can be discarded

immediately, because they represent the needle

being oriented the wrong way, with its base toward

the target. The other two minima are equally good

solutions, representing the needle being aligned on

either side of the actual RCM point, as shown by

the dashed lines on Figure 3. The only potential

reason for choosing one over the other would be

application-specific workspace constraints, since

both represent equally good alignments of the

needle. If no such workspace constraints exist, this

interesting multiple solution property of the cross-

product heuristic function is beneficial to the speed

of the algorithm. A search of a multiple-solution
Figure 4. Illustration of frames and vectors necessary for building

a simulation of candidate heuristic functions.

Figure 3. Heuristic functions.
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space can generally converge more quickly than a

search with a single solution.

The most compelling advantages of the cross-

product are its spatial invariance and its low overall

error in alignment. The magnitude of a spatially

invariant function does not change with Cartesian

motion. This has important practical implications

for patient safety, as described in the next section.

Even more important to practical application, the

cross-product will have lower final error than the dis-

tance heuristic function, because the former requires

only summation of error, while the latter requires

both multiplication and square root functions.

Experimental implementation

The two rotational joints of the robot perform needle

alignment using the cross-product heuristic func-

tion described previously. The joints are moved in

small increments. Since the tool tip is not on the

mechanical fulcrum point, it will be displaced a

small amount during each rotation. However, this

displacement is immediately compensated for by

the Cartesian stages, based on the tracker reading.

Thus, the needle tip remains on a Virtual RCM

point. The robot continues to move through the

search tree by moving the rotational joints alternately

in incremental motions that decrease the value of the

heuristic function.

There are several ways to apply this algorithm in

needle placement (Figure 7). The most obvious is

to perform needle placement using the same

sequence of motions as would be done manually

(the Virtual RCM Method), where the robot first

moves the needle tip to the entry location, then

aligns it along the insertion vector. Humans do not

orient the needle first and then move it to the entry

point, although this is an equally good order of oper-

ations. (Perhaps the reason is that humans are able to

discern smaller differences in vector alignment

Figure 5. This shows 360 rotations of a for two particular b angles to show the dependency between a and b. Note: alignment is better on the

left as shown in the cross-product value 0.3, while on the right the cross-product value is 0.55.

Figure 6. Plot of distance (left) and the cross-product (right) heuristic functions for all angular values.
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between nearby vectors than between those separated

by a distance of many centimeters. It may also be

easier for humans to control the alignment more

accurately by pivoting the needle on a fixed point.)

Since robots suffer from no such limitations, there

is no intrinsic reason why a robot could not perform

alignment before moving the needle to the surgical

site (the Align/Move Method). The advantage of

this for the robot is speed: Since the robot is at a

safe distance from the patient, we can eliminate the

use of the Cartesian correction portion of the

Virtual RCM algorithm and find the correct align-

ment more rapidly.

A third alternative is to use a combination of the

first two methods (the Hybrid Method). The robot

can rapidly make a quick rough alignment of the

needle away from the patient, and then move to the

insertion point (Align/Move Method) and finally

fine-tune the alignment with Virtual RCM motion

(Virtual RCM Method). Figure 7 presents a flow

chart of all three methods: Align/Move, Virtual

RCM and Hybrid.

Results and discussion

We performed needle placement according to each of

the three methods, and the results are summarized

in Table I. In our experiment, the number of steps

required (regardless of the method used) was nearly

linearly proportional to the initial misalignment.

Figure 7. Needle insertion scenarios flow chart.

Table I. Experimental results.

Method Experiment sets Set I Set II Set III

Initial angle deviation (8) 15.6 28.7 51.4

Initial target displacement (mm) 21.2 41.8 118.2

Align/Move No. of steps

Rotation 17 35 66

Translation 1 1 1

Angle error (8) 2.2 2.8 2.1

Target displacement (mm) 1.05 2.81 3.40

Virtual RCM No. of steps

Rotation 17 35 66

Translation 17 35 66

Angle error (8) 2.8 2.2 2.8

Target displacement (mm) 1.68 3.02 5.15

Hybrid Tech. No. of steps

Rotation

Method I 17 35 66

Method II 2 2 3

Translation 2 2 3

Angle error (8) 1.4 1.7 1.9

Target displacement (mm) 0.78 2.44 3.99

Virtual RCM control for needle placement robots 7



This was because a fixed initial (largest) step size was

used. If the initial step size were large and adaptively

modified as the solution was approached, the algor-

ithm could reach a solution in fewer steps. However,

this would only be practically feasible for safety

reasons in the Align/Move or Hybrid Methods,

where the needle tip is away from the patient or

the alignment is already nearly correct. In our

experiments it was possible, given a wide range of

initial conditions, to obtain an optimized solution

within a few (20–30) steps, requiring a total time of

only 0.8–1.2 s, since each step takes an average of

40 ms.

As can be seen from Table I, Align/Move is the

fastest (requiring the fewest steps) of the three

methods, because no Cartesian motion is needed to

compensate for tip displacement. The results for

Virtual RCM show that it alone is essentially equival-

ent to Align/Move in both rotational and displace-

ment accuracy, but is much slower. The Hybrid

method is much more accurate than the first two,

yet the algorithmic complexity has the same order

of magnitude as Align/Move. It is important to note

that the accuracy presented in the table is severely

limited by the tracker accuracy, which is reported

by the manufacturer as 2.54 mm RMS (this is a

first-generation FOB tracker).

A future goal is to replace the magnetic tracker

with a CT-fluoroscopy (CTF) scanner. We will

gather the pose of the needle tip directly from the

CTF images using the method described in reference

[21]. Our ultimate goal is to clinically accurately

place needles using inexpensive, uncalibrated, and

unencoded robots in intra-operative imagers (CTF,

MRI, and X-ray fluoroscopy), with the use of

purely image-based spatial registration of the tool

holder alone. We also hope to perform experiments

under ultrasound guidance, where the external

tracker will be retained. In terms of algorithmic

enhancements, we will incorporate target uncertainty

into our model to account for motion artifacts.
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