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ABSTRACT

The success of prostate brachytherapy depends on the faithful delivery of a dose plan. In turn, intraopera-
tive localization and visualization of the implanted radioactive brachytherapy seeds enables more proficient and
informed adjustments to the executed plan during therapy. Prior work has demonstrated adequate seed recon-
structions from uncalibrated mobile c-arms using either external tracking devices or image-based fiducials for
c-arm pose determination. These alternatives are either time-consuming or interfere with the clinical flow of the
surgery, or both. This paper describes a seed reconstruction approach that avoids both tracking devices and
fiducials. Instead, it uses the preoperative dose plan in conjunction with a set of captured images to get initial
estimates of the c-arm poses followed by an auto-focus technique using the seeds themselves as fiducials to refine
the pose estimates. Intraoperative seed localization is achieved through iteratively solving for poses and seed
correspondences across images and reconstructing the 3D implanted seeds. The feasibility of this approach was
demonstrated through a series of simulations involving variable noise levels, seed densities, image separability and
number of images. Preliminary results indicate mean reconstruction errors within 1.2 mm for noisy plans of 84
seeds or fewer. These are attained for additive noise whose standard deviation of the 3D mean error introduced
to the plan to simulate the implant is within 3.2 mm.

Keywords: Registration, Intraoperative Imaging, Image-Guided Therapy, Pelvic Procedures, Prostate
Brachytherapy, Reconstruction

1. INTRODUCTION

Brachytherapy accounts for a significant and growing proportion of prostate cancer treatments. It involves
implanting radioactive seeds into the prostate via needles according to a preoperative plan. A schematic is
shown in Fig. 1(a). The success of brachytherapy relies on faithful delivery of the dose plan, thus avoiding
insufficient dose to the cancer and/or inadvertent radiation of the rectum, urethra, and bladder. The former
permits the cancer to recur, while the latter causes adverse side effects like rectal ulceration, incontinence, and
impotence. According to a comprehensive review by the American Brachytherapy Society, the major existing
limitation of brachytherapy is the inability to perform treatment optimization on the fly on the operating room,
due to the inability to localize the implanted seeds in relation to the prostate.1

In current clinical practice, c-arm fluoroscopy imaging is often used in conjunction with transrectal ultrasound
(TRUS) for gross visual assessment of the implanted seeds. With a rapid and inexpensive solution, it may be
feasible, through interactive 2D imaging, to provide accurate quantitative measurement of the 3D positions of
the implanted seeds during the operation. This, together with the registration to ultrasound, allows surgeons
to modify the plan on the spot to improve the efficacy of brachytherapy. However, two major difficulties exist
for attaining a rapid and accurate 3D reconstruction using the x-ray images captured by mobile c-arms that
are available in the operating room (OR) (see Fig. 1(b)). First, the most commonly available c-arms do not
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Figure 1. (a) Prostate brachytherapy schematic. (b) X-ray image of brachytherapy seeds.

have encoded rotational joints and they are allowed to move between shots, which means that pose estimation
is required. External trackers and tracking fiducials have been used for pose estimation in the past, and each
method has its own drawbacks. External trackers, such as optical and EM trackers have proven to be both
expensive and cumbersome in the OR. Optical trackers require a line of sight, whereas EM trackers are sensitive
to the presence of metal objects in the work area. Alternatively, different tracking fiducials2, 3 have been used
and have provided reasonable results. However, these require proper positioning and segmentation which is
sometimes difficult and time-consuming.

The second major difficulty is the limited angular separation between the acquired fluoroscopy images, as
required by the surgical setup, which makes seed reconstruction more difficult. Seed reconstruction approaches
can be categorized as either correspondence-based techniques4–10 or tomosynthesis techniques.11–13 All of these
methods assume that the c-arm poses are known to relatively high accuracy. Murphy et al.14 proposed a
forward iterative method that uses a 3D model to reconstruct the seeds. However, they assume prior knowledge
of the intrinsic and extrinsic camera parameters in order to refine those parameters and reconstruct the seed
configurations. We make use of this model for our current algorithm but with no prior estimates for the extrinsic
parameters, i.e., we employ the model for initial pose estimation as well. Tutar et al.15 have also used a
model-based technique for registration of ultrasound to fluoroscopy.

Jain et al.16 have proposed a unified framework for pose estimation and reconstruction using randomly
distributed points in the imaging volume. However, for proper convergence, this method requires the availability
of some prior correspondences of the points. More recently, Chintalapani et al.17 have presented a reconstruction
approach that uses a simple elliptical fiducial and an auto-focus approach as well.

In this paper we propose a strategy to enable seed reconstruction using fluoroscopy images from mobile c-
arms with no reliance on any tracking devices or fiducials for pose estimation. We use the preoperative plan in
collaboration with the 2D images in an iterative fashion for both pose estimation and reconstruction. The central
idea of our approach is that prior knowledge about the 3D configuration of the seeds can provide reasonable
initial estimates for the image poses. Those, in turn can enable us to find a better model for the true seed
locations from the captured images. Iteration using this enhanced model improves both the pose estimates and
the reconstruction.

2. METHODS

2.1 Assumptions and preliminaries

We assume that the c-arm geometry is known and that its x-ray images have been corrected for geometrical
distortion. The algorithm uses pre-segmented images in which the entire seed collection is specified by their 2D
coordinates. We use six parameters (three for rotation and three for translation) to specify the unknown pose.
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Figure 2. Fluoroscopic imaging geometry and the involved coordinate systems.

2.2 Fluoroscopic imaging
X-ray imaging involves three different coordinate systems, as shown in Fig. 2: (1) the camera coordinate system
FX , which refers to the source of the x-ray in this case, (2) the x-ray image coordinate system FI , and (3) the
model coordinate system FM . Let PM be a 3D point in the FM frame (in homogeneous coordinates), and let
PI be its corresponding 2D-projection in the FI frame (in homogeneous coordinates as well). Define XFM to
be the 4 × 4 rigid transformation matrix that transforms a point in FM to FX and define IFX to be the 3 × 4
perspective projection matrix.

Image acquisition follows a perspective projection model that is described by the following equation:

PI = IFX
XFM PM (1)

IFX =

⎡
⎣

f/su 0 ou 0
0 f/sv ov 0
0 0 1 0

⎤
⎦ (2)

XFM =

⎡
⎢⎢⎣

r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

0 0 0 1

⎤
⎥⎥⎦ (3)

where su and sv are pixel sizes of the image in the x- and y-directions respectively, ou and ov are the coordinates
of the image center O in the x- and y-directions respectively, f is the focal length, rij ’s are the elements of the
rotation matrix, and Tx, Ty, and Tz are the translation parameters.

Since we assume that the c-arm is calibrated, it follows that IFX is known. For non-encoded c-arms, however,
the pose (which is embedded in the transformation XFM ) is unknown and must be determined. The pose
parameters are stacked into a vector

s = (a, b, c, Tx, Ty, Tz)T (4)

where a, b, and c are the Rodrigues parameters derived of the quaternion representation of the rotation matrix.18
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2.3 Algorithm

A pose estimation algorithm using the Hungarian method19 and a correspondence-based reconstruction technique
are used iteratively. The input is a set of pre-processed observed images and a prior 3D model of the implanted
seeds. After each iteration, we have a new pose for each image and an updated 3D model.

2.3.1 Pose estimation

Pose estimates are retrieved for each image through a multivariable constrained optimization procedure that
minimizes an objective function based on the Hungarian algorithm.19, 20 The optimization uses a sequential
quadratic programming (SQP) method and estimates the Hessian of the Lagrangian at each iteration using the
BFGS formula.21

Let pI and pM be the 2D and 3D points (in non-homogeneous coordinates) that correspond to PI and PM

in Eq. (1) respectively. Now let Mk be the set of all 3D model points after iteration k, i.e.,

Mk = {pMe}, e = 1, 2, .., n, (5)

where n is the number of seeds. To be concrete, we think of M0 as the initial 3D model consisting of points from
the preoperative plan, but it could also be a 3D model derived from an intraoperative record of the locations of
the dropped seeds. Similarly, let Ir be the set of all 2D segmented seed positions in the rth observed image:

Ir = {pIr,e}, r = 1, 2, .., m, e = 1, 2, .., n, (6)

where m is the number of images.

Consider the rth image at iteration k. The Hungarian matching algorithm is applied in 2D between the seed
locations in Ir and those obtained from projections of Mk−1 with a tentative pose s̃ using Eqs. (1), (2) and (3);
we denote this latter set Ĩ. Note that each pose vector s̃ maps uniquely to a transformation ˜XFM .

The Hungarian algorithm both solves the assignment problem and computes a corresponding cost T for this
matching based on an input cost matrix A given to the algorithm. This input cost matrix is n × n

A = {aij} , (7)

where aij is the 2D Euclidean distance between element i in Ĩ that corresponds to a candidate pose s̃ and element
j in Ir.

The output cost is given by

T =
n∑

i=1

a(i,c(i)) , (8)

where c(i) is the index of the element in Ir that corresponds to element i in Ĩ . The optimization procedure finds
s that minimizes T for each image. In this case, the optimal pose for image r at iteration k, denoted ŝr,k, is the
one whose respective set Î gives the minimum matching cost T̂r,k. Thus, the pose estimation step also yields the
seed correspondences ĉr,k = [c(1), c(2), .., c(n)], which we use in the reconstruction step.

2.3.2 Reconstruction

After independent pose estimation for each of the observed images, the estimated poses ŝr,k, r = 1, 2, .., m
are used collectively with the correspondences ĉr,k and the sets Ir, r = 1, 2, .., m, to reconstruct Mk. The
reconstruction accuracy (RA) is used as a cost metric to compute a so-called symbolic 3D intersection point
based on the back-projected lines.8, 22 This symbolic intersection point is the one that minimizes the sum of the
squared distances to the lines.

Consider the reconstruction of the eth point in Mk; let us call it Q. Corresponding projections in the images
are pI1,ĉ1,k(e) , pI2,ĉ2,k(e) , .., and pIm,ĉm,k(e) . Let q1, q2, .., qm be the same points after transforming them to FM

using the pose estimates ŝr,k, r = 1, 2, .., m. Let �1, �2, .., �m be the unit directional vectors from each source
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Figure 3. The symbolic intersection of three lines.

position (the origin of FX) to the points, and they are in FM as well. Q is computed such that it minimizes a
function

G =
m∑

i=1

d2
i =

m∑
i=1

‖(Q− qi) × �i‖2 (9)

where di is the Euclidean distance between Q and line i, as shown in Fig. 3 for the case when m = 3.

2.3.3 Model update and iteration

The set of points of the implant reconstructed in the previous step is then used as an updated 3D model to
re-estimate the poses of each image and refine the reconstruction as in Sec. 2.3.1 and Sec. 2.3.2. This is done in
an iterative fashion until the pose estimation cost is almost unchanged between successive iterations for all the
images.

3. EXPERIMENTS AND RESULTS

3.1 Effect of various factors

Simulation studies were conducted to examine the effect of several factors on the accuracy of the pose estimation
and the reconstruction. For the following experiments, the range of pose parameters is assumed to be known
within 60 degrees, 55 degrees and 30 degrees for the three Euler angles (Z-Y-Z notation) and 40 mm for the
translations in each of x- and y- directions and 400 mm for the translation in the z-direction. These assumptions
are supported by the fact that the motion of the c-arm is constrained within a relatively small cone during the
clinical procedure. Random multistart optimizations are used to initialize the pose estimates for each image
where the pose chosen is the one corresponding to the minimum Hungarian cost. It is to be noted that the
pose optimization is done with respect to the Rodrigues parameters for the rotation as explained in the methods
section, whereas the Euler angles are just used for initial range specification.

3.1.1 Effect of noise level

Simulated plans of 84 seeds each were used. In order to simulate seed implantation errors, we added independent
identically distributed (i.i.d.) additive white Gaussian noise to the seed coordinates of the generated plans. The
standard deviation of the 3D mean error introduced by the noise simulator is denoted σ, which was varied from
0.8 mm to 4 mm in increments of 0.8 mm. Five different plans were used and ten different noise instances were
added to each plan providing a total of 50 different experiments for each noise level. Six images were simulated
using the synthetic implant and used to run the algorithm. Table 1 shows the mean number of matched seeds
(over all the experiments) and means and standard deviations of the reconstruction error (RE). The latter were
computed once based on all of the seeds and another time based on only the matched ones. It is to be noted
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that a seed is declared to be matched only if it is correctly matched in all images. Table 2 shows the mean and
standard deviation of rotation and translation errors in the pose. Since translation errors in depth are always
significantly greater than those parallel to the plane, large errors in translation do not reflect that badly on
reconstruction errors.

Table 1. Effect of noise level on reconstruction accuracy.

σ (mm) Number of Overall RE (mm) Matched RE (mm)
matched seeds mean ± std mean ± std

0.8 81.4(96.9%) 0.2 ± 0.3 0.2 ± 0.2

1.6 83.5(99.5%) 0.3 ± 0.2 0.3 ± 0.2

2.4 78.6(93.6%) 0.7 ± 0.8 0.5 ± 0.3

3.2 76.0(90.5%) 1.0 ± 1.4 0.7 ± 0.4

4.0 67.5(80.4%) 1.7 ± 2.4 0.8 ± 0.5

Table 2. Effect of noise level on pose estimates.

σ (mm) Rotation error (degrees) Translation error (mm)
mean ± std mean ± std

0.8 0.7 ± 3.8 1.9 ± 3.9

1.6 0.7 ± 0.4 3.1 ± 2.6

2.4 1.5 ± 3.5 4.5 ± 4.1

3.2 1.9 ± 2.5 6.8 ± 4.8

4.0 2.3 ± 3.3 7.1 ± 5.9

3.1.2 Effect of seed density

We generated plans with seed densities of 1, 1.5, 2, and 2.5 seeds/cc for a 40 cc prostate, resulting in 36, 60, 84,
and 96 seeds, respectively. Gaussian noise of σ equal to 3.2 mm was added to the plans and the experiments
were carried out using the same scheme explained in Sec. 3.1.1. Results are shown in Table 3 and Table 4.

It is observed that we attain relatively lower mean reconstruction errors for seed clouds of middle-range
densities (60 and 84 seeds). This can be explained as follows: for small number of seeds (36 seeds), the errors
in the pose estimates tend to be relatively high (due to the presence of fewer seeds to constrain the pose) and
therefore degrade the reconstruction accuracy. As for more dense clouds (96 seeds), the errors in correspondence
returned by the Hungarian increase as reflected in the low percentage of correctly matched seeds, which in turn
increases the reconstruction error.

Table 3. Effect of seed density on reconstruction accuracy.

Total number Number of Overall RE (mm) Matched RE (mm)
of seeds matched seeds mean ± std mean ± std

36 32.8(91.1%) 1.2 ± 1.1 1.0 ± 0.6

60 57.1(95.2%) 1.0 ± 1.2 0.8 ± 0.5

84 76.0(90.5%) 1.1 ± 1.4 0.7 ± 0.4

96 74.2(77.3%) 1.3 ± 1.9 0.6 ± 0.3
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Table 4. Effect of seed density on pose estimates.

Total number Rotation error (degrees) Translation error (mm)
of seeds mean ± std mean ± std

36 3.7 ± 10.4 10.0 ± 7.4

60 2.2 ± 3.6 8.5 ± 7.5

84 1.9 ± 2.5 6.8 ± 4.8

96 2.3 ± 6.0 7.0 ± 5.4

3.1.3 Effect of number of images

The number of images used was varied from three to six images. Simulated plans of 84 seeds each were used.
Gaussian noise with σ = 3.2 mm was added to the plans and the experiments were conducted using the same
scheme explained in Sec. 3.1.1. Results are shown in Table 5 and Table 6.

Increasing the number of images results in a noticeable improvement in reconstruction as reflected by the
mean reconstruction error (MRE) dropping from 1.8 mm (using 3 images) to 1.0 mm (using 6 images). The
same behavior is observed for rotation error. Furthermore, the number of matched seeds increases dramatically.

Table 5. Effect of number of images on reconstruction accuracy.

Number of Number of Overall RE (mm) Matched RE (mm)
images matched seeds mean ± std mean ± std

3 52.8(62.8%) 1.8 ± 1.9 0.8 ± 0.5

4 70.1(83.4%) 1.2 ± 1.6 0.7 ± 0.4

5 74.3(88.5%) 1.1 ± 1.6 0.7 ± 0.4

6 78.2(97.6%) 1.0 ± 1.5 0.7 ± 0.4

Table 6. Effect of number of images on pose estimates.

Number of Rotation error (degrees) Translation error (mm)
images mean ± std mean ± std

3 2.4 ± 4.8 6.2 ± 6.0

4 1.7 ± 0.8 5.8 ± 4.2

5 1.8 ± 3.6 6.3 ± 6.0

6 1.6 ± 1.0 6.3 ± 5.2

3.1.4 Effect of angular separation of images.

For this experiment, six images were generated from a noisy plan of 84 seeds on a cone of angle 10 ◦, 15 ◦, 20 ◦ and
25 ◦ around the AP axis for different experiments and the six images were used to run the algorithm. Gaussian
noise with σ = 2.4 mm was added to all the plans using the same scheme explained in the previous section.
Results over 50 different runs for each case are shown in Table 7.

The overall MRE drops from 0.9 mm to 0.6 mm when the cone angle is increased from 10 ◦ to 25 ◦; however
for all 4 experiments the matching rate was fairly good.
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Table 7. Effect of angular separation on reconstruction accuracy.

Cone angle (degrees) Number of Overall RE (mm) Matched RE (mm)
matched seeds mean ± std mean ± std

10 79.1(94.2%) 0.9 ± 1.5 0.6 ± 0.3

15 80.7(96.1%) 0.7 ± 1.0 0.5 ± 0.3

20 78.7(93.6%) 0.7 ± 0.8 0.5 ± 0.3

25 79.2(94.3%) 0.6 ± 0.7 0.5± 0.3

3.2 Convergence of the algorithm

A simulation was done to test the convergence of the algorithm. For this experiment, a plan of 84 seeds was used
with six images. The cone angle was 20 ◦. Figure 4 shows the Hungarian cost and the matching rate plotted
for each iteration of the algorithm for different values of noise levels with σ varying from 0.8–4.0 mm. The
Hungarian cost was averaged over all six images.
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Figure 4. An example of the convergence rate of (a) the Hungarian cost and (b) the matching rate for the iterative
algorithm for different noise levels.

4. DISCUSSION AND CONCLUSION

We proposed the use of the preoperative plan to localize the implanted seeds from multiple c-arm fluoroscopy
images with no tracking. We rely on the fact that adequate similarity between the plan and the reality may allow
us to use the seeds themselves as fiducials. The other fact we rely on is that reasonably accurate pose estimates
for the 2D fluoroscopy images (within a few degrees for the rotation and several mm for the translation) are
sufficient to initialize a clinically satisfactory reconstruction of the implanted seeds in 3D. Iteration is used to
refine the reconstruction through the use of the 2D x-ray projections and prior 3D reconstructions. Furthermore,
the explicit correspondence assigned to each seed in the prostate volume simplifies the task of cold- and hot-
spot identification intraoperatively, thus contributing to the overall improvement of the dose delivery scheme
throughout the execution of the brachytherapy treatment procedure.

It is worth mentioning that in some cases, the seed drop positions are recorded intraoperatively, for example
using ultrasound. In this case, the marked seed locations may be more accurate and should therefore be used
instead of the preoperative plan to initialize the 3D model for our algorithm.
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We demonstrated feasibility using preliminary simulation studies and are currently pursuing to apply this
approach for phantoms. However, we must address several issues before the method will be clinically feasible,
including the problems of hidden seeds, false positives, and seed segmentation errors. Another important aspect
that yet needs to be studied is the different error sources that might possibly make the plan and the actual
implant significantly different from each other. These are errors that are due to edema, faulty seed placement,
seed splaying, patient movement and others. Once these are properly modeled, these can easily be incorporated
into our algorithm. In summary, this is a first step towards removing all types of trackers from the procedure.
It provides proof of concept and encourages further investigation of this approach.
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