Introduction

Image-guided Needle Interventions
- Hand-eye coordination and mental registration
- Longer duration for complex procedures
- Multiple punctures and radiation exposure

2D Image Overlay
- Consist of mirror-monitor attached together
- Successful pre-clinical trials conducted

Previous Image Overlay Systems
- Static
 - Displayed a cross-sectional image in the virtual overlay plane
 - Fixed to scanner or mounted upon large mechanical articulated arm
 - Limited precision of movement and long calibration time
 - Prone to misalignments, deformation, and vibrations
- Adjustable

Mobile Image Overlay System
- Mobile, light weight (1.0kg) and smaller dimensions (13 cm X 23 cm)
- Display device - Galaxy Tab 3.0 (10.1‘)
- Mirror - Beamsplitter with Reflection/Transmission ratio - 75/25

Design of Mobile Image Overlay System for Image-Guided Interventions
Manjunath Anand¹, Franklin King¹, Tamas Ungi², Andras Lasso³, John Rudan², Jayender Jagadeesan³, Jan Fritz⁴, John A. Carrino⁴, Ferenc A. Jolesz³, Gabor Fichtinger¹,⁴

¹Laboratory for Percutaneous Surgery, Queen’s University, Canada; ²Department of Surgery, Kingston General Hospital, Canada; ³Surgical Planning Laboratory, Brigham and Women’s Hospital, USA; ⁴Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA;

Workspace Analysis

<table>
<thead>
<tr>
<th>60-degree configuration</th>
<th>90-degree configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design principle</td>
<td>Similar to earlier design</td>
</tr>
<tr>
<td>Viewing angle</td>
<td>7.5 degree</td>
</tr>
<tr>
<td>Clearance above patient</td>
<td>0.0cm</td>
</tr>
<tr>
<td></td>
<td>5.0cm</td>
</tr>
</tbody>
</table>

Direct Automatic Calibration
- Laser plane marks the overlay plane
- Align two plane with alignment tool
- Adjust laser source with three DOFs
- 5mW power output (FDA Class IIIa)

Laser Plane Alignment
- Designed for needle placement experiment
- Location registered w.r.t planar marker
- Landmark registration error 1.35 ± 0.14 mm
- Actual needle placement experiment pending

Needle Insertion Validation
- Light weight, smaller dimensions and automatic calibration
- System can be handheld and / or fixed with positioning arm
- Needles up to 12.5 cm length can be used
- Real-time tracking with improved accuracy of overlay plane tracking
- Evaluate needle placement accuracy and optimize clinical workflow

Summary and Future Work

Acknowledgements
Cancer Care Ontario Research Chair; The Discovery Grant of NSERC, Canada; National Center for Research Resources and National Institute of Biomedical Imaging and Bioengineering of the NIH, USA